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    Abstract—Visual saliency detection has become an active 

research direction in recent years. A large number of saliency 

models which can automatically locate objects of interest in 

images have been developed. As these models take advantage of 

different kinds of prior assumptions, image features, and 

computational methodologies, they have their own strengths and 

weaknesses and may cope with only one or a few types of images 

well. Inspired by these facts, this paper proposes a novel salient 

object detection approach with the idea of inferring a superior 

model from a variety of previous imperfect saliency models via 

optimally leveraging the complementary information among 

them. The proposed approach mainly consists of three steps. First, 

a number of existing unsupervised saliency models are adopted to 

provide weak/imperfect saliency predictions for each region in the 

image. Then, a fusion strategy is used to fuse each image region’s 

weak saliency predictions into a strong one by simultaneously 

considering the performance differences among various weak 

predictions and various characteristics of different image regions. 

Finally, a local spatial consistency constraint which ensures high 

similarity of the saliency labels for neighboring image regions with 

similar features is proposed to refine the results. Comprehensive 

experiments on five public benchmark datasets and comparisons 

with a number of state-of-the-art approaches can demonstrate the 

effectiveness of the proposed work. 

 

Index Terms—Salient object detection, weak prediction, fusion 

strategy, local spatial consistency constraint. 

I. INTRODUCTION 

ALIENT object detection aims to automatically obtain 

objects of user interest from images by using bottom-up 

visual features. In recent years, as an cornerstone technique, it 

has been widely used in a variety of computer vision 

applications such as object recognition [1, 2], image/object 

segmentation [3, 4] , image compression [5], image cropping 

[6], content-based image retrieval [7], and so on. 

After two decades of extensive study, a large amount of 
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saliency detection models have been developed. By and large, 

existing saliency models can be categorized into three classes: 

local contrast based models, global contrast based models, and 

background prior based models. The local contrast based 

models [8-12] compute the center-surround difference at each 

location of an image and highlight the regions distinct within a 

local context. Normally, this class of methods can highlight the 

small salient objects precisely. However, for the salient objects 

with big size, these methods can only detect the objects’ 

boundaries instead of the entire interior regions of them (See 

Fig. 1(c)). In contrast, the global contrast based models [13-20] 

calculate the saliency of an image location as the uniqueness in 

the entire image. These models can alleviate the problem of 

only detecting the boundaries of the salient objects to some 

extent. However they may fail to uniformly highlight the whole 

salient objects when the foreground regions are complex and 

with diverse appearance, or (See Fig. 1(d)). Besides, both the 

local and global contrast based models are likely to falsely 

consider the small-scale high-contrast background patterns as 

salient. The third class of models [21-25] rely on the 

background prior to assume that the image boundary regions 

are more likely to be the image background and then separate 

the salient foreground regions by calculating their contrast with 

the image boundary regions. Many previous works have 

demonstrated that this class of models can uniformly detect the 

salient objects and suppress the background in most cases. 

However, they still cannot achieve satisfactory performance in 

challenging scenarios especially when the images contain 

complex background and foreground regions or the salient 

objects significantly touch the image boundaries (See Fig. 

1(e)). 

 

 
Fig. 1. Examples (including the local contrast based model, CHM [12], the 

global contrast based model, RC [15], and the background prior based model, 
DSR [22]) to show the differences among various saliency models and the 

advantages of our salient object detection method.  
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As can be seen, existing saliency models are based on 

different prior assumptions, feature representations, and 

computational methodologies. Each of these methods may have 

their own strengths and weaknesses and normally only handle 

one or a few types of images well. It is extremely difficult, even 

impossible, for a single salient object detection model to work 

well under all various scenarios. This naturally motivates us to 

yield a superior saliency model by fusing the strength of each 

imperfect model, which on one hand is able to push forward 

salient object detection to conduct more robust prediction, and 

on the other hand could be a way to make the best use of the 

existing and forthcoming saliency models. 

 

 
Fig. 2. Illustration of the image-dependent and region-dependent properties of 

the fusion process. (a) The value under each weak saliency prediction 
represents the accuracy of this prediction to certain image, which not only 

depends on the corresponding weak saliency models’ saliency detection 

capacities (including CB [11], CHM [12], DSR [22], MC [21]), but also 
depends on the image scene itself. (b) The value corresponding to each example 

image region represents the difficulty of this image region to be labeled 

correctly. Even in the same image, different image regions have different 
difficulties to be labeled correctly. 

