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a b s t r a c t

Most image classification methods require an expensive learning/training phase to gain high perfor-
mances. But they frequently encounter problems such as overfitting of parameters and scarcity of
training data. In this paper, we present a novel learning-free image classification algorithm under the
framework of Naive-Bayes Nearest-Neighbor (NBNN) and collaborative representation, where non-
negative sparse coding, low-rank matrix recovery and collaborative representation are jointly employed
to obtain more robust and discriminative representation. First, instead of using general sparse coding,
non-negative sparse coding combined with max pooling is introduced to further reduce information loss.
Second, we use the low-rank matrix recovery technique to decompose the training data of the same class
into a discriminative low-rank matrix, in which more structurally correlated information is preserved. As
for testing images, a low-rank projection matrix is also learned to remove possible image corruptions.
Finally, the classification process is implemented by simply comparing the responses over the different
bases. Experimental results on several image datasets demonstrate the effectiveness of our method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image classification is one of the fundamental problems in
computer vision and pattern recognition, and plays a key role in
many applications, e.g. image retrieval [1], image annotation [2],
image quality assessment [3] and so on. In the last few years many
novel image classification methods have been proposed with the
development of artificial intelligence and machine learning. In
general, those methods can be roughly classified into two groups:
the first group is based on the learning classifiers (called as the
learning-based classifiers) which require learning/training classi-
fier parameters; the second group is based on non-parametric
classifiers (called as the learning-free classifiers), where the
decision rules usually depend on the datasets [4]. Non-para-
metric classifiers have many advantages over learning-based ones
such as avoiding overfitting of parameters and requiring no
learning/training phase. However, they often provide inferior
performances compared to the learning-based classifiers.

From another viewpoint, feature organization is also a key
point in image classification. The Bag of Visual Words (BoVW)
model [5] has been widely used in many vision applications and

shows satisfying performances especially in the task of image
classification. In the BoVW model, codebook generating and
feature encoding are crucial steps which determine the complete-
ness of image representation. But there are some limitations
existing in the classical BoVW model for image classification:
i) Lacking semantic information in codebooks. We cannot ensure
the generated visual words containing independent semantic
meanings as text words in natural languages. ii) Large quantization
errors. Discriminative features may be discarded during clustering
as the clustering centers are often determined by high density data
points which are less discriminative.

To alleviate the above problems, Yang et al. [6] proposed an
extension of spatial pyramid matching kernel (SMP), i.e. ScSPM,
which combines with the sparse coding model. Based on lowest
reconstruction error, optimal codebook and coding coefficients can
be learned through the sparse coding instead of K-means cluster-
ing. And the multi-scale max pooling is then used to generate the
final image representation. In the max pooling process, however,
low responses (small coefficients) are suppressed and only the
max response is preserved. Also, the sparse coding model has no
constraints on the signs of coding coefficients. So the negative
coefficients would be discarded along with large amounts of zero
coefficients, although they may potentially contain useful informa-
tion. These factors are likely to pose negative effects on the
classification performance.
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Apart from representing images, sparse coding can also be
widely used for other tasks such as recognition and classification.
Wright et al. [7] proposed a sparse representation based classifica-
tion (SRC) algorithm for face recognition and impressive results
were reported. In that method, a testing image is represented as a
linear and sparse combination of all the training samples via
ℓ1-norm minimization. As another view, it has been argued in [8]
that, instead of the ℓ1-norm sparse representation, it is the
collaborative representation (i.e., representing the test image
collaboratively by samples from all the classes) that makes SRC
effective. Collaborative representation based classification (CRC)
can be also regarded as a regularized linear regression problem,
where non-sparse ℓ2-norm is used to regularize the representa-
tion coefficients. Compared with SRC, CRC achieves similar results
but performs better in terms of the speed. Although SRC and CRC
achieve impressive results, these methods are still not robust
enough while training images are largely corrupted by factors
such as occlusions and disguises. It is a key factor to choose a
proper dictionary for the image representation, which greatly
impacts performance of image classification. In [8], the original
training images are directly used as the dictionary. However, this
inefficient strategy would greatly degenerate the classification
performance faced with corrupted training images.

