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Abstract
By coupling parametric modelling, building performance (like energy efficiency) simulation, and algorithmic optimization, 
performance-based generative architectural design (PGAD) can automatically generate lots of high-performance architectural 
design solutions. Although it is ‘performance-based’, the final selection of a real design project still needs to consider the 
aesthetics of design choices. However, due to the overwhelming number of design choices generated by PGAD, it is difficult 
for designers to choose the most favourable one from them. Therefore, the current study tries to integrate the technology of 
sketch-based image retrieval (SBIR) into the selecting stage of PGAD. Rather than navigating alternatives one from another 
and getting lost, designers can directly find the most aesthetically preferred one by inputting his/her hand-drawn design. 
A design project of fenestrating a multiple-floor office building is used to demonstrate this method and test three SBIR 
algorithms: Angular radial partitioning (ARP), Angular radial orientation partitioning (AROP), and Sketch-A-Net model 
(SAN). Test results show that AROP performs the best among these three algorithms. Its retrievals are most similar to inquiry 
images drawn by architects. Meanwhile, performances of AROP with different template combinations are also rated. After 
that, AROP with the best template is also tested with incompletely drawn inquiry images. In the end, investigation results 
are validated by another building façade design case. The current study automates the PGAD process stepwise, making it 
more applicable to real design projects.

Keywords Computer-aided design · Geometric computation · Design method · Artificial intelligence · Sketch-based image 
retrieval (SBIR)

1 Introduction

With algorithmic optimization automatically searching a 
design space and generating design alternatives, generative 
techniques have been increasingly used in the architectural 
design field. Architects and researchers use this method to 
obtain design alternatives, such as building shapes and floor 
plans. A stepwise, performance-based generative architec-
tural design (PGAD) is a design method coupling parametric 
modelling, building performance simulation, and algorith-
mic optimization to automatically output tens and thousands 
of design solutions, some of which have high building per-
formances, aspects like energy-efficient, financial cost-opti-
mal, etc. [1–3]. For designing high-performance buildings, 
with the help of algorithmic optimization, the PGAD method 
is much more efficient than the traditional design approach, 
which requires manual iteration but only exploring a very 
limited design space.
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Although PGAD is much faster and more effective in gen-
erating design solutions than human brains, selecting design 
solutions in its post-processing stage is still time and effort 
consuming. The reason is that aesthetics and human sub-
jective preferences also play a more important role during 
the decision-making process. While there have been already 
developed visualization gadgets like DesignExplorer [4] 
or Project Refinery [5], designers can check the physical 
appearances of some design solutions by setting a specific 
domain on building performances, a kind of filtering. How-
ever, they still have to spend a lot of time navigating and 
selecting among many design solutions.

To speed up the navigating and selecting process, some 
scholars used clustering algorithms, one pattern of unsuper-
vised learning which organizes un-labelled data into simi-
larity groups, to cluster design solution alternatives [6–12]. 
By clustering design solutions before looking into details of 
singular solutions, designers can navigate alternatives from 
group to group to get an overall picture of all the design 
solutions. Commercial optimization software like mod-
eFRONTIER and other open-source optimizers like Wallacei 
[13] have already offered this clustering function.

However, these studies and tools still have limitations. 
Firstly, except for the work done by Rodrigues et al. [8] 
which clustered solutions’ phenotypes, all the others clus-
tered genotypes of design solutions or values of building 
performance objectives [10, 14]. In other words, most of the 
studies in the literature only clustered parameters’ values of 
generating design choices or simulation results of building 
performances, rather than directly clustering design choices’ 
physical appearances. However, geometric variables in the 
generating stage are unable to fully describe what people 
really can perceive when seeing buildings in the real world, 
let alone values of building performance which does not 
identify the physical appearance and aesthetics at all. In 
conclusion, current methods did not offer people direct per-
ceptions to design solutions’ physical appearances, which 
requires critical attention in the design process.

Secondly, nearly all previous studies only clustered opti-
mal design solutions or not optimal solutions but have been 
explored by the optimization algorithm. However, the algo-
rithms always do not explore the whole design space, which 
contains all possible design solutions. It means that many 
sub-optimal or non-explored design solutions but with more 
preferred appearances are ignored. Although performance 
plays a crucial role in PGAD, aesthetic considerations actu-
ally are still necessary for real architectural design projects. 
However, it is impossible to cluster the whole design space 
using their methods, because geometric parameters are 
evenly sampled, and values from these variables do not have 
any variation for clustering.

Thirdly, architects’ subjective preferences on aesthetics, 
which are crucial for them to complete a project, were not 

adequately embodied in the clustering process. The work-
flow in these studies became that they offered several groups 
of design choices, and architects checked and selected 
one from them. It somehow reduces architects’ initiatives 
because it is different from the traditional way that architects 
proactively propose several choices and compare them. In 
conclusion, (image) clustering can aid the selection phase 
of PGAD to a certain extent, but it is still difficult for archi-
tects to make decisions among tens and thousands of design 
solutions.