 

To this end, in this paper, we propose to cast the salient 

object detection as a problem of fusing weak predictions from 

multiple existing imperfect saliency models. Given an image, 

we first apply a number of existing saliency models to yield the 

corresponding saliency maps, each of which provides a weak 

prediction of saliency at every location of the image. Then, we 

propose to fuse the weak predictions from various saliency 

models into a strong/superior saliency prediction. In the 

proposed work, we presume that, the fusion process should 

have two important properties: 1) Image-dependent: the 

accuracy of each weak saliency prediction should be 

considered with respect to the specific image scene because the 

prior assumptions or computational methodologies used in 

different saliency models may fit to the specific image scene in 

varying degrees. (See Fig. 2(a)); 2) Region-dependent: the 

difficulty of image regions should be considered with respect to 

the specific image regions because the agreement of the 

multiple weak saliency predictions is different in various image 

regions, which indicates that different image regions may have 

different difficulties to be labeled correctly (See Fig. 2(b)). 

Thus, we propose to model this fusion process in a GLAD 

(Generative model of Labels, Abilities, and Difficulties) [26] 

framework, where the accuracy of each weak saliency 

prediction and the difficulty of each image region can be 

inferred from the input image regions and their corresponding 

weak saliency labels automatically. Then, the region-level 

professionality of each weak saliency prediction, i.e. the 

confidence degree of each weak saliency prediction to each 

image region, can be further obtained to infer the strong 

saliency label for each image region in an unsupervised way. 

Finally, as the fusion strategy does not take into consideration 

the interaction between neighboring image regions, and it is 

obvious that the saliency of neighboring regions should have 

the mutual influence, we further refine the fusion results by 

utilizing a novel local spatial consistency constraint to enable 

the neighboring image regions with similar image features to 

have similar saliency labels. 

Actually, there are a few previous works close to our 

considerations in this paper. Specifically, Boji et al. [2] made an 

earlier attempt to directly apply several simple pre-defined 

combination functions, e.g., multiplication, averaging and et al, 

to fuse the existing saliency maps. Although these fusion 

functions are simple to implement, they cannot make full use of 

the complementary information in the saliency models under 

fusion and adapt them in various scenarios because they assign 

equal weights to different saliency models for every image. To 

solve this problem, Cao et al. [27] proposed to fuse the weak 

predictions of an input image with a self-adaptively weighting 

scheme. They calculated the self-adaptive weights of each 

weak saliency map based on consistency energy in a group of 

images with similar objects. Thus, it can adapt to the variation 

of the image scenes to some extent. As can be seen, both [2] and 

[27] fused the weak saliency predictions only in the image-level, 

which ignores the region-dependent property of the desirable 

fusion process. Lately, Mai et al. [28] presented a supervised 

saliency aggregation method which uses the ground-truth of 

some similar images to learn a fusion model to aggregate the 

weak saliency maps of the input image. They considered the 

image-dependent property and explored the interaction 

between neighboring pixels, which, however, still ignores the 

region-dependent property during the fusion process. In 

addition, by comparing the work in [28] with our work, we can 

find several other obvious differences:1) Our method works in 

an unsupervised manner and it is able to automatically fuse the 

given weak predictions without using the ground truth, thereby 

alleviating the time-consuming off-line training process or 

labeling positive samples manually. The purpose of this paper 

is to design effective inference mechanism to combine those 

simple unsupervised models to obtain stronger prediction result 

which is expected to be comparable with or even better than the 

state-of-the-art saliency methods. In our work, the candidate 

models to be combined are not necessary to be the best ones; 2) 

Our method infers the fusion model from the content of the 

specific input image rather than its nearest neighbor images, 

which could alleviate the ambiguity during the learning process; 

3) When the pre-provided salient object detection results are 

changed, the work in [28] needs to spend much time to re-train 

the fusion models whereas our method could infer the fusion 

model immediately, which makes our method more flexible 

and efficient.  

The contributions of the proposed work can be summarized 

as follows: 

1) We make the earliest effort to consider the different 

characteristics of various image regions in saliency 

fusion, which is implemented by defining each image 

region using a labeling difficulty parameter to reflect its 

difficulty to be labeled correctly. Consequently, the 

proposed fusion strategy can autonomously choose to 

trust different weak saliency models on image regions 
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with different labeling difficulties.  

2) Our saliency fusion strategy can automatically infer the 

accuracies of each weak saliency model during the 

fusion process. The inferred accuracies are 

demonstrated to be consistent with the accuracies 

measured by comparing with the ground-truth, which, 

to some extent, guarantees the reasonability of the 

superior performance of the fusion results even without 

the ground-truth. 

3) A novel smooth-optimization strategy is proposed based 

on the local spatial consistency constraint, to ensure 

high similarity of the saliency labels for the neighboring 

regions with similar image features, by considering the 

interactions between the saliency labels of neighboring 

regions. 