A number of approaches have been proposed to address the
problem. For example, Wright et al. [9] presented the low-rank
matrix recovery method, which is capable of recovering a low-
rank matrix from arbitrarily corrupted input data. This method has
been successfully adopted in many applications such as back-
ground subtraction [10], tracking [11], and web data mining [12].
Chen et al. [13] used this technique to decompose the training data
of the same class into a low-rank matrix and an associated sparse
error matrix for robust face recognition. In their model, the sparse
errors are treated as noises and are removed from the training
data. Zhang et al. [14] proposed an image classification method by
leveraging the non-negative sparse coding and the low-rank
recovery to obtain more discriminative bases. As equal weights
of the low-rank matrix and the sparse matrix are used for coding
the BoVW representation in their model, this heuristic strategy
limits the capacity of enhancing the representing power of
the bases.

We also note that both SRC and CRC do not fully take advantage
of the common structural information from multiple images of a
certain class. It is obvious that the contents of natural images with
a same classifying label can be highly diversified. On one hand,
they often contain varied backgrounds and multiple objects with
different poses and occlusions. On the other hand, target objects
usually have large intra-class appearance variability and corrup-
tions such as lighting variations and pixel contamination. Despite
these factors, images of a certain class also share lots of common
features and correlations. In this sense, the matrix of stacked
sparse coding representation of images within the same class may
be low-rank, and can be decomposed into a low-rank matrix and a
sparse error matrix via low-rank matrix recovery. This representa-
tion would maintain more information of a certain object with
higher semantic consistency, which is potential in improving
classification accuracy.

Motivated by Naive-Bayes Nearest-Neighbor (NBNN) [4] and
the above-mentioned observations, in this paper we present a new
learning-free image classification algorithm by leveraging low-
rank matrix recovery, low-rank projection matrix and collabora-
tive representation. The main contributions in this paper are as
follows: (a) the matrix constructed by intra-class images, which
are expressed by non-negative sparse coding with max pooling, is
low rank; (b) test images can be collaboratively represented by a
more discriminating dictionary and a low-rank projection matrix;
(c) we derive the Naive Bayes Collaborative Representation, i.e.

NBCR, for the classification problem, where the coding coefficients
obtained from the ℓ2-regularized least square formulation are
used. Moreover, the proposed method is learning-free, which
avoids problems in learning-based method.

The rest of this paper is organized as follows. Section 2 briefly
introduces the related work. We present the image representation
via non-negative sparse coding and low-rank matrix recovery in
Section 3. The proposed image classification method is given in
Section 4. Experimental results on several publicly available
datasets are reported in Section 5. Section 6 finally concludes
the paper.

2. Related work

BoVW model has been proven to be effective for image
classification. Over the past years, many improved versions such
as discriminative codebook learning [15,16], feature encoding
[17,18] and classifier learning [19,20] have been proposed. Among
of the extensions, Lazebnik et al. [21] proposed the spatial pyramid
matching kernel (SPM) to model the spatial layout of the local
features, which achieves impressive performances and has been
widely used. Yang et al. [6] presented a method called ScSPM by
combining the SPM with sparse coding. The model is highlighted
in its speed (only linear SVM is needed) and state-of-the-art
results on several benchmark datasets. As a step further, Wang
et al. [22] improved ScSPM by introducing the locality constraint,
which further speeds up the algorithm and increases the accuracy.

Sparse coding [23] has been demonstrated to be a powerful
image representation. The idea is to represent an image as a linear
combination of a few bases from an over-complete codebook. Liu
et al. [24] proposed to learn sparse and non-negative representa-
tions of image and applied the method into several applications, e.
g. face recognition and image classification. Zhou [25] presented a
label consistent K-SVD (LC-KSVD) algorithm to learn a compact
and discriminative dictionary for sparse coding. Sparse methods
also be used in classifying tasks. Sparse representation-based
classification (SRC) [7] has shown very promising results on face
recognition where training images are often directly chosen as the
bases for sparse representation and testing images can be classi-
fied by the minimal reconstruction error. Recently, Zhang et al. [8]
argued that, instead of the ℓ1-norm sparsity on α, the collaborative
representation actually makes the vital contribution in SRC. How-
ever, when both training and testing images are corrupted, the
performances of these methods would be degenerated. Chen et al.
[13] utilized low-rank matrix recovery to address the SRC problem,
where the training data is decomposed into a set of representative
bases and a sparse error matrix and the noises are thus effectively
removed.