Similar to image clustering, sketch-based image retrieval 
(SBIR) is another research topic in the field of computer 
vision. SBIR allows people to use simple sketches as que-
ries to find similar images from storage. Meanwhile, fast 
hand drawing is the most convenient method for architects to 
express and record their design ideas. Therefore, the current 
study tries to couple PGAD and SBIR together, empowering 
architects to directly find the design choice with aesthetically 
wanted appearance. This study attempts to contribute the 
two fields from four aspects:

• turning the navigating stage of PGAD into an intention-
based selection,

• turning the machine-dominated digital design workflow 
into a machine-human interactive process,

• saving the unnecessary time expenditure for architects 
when using PGAD,

• investigating detailed parameter-tuning of SBIR algo-
rithms.

On top of the current introductory section, this paper is 
divided into the other five main parts. SBIR itself and its 
integration with the design field are roughly reviewed in 
Sect. 2. After that, the research methodology of this study is 
introduced in Sect. 3, including six sub-sections: the overall 
workflow, gallery dataset generation, inquiry dataset gen-
eration, implementing SBIR with complete inquiry images, 
implementing SBIR with incomplete inquiry images, and 
evaluation results. Thenceforth, Sect. 4 illustrates results 
and analyses them from several perspectives. Section 5 
introduces Building Case 2, used to validate investigation 
findings obtained from the previous case. In the end, Sect. 6 
draws up the whole study and sheds light on future research 
possibilities.

2  Background

2.1  A literature on SBIR

Searching among relevant images according to a user’s 
inquiry, image retrieval is a popular research topic in the field 
of image processing. Apart from the widely used text-based 
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image retrieval [15–18] and content-based image retrieval 
[19–22], sketch-based image retrieval (SBIR) [23–34] also 
benefits the users’ image search, by using computer vision 
algorithms to help people find the most aesthetically wanted 
images.

SBIR algorithms can be roughly classified into two cat-
egories: SBIR algorithms based on geometric features and 
SBIR algorithms based on deep learning features. There 
are plenty of SBIR algorithms based on geometric features 
[23–28]. Generally speaking, they are implemented by two 
steps: edge detection and feature matching [35]. Edge detec-
tion transforms natural (real) images that contain abundant 
semantic information into edge maps that only have simple 
lines and white background. Edge detection is used to bridge 
the image domain gap between sketches and natural (real) 
images. Then, a common geometric feature is set for both 
sketches and edge maps, and their similarity can be calcu-
lated via the common feature.

The other type of SBIR method uses a deep learning 
model to simultaneously learn the semantic information of 
both sketches and natural images [29–34, 36]. Deep learning 
techniques, especially convolutional neural networks (CNN), 
frequently perform better than traditional machine learning 
techniques. When using deep learning, sketches and natural 
images are directly treated as the input during feature extrac-
tion, without the need of an edge map as a bridge.

For example, Siamese network and Triplet network are 
two CNN-based deep learning techniques that are commonly 
used to do sketch recognition and SBIR. The former network 
trains two CNNs together [30, 33], one for training sketches 
and another for training natural images. Triplet network [30, 
32] is a network with three CNNs. Sketch, natural images 
relevant to this sketch, and natural images irrelevant to this 
sketch are inputs of these three CNNs. Besides these two 
CNNs, there are also CNN-based methods for sketch recog-
nition. Yu et al. [37] proposed a CNN named Sketch-A-Net, 
which was explicitly designed for sketch recognition and 
outperformed human brains in those authors’ experiments.

2.2  A review on integrating SBIR with design 
processes

What has been reviewed is solely from the SBIR side. In the 
current sub-section, human intervention and specific SBIR 
applications in the design field are going to be surveyed. 
Twenty years ago, there already have been discussions on 
bringing qualitative and quantitative design criteria together 
[38]. In Takagi’s survey, he introduced how humanized evo-
lutionary optimization is applied to various kinds of scenar-
ios. Based on Takagi’s theory, Brintrup et al. [39] developed 
an optimization framework that couples human preference of 
the evolutionary design process. This framework was tested 
with an ergonomic chair design experiment. Similarly, for 

enhancing evolutionary design in architecture, aesthetic-
based fitness measure combing quantitative and qualitative 
criteria was applied to explore a set of 3D-shapes solutions 
[40]. In addition, researchers used quantitative ways to pro-
mote the creativity of a generative design system [41].

Different from those studies which tried to insert sub-
jective intervene in the middle of design processes, SBIR 
allows designers to interact with a larger number of alterna-
tives at the end of design processes. For applications spe-
cifically related to architecture, SBIR was mainly imple-
mented to retrieve architectural floor plans from a repository 
[42–46]. They developed a platform named a.SCatch system. 
Designers can search for wanted building layouts from a 
repository by sketching a schematic abstraction of a floor 
plan. A deep multilayer convolutional network was used 
to retrieve architectural images [47]. Another category of 
related studies utilized SBIR to retrieve 3D design geom-
etries. For example, Wessel et al. [48] used embeddings 
of attributed subgraphs to retrieve 3D building models. In 
his thesis, by using a supervised learning approach, a new 
meta-descriptor was developed to retrieve 3D models [49]. 
Some researchers also discussed selecting views when using 
sketches to retrieve 3D models [50].