As a useful tool, low-rank matrix recovery keeps attracting
extensive attentions from many research communities and pro-
mising results have been achieved in many applications [26,27].
Lin et al. [28] proposed the Accelerated Proximal Gradient
approach to solve a relaxed convex form of the problem. Applying
augmented Lagrange multipliers (ALM), Lin et al. [29] introduced
RPCA though the Exact and Inexact ALM method. As for the
applications, Chen et al. [13] used a low-rank technique to remove
noise from training data for face recognition. Zhang et al. [30]
presented a new image classification approach to learn a structural
low-rank and sparse image representation. Chen [31] presented a
method to learn a low-rank projection matrix between the
training images and the recovery results. Zhang et al. [14]
represent images by combining the low rank matrix and the
sparse matrix with equal weights. The LLC method in [22] is then
adopted to achieve the classification.
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Different from the above-mentioned methods, Boiman et al. [4]
proposed a novel non-parametric method named Naive-Bayes
Nearest-Neighbor (NBNN) for image classification. The NBNN
method is simple and requires no learning/training phase. Mean-
while, it achieves satisfying performance. In the method, instead of
image-to-image (I2I) distance, image-to-class (I2C) distance is
employed for the classification task. Avoidance of descriptor
quantization and using of I2C distance are the key ingredients of
the NBNN method.

Compared to the previous works, our approach distinguishes
itself in fully utilizing the structural information of images within
the same class. Also, by promoting the structural incoherence for
collaborative representation, the dictionary elements between
different classes can be independent as much as possible. Inher-
ited from the characteristic of the NBNN method, our method is
also learning-free.

3. Learning sparse and low-rank representation

In order to take advantages of the underlying data structure,
non-negative sparse coding and low-rank matrix recovery are
applied for the image representation in our method. First, non-
negative sparse coding is introduced in Section 3.1. Then, low-rank
matrix recovery with structural incoherence and low-rank proj-
ection matrix are described in Section 3.2 and Section 3.3
respectively.

3.1. Non-negative sparse coding

K-means clustering is wildly used for the codebook genera-
tion in BoVW model. Let X be a set of local features
X ¼ ½x1; x2; :::; xN� ðxiARd�1; i¼ 1; :::;NÞ, e.g., d¼128 for the SIFT
descriptor. The data matrix of local feature space is partiti-
oned into k clusterings, with the corresponding centers
V ¼ ½v1; v2; :::; vk�ARd�k forming the visual words. To represent xi,
the vector quantization (VQ) by K-means clustering method is
applied to solve the following optimization problem:

min
U;V

XN

i ¼ 1

‖xi�unV‖2 Subject to CardðuiÞ ¼ 1; jui j ¼ 1;ui0; 8 i ð1Þ

where U¼ ½u1;u2; :::;uN� ðuiARk�1; i¼ 1; :::;NÞ is the cluster mem-
bership indicators. The cardinality constraint of CardðuiÞ ¼ 1 indi-
cates that each local feature can be assigned to only one visual
word. Yang et al. [6] relaxed the constraint using sparse coding by
a ℓ1-norm regularization and the problem of Eq. (1) can be
reformed as the following optimization:

min
U;V

XN

i ¼ 1

‖xi�unV‖2þλ‖ui‖1 Subject to ‖vk‖2r1; 8k ð2Þ

where λ is the regularization parameter and ‖�‖1 denotes the
ℓ1-norm. In max pooling operation of ScSPM, the negative coeffi-
cients are suppressed by zero coefficients, although they have less
meaningful responses than negative coefficients. This possibly
limits the classifying performance due to the potential infor-
mation loss.

To address this problem, we employ the non-negative sparse
coding method, which tries to solve the following optimization
problem as:

min
U;V

XN

i ¼ 1

‖xi�unV‖2þλ‖ui‖1 Subject to ‖vk‖2r1;ui0; 8k; i ð3Þ

Compared with Eq. (2), the coding coefficients are restricted to
be non-negative. Non-negative sparse coding maintains the

characteristics of standard sparse coding and is also in consistency
with mammal's visual mechanism.

The optimization in Eq. (3) is not convex for U and V
simultaneously, but it is convex for U when V is fixed and vice
versa. Following the work in [23], we can optimize U and V in an
alternative style.

3.2. Low-rank matrix recovery with structural incoherence

Low-rank matrix recovery has attracted extensive attentions
recently. It seeks to decomposed a data matrix D into two
matrices, i.e. D¼ AþE, where A is a low-rank matrix and E is
the associated sparse matrix. Aiming at obtaining the low-rank
approximation of D, the method minimizes the rank of matrix A
and reduces ‖E‖0 in the meanwhile. Although this problem is
theoretically NP-hard, Candes et al. [32] reformulated the problem
as the following equation to solve it

min
A;E

‖A‖nþβ‖E‖1 Subject to D¼ AþE ð4Þ

The nuclear norm ‖�‖n (the sum of the singular values) is used
to approximate the rank of A, and the ℓ0-norm ‖E‖0 is replaced by
ℓ1-norm ‖E‖1, which sums up the absolute values of entries in E.
The technique of inexact augmented Lagrange multipliers [29] is
applied to solve the target function (4) efficiency.

Specifically, the low-rank matrix recovery has been used to
alleviate the limitation in SRC, i.e. less robustness to image
corruptions, for improving the performance. Denoting the training
data as D¼ ½D1;D2; :::;DN�, Di is the set of training data from class i.
By performing low-rank matrix recovery, the training data matrix
is decomposed into a low rank matrix A¼ ½A1;A2; :::;AN� and a
sparse error matrix E¼ ½E1;E2; :::;EN �. The former one is a repre-
sentative base matrix and the latter contains the associated
spares error.

In order to maintain sufficient discriminative information and
improve the representation ability of the low-rank matrix, the
structural incoherence is useful to constrain the resulting low-rank
matrices as independent as possible. Therefore the common
features across different classes are reduced while the discrimi-
native ones are preserved. Specifically, a regularization term is
added to the objective function of formulation (4) to enforce the
incoherence between the obtained low-rank matrices [13]. The
optimization problem is therefore improved as

min
A;E

XN

i ¼ 1

f‖Ai‖nþβ‖Ei‖1g þη
P
ja i

‖AT
j Ai‖F Subject to Di ¼ AiþEi ð5Þ

where η is a penalty parameter. This modified model improves the
discriminating ability to the original low-rank matrix recovery.
Given this characteristic, we adopt this technique into our natural
image classifying framework to enhance the inter-class discrimin-
ability. Besides, to make the above problem more tractable, the
property that ‖AT

j Ai‖2F r‖Aj‖2F‖Ai‖2F is used and the formulation (5)
is relaxed into the following formulation:

min
Ai ;Ei

‖Ai‖nþβ‖Ei‖1 þη'‖Ai‖
2

F
Subject to Di ¼ AiþEi ð6Þ

where η' ¼ η
P

ja i‖Aj‖2F is a constant when deriving Ai and Ei. The
extend Augmented Lagrange multipliers (ALM) can be employed
to solve the formulation with regularization on structural inco-
herence, which reformulates the problem as follows:

LðAi;Ei;Yi;u;η'Þ ¼ ‖Ai‖nþβ‖Ei‖1þη'‖Ai‖2F
þoYi;Di�Ai�Ei4þμ

2
‖Di�Ai�Ei‖2F ð7Þ

Details for solving the problem and updating of the above
variables can be found in [13].
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3.3. Low-rank projection matrix

In this paper, training images within the same class are firstly
represented by the non-negative sparse coding and then stacked
to a low-rank matrix for low-rank matrix recovery. As for the
testing images, they are also likely to suffer from the image
corruptions. Therefore, it is necessary to remove the corruptions
from the samples for classification. As mentioned above, the low-
rank matrix recovery method aims at recovering a low-rank
matrix from corrupted data based on the hypothesis that the
underlying data structure is approximately a single low-rank
subspace. Following the work in [33] and [31], a low-rank projec-
tion matrix can be learned for testing images, which projects
corrupted data onto their corresponding underlying subspace and
removes possible corruptions of testing instances.

Denoting the original training images X ¼ ½x1; x2; :::; xn�ARd�n,
its principal components Y ¼ ½y1; y2; :::; yn�ARd�n can be efficiently
obtained by removing the sparse corruption. The projection matrix
P links X and Y by means of projecting the data points onto their
underlying subspace. The low-rank projection matrix P can be
learned by solving the following optimization problem:

min
P

rankðPÞ Subject to Y ¼ PX ð8Þ

As discussed in the above subsection, it is easy to see that the
solution of problem (8) may be unique because of nature of the
rank function. Similar to solving the low-rank matrix recovery
problem in Section 3.2, the rank function is replaced by the
nuclear norm, and the target problem turns into the following
convex optimization problem:

min
P

‖P‖n Subject to Y¼ PX ð9Þ

It has been proven in [34] that if Pa0, Y ¼ PX has a meaningful
solution and Pn ¼ YX þ is the unique minimization to the formula-
tion (9), where X þ is the pseudo-inverse of X . Suppose the skinny
SVD of X is UΣVT , then the pseudo-inverse of X can be uniquely
defined by X þ ¼ VΣ�1UT . Through the low-rank projection
matrix, the principle components y and error e can be expressed
by Pnx and x�Pnx respectively.