However, except for the DreamSketch, which is a novel 
3D design interface enabling designers to explore a range of 
functional 3D designs by sketching design intentions [51], 
there seems still no other similar study directly taking the 
SBIR into the PGAD field. Moreover, designers’ intents are 
always fuzzy at the beginning of a design project. Therefore, 
the main idea of the current study is to initially apply SBIR 
into post-PGAD. This integration would be mutually use-
ful and beneficial to each side. Based on the first author’s 
previous study [1], building façade design is the main sub-
domain in the field of PGAD. Therefore, as the pilot study 
communicating PGAD and SBIR, the present research also 
focuses on the generative design of building façade fenestra-
tions. The foremost challenge herein is that traditional SBIR 
research was conducted with gallery datasets composed of 
different images, easier for algorithms to find the wanted 
image. However, PGAD generates a gallery dataset with 
quite similar images.

3  Methodology

3.1  The overall workflow of SBIR research

As shown in Fig. 1, the SBIR’s whole workflow is composed 
of four main steps:

• Generate the gallery dataset.
• Generate the inquiry dataset.
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• Apply SBIR algorithms to extract image features in 
two datasets, calculate image similarities, and visualize 
searching results.

• Evaluate SBIR results and assess SBIR algorithms’ per-
formances.

3.2  Gallery dataset generation

SBIR algorithms are applied to the case of designing one 
office building’s fenestration configurations. A representa-
tive six-floor office building (Fig. 2a), with no fenestration 
on facades, is taken as this case study. Its ground floor is a 
restaurant enclosed with full glass curtains, and facades of 
the top five floors are going to be fenestrated. Window wall 
ratios on four orientations are 0.28 for the north, 0.20 for the 

west, 0.42 for the south, and 0.36 for the east. These data are 
obtained by an algorithmic optimization that tried to balance 
the energy consumption and indoor visual comfort. More 
related information can be found in another publication [52]. 
A parameterization system is applied to blank facades for 
generating detailed fenestration solutions, trying to balance 

Fig. 1  The general workflow of this SBIR study

Fig. 2  The building size (a); the line drawing prepared for designers (b)

Table 1  The parameterization system of Case 1

Variables Ranges Stepwise 
for PGAD

Stepwise herein

Number of windows {1, 2, 4} – –
Window height (m) [1.6, 2.4] 0.01 0.05
Sill height (m) [0.15, 1.05] 0.05 0.1
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visual comfort and the construction material cost. Design 
alternatives are generated by three variables (Table 1): the 
number of windows between two columns, window height, 
and sill height.

Theoretically, as the current study is aimed to serve the 
PGAD, the gallery dataset should be inherited from the real 
PGAD approach. However, building performance simulation 
and algorithmic optimization will not be conducted herein, 
and the design space will be a little different from PGAD, 
due to the following three reasons:

• Firstly, PGAD pursues design solutions on the Pareto 
surface (or frontier) which identify relatively optimal 
performances. However, non-dominated design solutions 
and non-explored ones from the design space also should 
be considered in the selection phase, because they may 
be aesthetically preferred.

• Secondly, due to the small variation of window height 
that may be imperceivable by human eyes from the whole 
perspective of the building, the stepwise of parameters 
herein actually is larger than set in the same case done in 

another paper, which was more focused on the building 
performance simulation and optimization [52].

• Thirdly, they are not the specific focal point herein. Read-
ers can find this PGAD process in the previous publica-
tion [52]. Simultaneously, the current study still can be 
applied to real PGAD processes, which have stages of 
simulation and optimization.

The 3D modelling software Rhino, with its extension 
Grasshopper, and two plugins of Grasshopper are used 
here to generate the gallery dataset. The code to imple-
ment this process is illustrated in Fig. 3a. Grasshopper 
offers a visual programming platform, allowing users to 
code by connecting coded components, without knowing 
mainstream programming languages. As one Grasshopper 
plugin, Honeybee [53] is used for parametrically creating 
windows and taking snapshots of the screen of software 
Rhino. Every time when parameter values are changed 
and a new design choice is created, Honeybee takes one 
screenshot as a gallery image. Two individual gallery 
cases are illustrated in Fig. 3b,c. Another Grasshopper 
plugin Colibri [54] automatically iterates the parametric 

Fig. 3  The Grasshopper code of gallery dataset generation (a); two individual cases from the gallery dataset (b, c)
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modelling process and saves all screenshots during the 
whole process. Due to the need for SBIR algorithms which 
will be used in the retrieving step, the image resolution is 
set at 900 pixels × 900 pixels. In the end, after 510 design 
alternatives are all automatically saved as JPG files in a 
folder, the gallery image dataset is prepared for the SBIR 
research.

3.3  Inquiry image dataset generation

On the other side, inquiry pictures are drawn by designers 
using a liquid–crystal display (LCD) screen and an LCD 
pen. The LCD screen used herein is from the manufacturer 
Gaomon (type GM 116 HD). However, designers also can 
use an iPad and an iPencil instead. By connecting it to a 
computer, the LCD screen allows users to monitor the com-
puter screen and directly operate any graphics processing 
software on it. Although many graphics processing soft-
ware is adaptive to this device, authors adopt the Autodesk 
Sketchbook, version 8.6.0. This software can mimic the 
degree of ink bleeding caused by pushing the pen with dif-
ferent strengths. Therefore, users can feel like drawing with a 
real pen on a real piece of paper. This feeling helps architects 
accept digital design methods.

Thirty students from architecture major are invited to cre-
ate the inquiry dataset and assess algorithms’ performances. 
Each participant is provided with a picture of the blank 

facade building (Fig. 2b), which is in the same visual per-
spective as gallery images. Students are required to design 
two different solutions of fenestration geometries, drawing 
with electronic tools introduced above (Fig. 4a). Windows 
should be rectangles or squares and evenly positioned on 
facades, but designers still have the freedom of deciding the 
number of windows existing between two columns, the win-
dow height, and the sill height. In the end, sixty manually 
drawn images of facade fenestration (Fig. 4b–d) are stored 
in another folder as inquiry images.

3.4  Sketch‑based image retrieval

The whole SBIR process includes two main steps: edge 
detection and edge similarity measurement. Edge detection 
finds and records both inquiry images and gallery images’ 
edge pixels and their orientation information, while edge 
similarity measurement evaluates the similarity between 
those edge pixels. At first, two SBIR algorithms based on 
geometric features are used as retrieval methods. In addi-
tion, a deep-learning-based CNN, which has an excellent 
semantic understanding ability for sketches, is used as the 
third SBIR algorithm in the present research.

Fig. 4  A designer is creating inquiry images (a); three individual cases from the inquiry dataset (b–d)
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3.4.1  Edge detection

Representing the main contours and boundaries of images, 
edge maps are of great importance in various image pro-
cessing tasks. To get edge maps, edge detectors need to 
record the location and orientation of the edge pixels of 
both inquiry and gallery images. Canny detector [55] and 
Berkeley detector [56] are two commonly used edge extrac-
tion detectors to get edge pixels. However, when using these 
two detectors to extract edge maps of current inquiry images 
and gallery images, edge maps’ visual quality was unsatisfy-
ing. The reason is that, for gallery images (e.g. Figure 3b) 
and inquiry images (e.g. Figure 4b), rectangles inside them 
are very close to each other. As a result, these two detectors 
are unable to identify most black pixels of both inquiry and 
gallery images as edge pixels, resulting in lousy retrieval 
performance.

Therefore, to accomplish the retrieval task, a new edge 
detector is specifically developed with two steps: edge pixel 
detection and edge orientation setting. For the first step, 
since inquiry and gallery images herein are visually similar 
to edge maps, sketch-like images comprising of black lines 
and white background, all black pixels of these images are 
directly regarded as edge pixels. That is to say, in generated 
edge maps of both gallery and inquiry images, edge pixels 
are black pixels of those images, and the background pixels 
are white pixels of those images. The second step is the 
edge orientation setting, setting an orientation for each edge 
pixel. Inquiry images and gallery images herein primarily 
contain two directions: horizontal and vertical. So, three 
types of edge pixel orientations are set: horizontal, vertical, 
and others.

When human intuitively observe and detect several 
consecutive horizontal or vertical pixels, these pixels are 
regarded as a horizontal line or a vertical line. Accord-
ingly, we set a vertical detection template that contains 
three consecutive horizontal pixels and a horizontal detec-
tion template that contains five consecutive vertical pixels. 
Orientations of all edge pixels are set based on these two 
templates. Firstly, the vertical template moves throughout an 
edge map. During its moving, if pixels from the edge map 
are overlapped by the vertical template, these edge pixels’ 
orientation is set to ‘vertical’. Afterwards, the horizontal 
template experiences similar operations, and some edge pix-
els’ orientation becomes ‘horizontal’. Finally, the orientation 
of the left edge pixels, neither ‘vertical’ nor ‘horizontal’ 
ones, is marked as ‘others’. Figure 5 is an example of edge 
detection steps.

3.4.2  SBIR algorithms measuring similarities

To perform the SBIR task, three different SBIR algorithms 
are tested and compared: Angular radial partitioning (ARP) 
[57], Angular radial orientation partitioning (AROP) [24] 
and the Sketch-A-Net model (SAN) [58]. ARP [57] and 
AROP are based on geometric features, while the Sketch-A-
Net is a CNN (Convolutional Neural Network) Caffe model 
through deep learning.