4. Naive Bayes collaborative representation based image
classification

In this section, we first briefly introduce the NBNN algorithm
and then propose our image classification algorithm combining
with low-rank matrix recovery and collaborative representation
under the NBNN framework.

4.1. NBNN

In NBNN, all the local features are retained in their original
form without quantization. And the I2C distance measurement is
adopted instead of image-to-image for good generalization. The
steps of NBNN can be summarized as follows: i) compute local
descriptors of the query image. ii) Find the nearest neighbors (NN)
for every descriptor in each class. iii) Calculate and sum up the
distance between every descriptor and its NN of each class, i.e. I2C
distances. The predicted label of the query is finally assigned to the
class with the minimum distance.

4.2. The proposed algorithm

Natural images of real world have complicated characters,
which often contain multiple objects with different poses and
occlusion even within the same class. However they still share a

lot of similarities and correlate with each other. In this way, the
algorithm proposed in this paper makes use of this potential
relationship via integrating low-rank matrix recovery with colla-
borative representation.

Formally, let Di ¼ ½di;1;di;2; :::;di;n� be the stacked column vectors
of the BoVW representations of n training images in the i-th class.
Because of high similarity and relativity, the low-rank Ai and the
sparse matrix Ei of each class can be obtained. Naturally if one
image belongs to the i-th class, it can be well reconstructed by
vectors of the i-th Ai instead of other classes. Under the framework
of NBNN, we present an image classification algorithm based on
Naive Bayes collaborative representation (NBSC) combining with
low-rank matrix recovery. All the procedures of the NBCR algo-
rithm are summarized in Algorithm 1:

Algorithm 1 Classification method based on Low-rank matrix
and NBCR

Input: labeled (training) data X¼ ½x1; x2; :::; xn� for N classes, the
testing sample, parameters λ;β;η and γ.
Step 1: perform non-negative sparse coding of training and
testing sample

min
U;V

PN

i ¼ 1
‖x�uV‖2þλ‖u‖1 Subject to ‖v‖2r1;u0

U and y are the sparse representation of training and
testing sample respectively, where U¼ ½U1;U2; :::;UN�, Ui is
the stacked BoVW representation of class i.
Step 2: perform low-rank matrix recovery on U

For i¼1:N do

min
A;E

PN

i ¼ 1
f‖Ai‖nþβ‖Ei‖1g þη

P
ja i

‖AT
j Ai‖F Subject to

Ui ¼AiþEi

End for
Step 3: Obtain the recovery results from training samples

A¼ ½A1;A2; :::;AN �
Compute the skinny SVD of U and the pseudo-inverse of U

U¼ uΣvT

Uþ ¼ vΣ�1uT

Calculate the low-rank projection matrix
Pn ¼ AUþ

Project the BoVW representation of testing sample y on Pn

yt ¼ Pny
Step 4: Perform NBCR to classify yt over A by solving the
following problem:

min
w

‖yt�Aw‖22þγ‖w‖2
ŵ¼ wj j=‖w‖1

For i¼1:N do
ĉðiÞ ¼P

i
ŵi

End for
Output:
Identity(q)¼arg max

i
ĉðiÞ

In our method, the low-rank projection matrix Pn is learned to
recover the principle components of the testing sample for
classification. But the recovery model is based on the hypothesis
that the data is drawn from a single low-rank subspace rather than
a mixture of several low-rank subspaces. This can be unsuitable for
real-world instances since the projection matrix may not exactly
recover the testing sample. However, if we assume that a batch of
testing samples of the same class can be simultaneously obtained,
we can make an alternative improvement over the proposed NBCR
and the limits just mentioned above can be well addressed. For
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example, in a video surveillance system, it is difficult to accurately
recognize face image from a single shot because of variety of
gestures and illumination. If an image set constituted by all face
images from cameras in different positions is employed to describe
the target, the recognition accuracy will be greatly improved.
Moreover, scene analysis based on image set is also considered to
be very important. For instance, a robot equipped with an image
acquisition device can achieve more accurate scene recognition
results by analyzing image set composed of a plurality of images
acquired during moving. Instead of using the projection matrix to
recovery the testing sample, the low-rank matrix recovery is also
employed to recovery the testing samples following formulation
(10), which is denoted by NBCR_T. Under this alternative improve-
ment, the step 3 in algorithm 1 is replaced by the following
formulation:

min
M;N

‖M‖nþβ‖N‖1 Subject to T¼MþN ð10Þ

In this equation, T¼ ½t1:::tn� denotes the stacked BoVW repre-
sentation of testing images within the same class, where ti is the
i-th testing image. M is the low-rank matrix, whose column
vectors are considered as new representation of testing images.
And N is the sparse error matrix.