ARP divides an edge map into M × N sectors and records 
the number of edge pixels in each sector. M is the number of 
radial partitions, and N is the number of angular partitions 
[57]. As a result, each sector has an edge pixel number, and 
an M × N matrix can represent the feature matrix of the edge 
map. Based on the authors’ previous study [24], the M is set 

Fig. 5  The edge map (a); horizontal edge pixels (b); vertical edge pixels (c); other edge pixels (d)
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to 8 and N is set to 4 herein. Each value in the matrix is the 
edge pixel number inside that specific sector. Finally, two 
edge maps’ Euclidean distance is calculated by comparing 
the difference between the feature matrices of two images.

ARP merely takes the number of edge pixels into 
account, neglecting edge pixels’ orientation. As an 
improved version of ARP, AROP not only divides an edge 
map into M × N sectors and considers the edge pixel num-
bers, but also recognizes orientations of those edge pixels 
[24]. As edge detection has three types of orientations for 
edge pixels, each sector has three edge pixel numbers: the 
number of horizontal edge pixels, the number of vertical 
edge pixels, and the number of the other edge pixels. Thus, 
the ‘shape’ of edge maps’ feature matrix is M × N × 3. The 
values of this matrix represent the edge pixel number and 
orientation in one sector. For the first-round experiment, 
AROP has the same M & N settings as in ARP. Finally, the 
Euclidean distance between two feature maps is calculated, 
to identify the similarity between two edge maps.

Moreover, regarding pixels’ orientations on an image, 
the authors investigate different template combinations 
for AROP. Both the horizontal template and the vertical 
template are designed into four types: 2 pixels, 3 pixels, 5 
pixels, 8 pixels. One combination of a horizontal template 
and a vertical template is named as ‘havb’, which means 
that the horizontal template in this combination has ‘a’ 
pixels while the vertical template has ‘b’ pixels. In total, 
there are 16 templates to assign orientations to edge pix-
els. Besides more combinations of h and v, the authors 
also conduct more experiments on values of M and N for 
AROP, trying to explore influences of different M and N 
values. M is set to 4, 8, 16, 32 respectively, and N is set to 
2, 4, 8, 16 respectively.

At last, SAN [58], a deep-learning-based method spe-
cifically designed for sketches and performed greatly in the 
task of sketch recognition on the ImageNet database [59], 
is tested for the current experiment. We use this model as 

the third method to compare with the other two algorithms, 
because it is generally assumed that deep CNNs have a bet-
ter ability of image semantic understanding than geometric 
features. SAN is composed of several convolutional layers, 
pooling layers, fully connected layers, and a SoftMax layer 
(Fig. 6). This trained CNN model is taken as the feature 
extraction tool. Instead of using edge maps like ARP and 
AROP, the input of this method is the original inquiry and 
gallery images. Those images are fed into the CNN model 
to get their deep features, where the deep features being 
extracted are the output of the ‘fc7’ layer. The image simi-
larity is measured by calculating the Euclidean Distance 
between the deep features of two images.

3.5  Tests with incomplete inquiry images

The whole SBIR process introduced above is still time-con-
suming because designers need to completely draw all win-
dow drawings on facades. It would be better if the searching 
process can be initiated when just a part of the windows 
is drawn. Therefore, the authors try to improve workflow 
efficiency and save architects’ time stepwise.

The main idea is to check the algorithm’s effectiveness 
when replacing completely drawn inquiry images with 
incomplete images. As shown in Fig. 7a and Table 2, win-
dows on facades are divided into six independent sections. 
After that, seven different scenarios are created to obtain 
incomplete inquiry images. For scenario 1, authors only 
use contents in section 1 and leave other sections blank 
to search for similar images. The other five scenarios are 
combinations of different sections, as listed in Table 2. For 
scenario 7, the authors randomly delete a part of windows 
on each inquiry image (Fig. 7b). As a result, deriving from 
one original design case, seven new incomplete inquiry 
images are generated, and there are 420 new inquiry images 
in total. The algorithm which has the best performances in 

Fig. 6  The structure of SAN
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the previous test will be continually utilized for incomplete 
inquiry images.

3.6  Human‑based evaluation and validation

After retrievals obtained from those experiments, they are 
assessed by designers who contribute to the inquiry image 
dataset. This assessing process is divided into four phases:

• Evaluating the effectiveness of all three algorithms.
• Evaluating AROP’s effectiveness of using different tem-

plate combinations (for setting pixels’ orientations).
• Rating the engagement of using this method.
• Evaluating the usability of using this digital method.

In the first phase, respective top five images retrieved 
by three algorithms for 60 inquiry images, 900 images in 
total, are sent back to thirty participators who attended 
the workshop and made those inquiry images. Designers 
evaluate retrievals and give credits based on their own 
satisfaction degrees. To minimize influences of subjec-
tive biases, the satisfaction degree is only quantified by 
three scales: totally different from what I designed (− 1), 
very similar to what I designed (+ 1), between them (0). 
For example, all these three algorithms find satisfying 
images for the inquiry case illustrated in Fig. 8a, while 
all three algorithms retrieve unsatisfying images in the 

case of Fig. 8c. Between these two extremes, for majority 
design cases, always one algorithm is positively assessed 
while the other two are negatively or neutrally assessed, 
illustrated in Fig. 8b. In the end, the evaluation results of 
60 cases are averaged to give out the final score. An algo-
rithm is more satisfying when its final score is closer to 
‘+ 1’. In addition, each algorithm’s time consumption of 
image processing is also counted.