5. Experimental results

In this section, we evaluate the proposed method on four
public datasets: the Scene-15 dataset, the caltech-101 dataset,
the caltech-256 dataset and the UIUC-Sport dataset.

In all experiments, we adopt the wildly used 128 dimensional
SIFT descriptor as local features. For the fair comparisons with
other methods, we use the same setup as [21] did. The dense SIFT
descriptors extracted from 16�16 pixel patches are sampled from
each image with a step length of 8 pixels. The descriptors are
normalized with ℓ2-norm. All images are preprocessed into gray
scale and the max sides of each image are resized to 300 pixels. For
the Scene-15, the Caltech 101 and UIUC-Sport dataset, codebook
size for non-negative sparse coding is set to 1024. And for the
Caltech 256 dataset, the codebook is set to 2048. As [14] did, the
SIFT descriptors are randomly chosen to generate the codebook by
solving the optimization of problem in Eq. (3) iteratively. Follow-
ing the common benchmarking procedures, we repeat the experi-
mental process for 5 times by randomly choosing training images
and testing images for each dataset. The average per-class classi-
fication accuracy for each time is recorded and the mean accuracy
and its standard deviation are taken as the indices for comparison.

There are four parameters in our method, i.e. λ and γ for the
non-negative sparse coding and the collaborative representation
respectively, β and η for the low-rank matrix recovery. We
empirically set λ¼ 0:15 and γ ¼ 0:001 for all the fours datasets.
The parameter β balances the low-rank term and the sparsity error
term while η balances the low-rank matrix approximation and
matrix incoherence, which play key role in the method. Generally,
the value β should be smaller with the dimension reducing. We

carefully tune the parameters for good results and the specific
parameters values are reported for each dataset.

5.1. Scene-15 dataset

The Scene-15 dataset consists of 4485 images from 15 cate-
gories, each of which contains 200 to 400 images with the average
size of 300�250. The categories vary from outdoor scenes such as
Building and mountains to indoor scenes like living room and
bedroom. Fig. 1 shows some images from the Scene-15 dataset. We
randomly select 100 images per category as training data and the
rest are used for testing. The parameters of low-rank matrix
recovery are β¼ 0:05 and η¼ 1e�5.

Table 1 gives the performances of the proposed method as well
as several other methods. Generally, it shows that our method
achieves good performances. The performances are comparable
with or better than that of LLC and the original ScSPM, and they
are also better than the learning-free NN approaches, e.g. five
percent over the NBNN method. Non-negative sparse coding with
max pooling is adopted, which reduces quantization loss in
original sparse coding. In addition, by leveraging the low-rank
matrix recovery technique, better bases instead of using training
images directly can be learned for coding, which is more dis-
criminative in collaborative representation for classification.
LScSPM [35] made use of Laplacian sparse coding framework
combining with learning phases, which achieved extremely high
performance. We also give the classification performances of
NBCR_T with different numbers of testing instances, where the
digits are the number of available testing samples. It is obvious and
reasonable that the rate of classification accuracy improves
accordingly with number of testing samples increasing.

5.2. Caltech-101 dataset

The Caltech-101 dataset consists of 101 categories. The number
of images per category varies from about 30 to 800, where most of
these images are medium resolution, i.e. 300�300 pixels. The
dataset is more challenging due to high intra-class appearance
variability and large number of category. Fig. 2 shows some images
of the Caltech-101 dataset. Following the widely adopted config-
uration, we randomly select 15 and 30 images per-class for
training and also select 15 images per-class for testing. The
parameters of low-rank matrix recovery for the 15 training images
are β¼ 0:05, η¼ 1e�3 and β¼ 0:05, η¼ 1e�5 for 30 training
images.

Table 2 gives the performances of the proposed method as well
as several other works on this dataset. As shown, our method
achieves performances outperforming other NN-image (learning-
free) methods (original NBNN, Local NBNN) and several learning-
based methods (KCSPM, SVM-KNN, ScSPM) in the case of 15
training samples. Besides, it outperforms LLC by 2 percent for 15
training images, but it is inferior to LLC for 30 training images. The
reason may be that the low-rank matrix recovery is essentially
based on the hypothesis that the data is approximately drawn

Fig. 1. Example images of the Scene-15 Dataset.

X. Zhang et al. / Neurocomputing 169 (2015) 110–118114



from a low-rank subspace. In contrary, the LLC method does not
have this assumption. One work worth mentioning is LR-ScþSPM,
which leveraged non-negative sparse coding, low-rank and sparse
matrix decomposition techniques. In this method, the information
loss through quantization can be effectively avoided. And the
discriminative training step provides an additional benefit. As
description of the aforementioned sub-section, we also give the
classification performances of NBCR_T with different numbers of
testing samples.

5.3. Caltech-256 dataset

The Caltech-256 dataset contains 29,780 images within 256
categories. Each category has at least 80 images. Compared with
Caltech-101 dataset, Caltech-256 is more challenging dataset with
higher intra-class variability and higher object location variability
within the image. Fig. 3 shows some example images of this
dataset. Like the setup in Section 5.2, we also randomly choose 15
images and 30 images per-class for training and up to 30 images
for testing. The size of vocabulary for non-negative sparse coding
is set to 2048 given the higher intra-class variability. The para-
meters of low-rank matrix recovery for the 15 training images are
β¼ 0:1, η¼ 1e�3 and β¼ 0:1, η¼ 1e�5 for 30 training images.

The experimental results on this dataset are listed in Table 3.
From this table, we observe that our method also achieves good
performance on the dataset on the whole. On one hand, our
method outperforms the listed learning-free methods, under the
same experimental setting, except Local NBNN with training
number of 30. On the other hand, the results of our method are
better than most learning-based methods except LR-ScþSPM with
15 training images. For example, the NBCR outperforms the LLC by
6 percent for 15 training number and 5.5% for 30 training number.
And we also notice that with the number of training data
increases, improvement of our method descends compared with
ScSPM and LLC. The reason may be that the ignored sparse error
matrix also includes certain useful information, which is beneficial
to the final classification.

5.4. UIUC-Sport dataset

The UIUC-Sport dataset consists of 1792 images within 8 cate-
gories. The number of images per-class varies from 137 to 250. The
eight categories are badminton, bocce, croquet, polo, rock climb-
ing, rowing, sailing and snowboarding. Fig. 4 shows some example
images of this dataset. For experimental settings, in each category
70 images are randomly selected for training and 60 images

Table 1
performance comparison on Scene-15 Dataset.

Algorithm Performance Learned?

KSPM[21] 81.4070.50 Yes
ScSPM[6] 80.2870.93 Yes
LLC[22] 81.570.47 Yes
LScSPM[35] 89.7570.50 Yes
NBNN[4] 75.0073.30 No
Local NBNN[36] 79.2872.34 No
NBINNþNIMBLE[37] 78.2371.00 No
NBCR 80.1272.84 No
NBCR_T(10) 75.8774.71 No
NBCR_T(15) 90.6776.48 No
NBCR_T(20) 92.0075.76 No

Fig. 2. Example images of the Caltech-101 Dataset.

Table 2
Performance comparison on Caltech-101 Dataset.

Algorithm 15 training 30 training Learned?

KSPM[21] 56.40 64.4070.80 Yes
KCSPM[17] – 64.1471.18 Yes
SVM-KNN[38] 59.1070.60 66.2070.50 Yes
ScSPM[6] 67.0070.45 73.2070.54 Yes
LLC[22] 65.43 73.44 Yes
LR-ScþSPM[14] 69.5870.97 75.6870.89 Yes
NBNN[4] 65.0071.14 70.40 No
Local NBNN[36] 66.171.17 71.970.6 No
NBCR 67.4271.56 71.7471.78 No
NBCR_T(10) 63.6773.54 68.6172.12 No
NBCR_T(15) 69.6472.41 73.6173.23 No
NBCR_T(20) 73.1273.12 76.7972.62 No

Fig. 3. Example images of the Caltech-256 Dataset.

X. Zhang et al. / Neurocomputing 169 (2015) 110–118 115



randomly selected as testing data. The parameters of low-rank
matrix recovery are β¼ 0:1 and η¼ 1e�3.

Table 4 reports the performances of all the methods for
comparison on the UIUC-Sport dataset. Different from the former
three datasets, we can see that the proposed method is only
superior to ScSPM, where the absolute values of the negative
coefficients in the sparse representation are directly used. As
pointed in [14], with difference of non-negative sparse coding,
this behavior impairs the consistency between sparse coding and
max pooling. In this experiment, more training images (70 images)
are used as sub-dictionary for collaborative representation, while
the data with more complicated structure cannot be considered as
being drawn from a single underlying subspace. The low-rank
matrix recovery technique and the learned projection matrix incur
certain information loss. We also give the classification perfor-
mances of NBCR_T with different numbers of testing samples.
From the last three rows in Table 4 we can see that this method
achieves much better results with number of testing image
increasing, which makes full use homogeneity of testing images.