AROP with the h3v5 template combination has already 
been evaluated in the first phase. Therefore, in the second 
evaluation phase, only retrievals from using the other 15 
template combinations are rated. At this time, participators 
only need to evaluate retrieval images ranked in the 1st posi-
tion, with the same scoring system mentioned above.

In the third phase, designers need to evaluate retrievals 
answering incomplete inquiry images. The same operation 
as before, when one retrieval looks similar to what architect 
designed, one positive credit can be given to the algorithm. 
Otherwise, designers can give the algorithm zero credit, or 
minus one credit.

In the final evaluation phase, this SBIR decision-making 
method itself is also assessed by thirty architecture students 
who contributed to the inquiry dataset. They are asked to 
give opinions about the engagement level when trying this 
new method. Their engagement levels are measured basing 
on two questions with related credits. The first question is 
about ‘interest’: it is not interesting for me to design on the 
electronic screen and retrieve images (− 1), acceptable (0), 
it is interesting for me to design on the electronic screen and 
retrieve images (+ 1). Besides this, ‘usability’ as another 
aspect of engagement is also investigated: it is difficult for 
me to use this equipment (− 1), acceptable (0), I do not find 
the method complex or confusing at all (+ 1). In the end, 
evaluation scores from the ‘interest’ aspect and the ‘usabil-
ity’ aspect are averaged to identify the total engagement 
level.

Fig. 7  Dividing the whole fenestration area into six individual sections (a); One of images which have randomly drawn windows (b)

Table 2  Six different scenarios to obtain incomplete inquiry images

Scenarios Sections included in this scenario

Scenario 1 Section 1
Scenario 2 Section 1 + Section 2
Scenario 3 Section 1 + Section 2 + Section 3
Scenario 4 Section 1 + Section 2 + Section 3 + Section 4
Scenario 5 Section 1 + Section 2 + Section 3 + Section 4 + Section 5
Scenario 6 Section 1 + Section 3 + Section 5
Scenario 7 Images with randomly drawn windows
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4  Results and discussions

4.1  The effectiveness of three algorithms

After the assessment for the initial phase, AROP is consid-
ered as performing the best among the three algorithms. As 
shown in Fig. 9a, its evaluation results reach 0.4 while the 
ARP results are only around zero. The results of SAN are 
below − 0.5 and reach − 0.6, much worse than the other two. 
This outcome means that except AROP, neither ARP nor 
SAN is competent to accomplish the current task. On the 
other side, as the image ranking going down, among all the 
three algorithms, no significant performance deterioration 
is detected. The reason is that many design solutions herein 
are quite similar. Therefore, images ranked in the 4th or 5th 
places still can satisfy designers’ expectations.

Normally, deep-learning-based techniques perform better 
than geometric-feature based algorithms. However, SAN is a 
pre-trained CNN model used for sketch classification, while 
the task herein is to measure similarities. The CNN model is 
trained to recognize sketches from different classes, such as 
apples, tigers, and aeroplanes, etc. We can see that SAN is 
good at capturing the semantic differences between different 
sketch categories. Nevertheless, the sketches in this paper 
are much similar to each other. The difference between vari-
ous inquiry and gallery images in this paper lies in the length 
of windows. For SAN focusing on dealing with the classifi-
cation of different image categories, differences herein are 
too small to be recognized by its feature extractor. This is the 
reason SAN doesn’t perform better. As for ARP and AROP, 
they focus on the number and orientations of the edge pixels. 
As a result, it suits the application of extracting features for 
design solutions, which makes the AROP scheme performs 
better than SAN.

Actually, the real performance of AROP could be even 
better. Although architects who made these inquiry images 
were informed of exact window wall ratios on facades, 
some of them still did not have a clear idea of how large 
these windows exactly should be. Therefore, for some query 
cases designed with too small or too large windows, there is 
no correct result can be retrieved from the gallery dataset, 
resulting in negative evaluations.

Besides the subjective satisfaction degree, time consump-
tion is another important indicator to measure algorithms’ 
usefulness. According to Table 3, which lists three algo-
rithms’ time consumptions, SAN consumes the least time 
to pre-process inquiry images and gallery images. AROP 
spends 4 s more than ARP on these tasks, due to the orien-
tation information extraction. For the retrieving process, all 

three algorithms consume much less time, only about two 
milliseconds. In conclusion, from the perspective of time 
consumption, SAN is the best choice while AROP is the 
worst.