6. Discussion

As is known to all, in many tasks such as image classification
and other multimedia content analysis [40,41], the number of
training images has large influences on the final performance.
From the above experiments, we can see that the performances of
all the methods consistently increase with larger number of
training images. However, during the process of training classifier
in real-world applications, it is sometimes difficult to obtain
enough training images, which could dampen the classifier's
performances. This limitation is especially severe for datasets with
large number of category and diversity.

To further evaluate our method, we randomly select p images
(p¼ 2 –10) for training on Scene-15 and Caltech-101 dataset and
the number of testing images are set to 20. The NBNN, ScSPM and
LLC are employed for comparison with the proposed method
including NBCR and NBCR_T. The performances of all the methods

for comparison are shown in Figs. 5 and 6. From the results, we
observe that all the classification accuracies consistently increase
with the number of training image for all methods. Our methods
are comparable or better than other three methods along with the
increasing training number on the Scene-15 dataset. As for the
Caltech-101 dataset, our method performs much better than their
counterparts.

Among the methods mentioned in Figs. 5 and 6, ScSPM reduces
quantization loss by sparse coding, but the ignored structural
information from the same class and the max pooling strategy also
introduce information loss during the encoding process for image
representation. And similar features may vary a lot after encoding
because of over-complete dictionary. LLC integrates locality con-
straint during sparse coding, where K nearest codes are used to
encode a descriptor. Generally K is smaller than the descriptor
dimension, so the reconstruction of a descriptor may lead to large
deviation, which is an under-determined problem and affects the
final classification performance.

Our method effectively avoids the above problems due to the
following aspects: on one hand, the proposed method better

Table 3
Performance comparison on Caltech-256 Dataset.

Algorithm 15 training 30 training Learned?

KSPM[21] – 34.10 Yes
KCSPM[17] – 27.1770.46 Yes
ScSPM[6] 27.7370.51 34.0270.35 Yes
LLC[22] 27.7470.32 32.0770.24 Yes
LR-ScþSPM[14] 35.3170.70 – Yes
NBNN[4] 30.5 37.00 No
Local NBNN[36] 33.570.9 40.170.1 No
NBCR 33.8970.87 37.5170.74 No
NBTCR(10) 27.1173.34 31.7672.71 No
NBTCR(15) 32.0871.87 35.5473.11 No
NBTCR(20) 34.6572.34 38.3873.54 No

Fig. 4. Example images of the UIUC Dataset.

Table 4
Performance comparison on UIUC-Sport Dataset.

Algorithm Performance Learned?

ScSPM[6] 82.7471.46 Yes
HIKþOCSVM[39] 83.5471.13 Yes
LScSPM[35] 85.3170.51 Yes
LR-ScþSPM[14] 86.6971.66 Yes
NBCR 82.9672.43 No
NBCR_T(15) 82.6773.48 No
NBCR_T(20) 84.1272.76 No
NBCR_T(60) 88.5371.26 No
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Fig. 5. Performance comparison on Scene-15.
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mines the structurally consistent information of training images
within the same class. By low-rank matrix recovery, a more
discriminative dictionary can be obtained for collaborative repre-
sentation, which also has a closed-form solution. On the other
hand, as a variant of NBNN, the proposed algorithm is learning-
free, which can naturally handle dataset with a large number of
categories and avoid common problems in learning-based meth-
ods such as parameter overfitting or non-balance between training
and testing data.

7. Conclusion

In this paper, we present a novel learning-free image classifica-
tion algorithm, i.e. NBCR, by leveraging the low-rank matrix
recovery and the collaborative representation jointly under the
NBNN framework. To reduce the information loss introduced by
sparse coding and max pooling, non-negative sparse coding is
adopted to obtain robust representation of images. Moreover, we
use low-rank matrix recovery technique to get more discrimina-
tive dictionary for collaborative representation, which makes full
use of underlying structural information of training images within
the same class. The testing image recovered by a learned projec-
tion matrix is classified by responses over the bases. The experi-
mental results on several public datasets demonstrate the
effectiveness of the proposed method. Specially, if a batch of
images of the same class is simultaneously tested, higher classi-
fication accuracy can be achieved through the proposed NBCR_T
method. So our method is also suitable for image set classification.
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