4.2  Results of the in‑depth AROP investigation

4.2.1  Evaluation results of h and v combinations

Evaluation results of AROP using 16 different template com-
binations (Fig. 9b) identify that the majority of template 
combinations are positively evaluated, getting scores from 
0.33 to 0.47. However, when a vertical template only uses 
two vertical pixels, no matter how many pixels are used for 
the horizontal template, retrievals become always negatively 
evaluated. The reason is that AROP in this study recognizes 
vertical pixels first, then recognizes horizontal pixels from 
the left ones. Therefore, when the number of pixels for a 
vertical template is too small, oblique lines are directly rec-
ognized as vertical ones because oblique lines usually have 
two or three consecutively vertical pixels. Therefore, these 
vertical templates with two pixels perform badly in the SBIR 
process.

On the other side, when a template combination recog-
nizes vertical or horizontal lines with strict requirements, 
such as the combination ‘h8v8’, many vertical or horizontal 
lines are ignored by templates. Therefore, this kind of set-
ting also influences retrieval results. As shown in Fig. 9b, 
template combinations with 8 pixels are not more satisfying 
than any other template combinations with fewer pixels. In 
conclusion, a template should not be set with too few nor too 
many pixels. For the current task, h5v8 is seen as the most 
satisfying combination.

4.2.2  Evaluation results of M and N combinations

As shown in evaluation results regarding combinations of 
M and N (Table 4), among 16 M & N combinations, the 
highest score (0.8) occurs when both M and N have their 
respective largest candidates, while the lowest score (0.42) 
appears when both M and N have the smallest choices. In 
general, the performance of AROP rises as values of M and 
N increase. When M and N grow, an image is divided into 
many smaller parts, which can help algorithms capture more 
tiny differences. In conclusion, in order to obtain a good 
performance, we should try to let M and N be large enough.

Nevertheless, when N is set to 4, 8 or 16, the retrieval 
performance does not always increase as M rises. When 
M is set to 8 or 16, some windows are split into two ‘half 
windows’, independently belonging to different image parts. 
These ‘half windows’ bring superfluous horizontal and 
vertical edge pixels, negatively impacting the algorithm 

Fig. 8  All retrievals from the three algorithms are positively evalu-
ated (a); retrievals are differently evaluated (b); all retrievals from the 
three algorithms are negatively evaluated (c)

◂
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performance. However, when M is small or big enough, ‘half 
windows’ become less, and retrieval performance increases.

4.3  Results of answering incomplete inquiry images

Since AROP outperforms the other two algorithms in the 
previous step, it is also selected here to retrieve wanted 

images for incomplete inquiry images. There are seven 
experiments with seven different scenarios in total, and 
evaluation results are shown in Fig. 9c. Four scenarios which 
include more contents obtain average scores above zero, 
while scenario 1 and scenario 2 are below zero. Comparing 
four relatively better scenarios, it is hard to conclude any 
regular pattern from them, because scenario five, which con-
tains the most drawn contents, does not perform the best. In 
short, evaluation results tend to be negative when the num-
ber of windows is not enough. However, when the number 
of windows reaches a bar, which kinds of strategies can go 
on raising the satisfaction score is still unclear.

Images from scenario seven have randomly drawn win-
dows on building facades. Its retrieving results show that 
it outperforms scenario 1, scenario 4, and scenario 5. 

Fig. 9  Satisfaction degrees towards three algorithms (a); Satisfaction degrees towards AROP using different templates (b); Satisfaction degrees 
when using incomplete inquiry images (c); Results of engagement level investigation (d)

Table 3  The average time cost 
of pre-processing and SBIR for 
three algorithms

Algorithms Data pre-processing of per 
inquiry image (s)

Data pre-processing of per gal-
lery image (s)

SBIR of per 
inquiry image 
(ms)

ARP 1.778 1.763 2.45
AROP (h3v5) 5.200 5.837 2.13
SAN 0.323 0.273 2.17

Table 4  Evaluation results of 
different M and N combinations

M4 M8 M16 M32

N2 0.42 0.53 0.53 0.60
N4 0.67 0.52 0.52 0.67
N8 0.70 0.60 0.65 0.75
N16 0.67 0.60 0.70 0.80
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Therefore, it is also possible that positions of drawn win-
dows may also not influence the algorithm performance 
as expected. The authors also compare results of complete 
inquiry images and these images with randomly deleted win-
dows. Among the total of 60 cases, there are 17 cases that 
complete inquiry image and incomplete inquiry with ran-
domly deleted windows have the same 1st position retrieval.

The authors have to admit that the current AROP algo-
rithm’s performance still has the potentials to be improved. 
The underlying mechanism between incomplete inquiry 
images and retrievals deserves to be furtherly explored. For 
example, a scenario including more diversely located sec-
tions, a combination of section 1, section 4, and section 5, 
maybe more useful. Different from evaluation results toward 
the first experiment, which is used to compare three algo-
rithms, ranking positions here nearly do not identify human’s 
subjective perception at all. In several scenarios, retrievals 
ranked in position 4 and 5 receive higher scores than images 
in the 1st or 2nd position.

4.4  Results of designers’ engagement level

The total credit identifying users’ engagement level dur-
ing the whole process is ‘0.7’. More details are shown in 
Fig. 9d. Although five students consider it is unacceptable to 
design on the LCD screen, and the other two students have a 
neutral attitude towards it, the left twenty-three architecture 
students enjoyed drawing with electronic devices, consider-
ing it is interesting. On the ‘usability’ side, apparently, it is 
more convenient and more advanced than traditional design 
methods.

Speaking of the time saved with the help of SBIR, it is 
also apparent that the time cost using traditional ways is 
totally not comparable with using SBIR. Half an hour is 
usually needed for architects to manually pick out the most 
similar image from the gallery dataset while algorithms can 
help them find it in seconds.

5  Research validation

5.1  Building Case 2

After finishing Building Case 1 investigation and its related 
algorithm research, the authors apply obtained research 
results to another case of building façade fenestration design 
(Fig. 10a) to validate those investigation findings. Case 2 
is a high-rise office building with 27 floors (Fig. 10b). The 
ground floor is installed with glass curtains, and the other 
26 floors need to be fenestrated. Unlike the previous build-
ing case, which has quite similar fenestration shape designs, 
more than one generative principle is applied to Building 

Case 2. Therefore, the window shapes of the second case are 
more diversifying. For example, windows in some cases do 
not only stay inside one singular floor, but they may cross 
two floors (Fig. 10c). Windows on the upper floor do not 
strictly align with windows on the lower floor. In total, for 
Building Case 2, there are 606 images in the gallery dataset.

Because of a much larger number of windows of Building 
Case 2, it is hard to draw every window on building facades. 
Therefore, inquiry images herein all have randomly drawn 
windows. In total, the authors prepare 30 inquiry images for 
Building Case 2. Meanwhile, the authors do not start the 
research from the beginning like what we did with Building 
Case 1, but directly taking AROP as the SBIR algorithm to 
be used herein, with the template of h5v5.

5.2  Results of the validation test

For Building Case 2, retrievals of some inquiry images 
(Fig. 10d–f) are illustrated in Fig. 10g–i. According to sub-
jective evaluation, the average score of 30 retrievals achieves 
at 0.52. Therefore, we can say that the algorithm AROP, with 
obtained values of M & N combination, and h & v combi-
nation, can basically help designers find the most wanted 
gallery images, in the scenario of façade fenestration design.

6  Conclusions

PGAD is an emerging design method for high-performance 
buildings. However, real architectural design projects do 
not only need to consider building performances but also 
aesthetics, which is impossible to be solely pursued by com-
puters. Architects and their clients still need to check the 
physical appearance of each design choice from the PGAD 
process. Therefore, even with some clustering software, 
the PGAD selection stage is still quite time-consuming and 
fatigued for architects. To solve this problem, the current 
study tries to automate the selecting process by integrating 
SBIR techniques, through which users can directly obtain 
the most aesthetically preferred design solution. This com-
puter–human interaction speeds up designers’ decision-mak-
ing processes and incorporates their personal preferences 
within the decision process.

Three different SBIR algorithms are tested in this paper, 
and the authors find that AROP is the most suitable one 
here. A stepwise, regarding template combinations of 
AROP, which are used to decide pixels’ orientations, the 
authors also have done several experiments and find that 
templates with 5 pixels are most useful. In the end, authors 
test incomplete inquiry images and find that the number of 
windows drawn on facades do influence the evaluation when 
they are not enough. Feedback of participators’ engagement 
levels encourages some people, who doubt the application of 
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electronic devices for design, to use them in the architectural 
design field and explore new possibilities.

Four main research chances can be extended from the cur-
rent study. Firstly, although the current study is only dealing 
with the case of fenestration design, this method actually can 
be applied to various applying scenarios, such as building 
shape design and floor layout design. Moreover, the future 
gallery datasets should be enriched by using as many vari-
ous parametrization principles as possible, bringing in more 
geometric diversities and complexities for the SBIR process, 
adapting to real design projects.

Secondly, the current SBIR is implemented by our 
authors, not designers who lack programming skills. There-
fore, when asking designers themselves to perform SBIR 
without a maturely designed GUI (graphical user interface), 
the usability of SBIR techniques may decrease. The authors 
plan to create a webpage as the front-end interface and put 
the whole calculation process on the cloud. It would be much 
faster and more user-friendly for common users without pro-
gramming backgrounds.

Thirdly, SBIR actually can use different image features, 
such as colours [26]. Therefore, in future studies, the colour 
of window glasses can be distinguished from the other parts 
of building facades. That can help architects to design during 
the inquiry image drawing. Fifthly, the psychology mecha-
nism, how humankind observes and compares two images, 
can be studied in the future.

Fourthly, unlike the other studies from the SBIR com-
munity, the degree of searching results’ correctness herein 
is influenced by designers’ subjective evaluation. Therefore, 
the small-scale evaluation in the current study may not com-
pletely identify algorithms’ performances. The relationship 
between images and human cognition deserves to be fur-
therly explored.
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