II. FUSING THE WEAK PREDICTIONS 

Given an input image I , we first obtain m  weak saliency 

prediction maps { }1 2, , ..., mSM sm sm sm=  from m  existing 

saliency detection models 
1 2
, , ...,{ }

m
M M M M= . The weak 

saliency predictions provide weak saliency labels (1/0 for 

salient/not salient) for each location/region in the image, and 

our goal is to fuse these weak saliency labels into the strong 

labels without any supervision. Specifically, we first define an 

accuracy parameter for each weak prediction to represent its 

contribution to the specific image scene, and a difficulty 

parameter for each image region to measure its difficulty to be 

detected correctly. By using the GLAD model [26], the 

accuracy of each weak saliency model and the difficulty of each 

image region can be determined automatically, which are 

further used to compute the professionality of each weak 

saliency label to each specific image region. Finally, the strong 

saliency label of each image region can be inferred according to 

the weak saliency labels and their corresponding 

professionalities. 

A. Selection of the weak saliency models 

For the set of candidate weak saliency models, our fusion 

strategy can always automatically analyze the professionality 

of each saliency model’s weak prediction to each image region, 

and then fuse the weak predictions in the most appropriate way 

according to their professionalities. Consequently, the fusion 

results can always be much better than each individual weak 

prediction. Therefore, the candidate weak saliency models are 

not fixed and unchangeable. Any reasonable weak saliency 

models can be used as the candidate models in our work.  

We basically use the following two criteria to select weak 

saliency models: 

1. The selected weak saliency models are based on different 

prior assumptions, image features, and computational methods. 

Each model may have its own strengths and weaknesses and 

normally only handle one or a few types of images well.  

2. The selected weak saliency models work in the manner of 

unsupervised learning and have the reasonable good 

performance. They do not need the training stage and have low 

computational complexity.  

The number of combined weak models can be decided by 

concerning the tradeoff of the accuracy and computational 

complexity. Normally, combination of more models may lead 

to better accuracy but high computational complexity. If a task 

has high real-time requirement, it is better to select weak 

saliency models with low computation complexities and 

reasonably use less weak saliency models. However, if a task 

has high demand of accuracy, it is better to use a few more 

saliency models.  

In our implementation, by considering both the efficiency 

and effectiveness of the fusion process, we adopt eight different 

unsupervised weak saliency models with low computation 

complexities. The fusion result is much better than each 

individual saliency detection result and also better than other 

state-of-the-art supervised saliency detection models as shown 

in the experiment section. The details of these weak modes are 

as follows:  

(1) CB [11]: This model performs the saliency detection by 

integrating the context-based saliency and object-level shape 

prior into an iterative energy minimization framework. By 

considering the object-level prior and using the multi-scale 

technique, this model can preserve the boundary of the salient 

object well and obtain large homogeneous salient regions. 

(2) RC [15]: This model measures each image region’s 

saliency via its contrasts and space distances with all other 

image regions in the image. This model can generate high 

quality spatially coherent saliency maps, but some background 

regions of the images are still salient. 

(3) MC [21]: This model executes saliency detection via an 

absorbing Markov chain on a graph model. It computes the 

saliency of each image region node as its absorbed time to the 

boundary absorbing nodes and further utilizes the equilibrium 

probability to suppress the saliency of the long-range smooth 

background regions. 

(4) DSR [22]: This model first constructs dense and sparse 

appearance models from the boundary image regions, based on 

which it computes each image region’s dense and sparse 

reconstruction errors. Multi-scale reconstruction errors are then 

propagated and integrated to produce pixel-wise saliency maps. 

This model can highlight salient regions uniformly and 

suppress the background saliency quite well.  

(5) RBD [24]: This model first proposes a robust boundary 

connectivity measure to characterize each image region’s 

spatial layout with the image boundaries, instead of simply 

treating all the image boundaries as the background. Then it 

exploits a principled optimization model to integrate low-level 

image cues (including the boundary connectivity measure) to 

produce uniform and clean saliency maps.  

(6) CHM [12]: This model first uses a cost-sensitive SVM 

objective function to capture center-surround contrast 

information and a hypergraph model to capture more 

comprehensive contextual information, and then linearly 

combines the SVM and hypergraph saliency detection results to 

a final saliency map. 

(7) PISA [19]: This model executes saliency detection by 

first computing each pixel’s color and structure contrasts with 

spatial priors holistically, then aggregating these two 

complementary saliency cues in a pixel-wise adaptive manner. 

By using pixel-wise instead of homogeneous superpixel-based 

model and taking into consideration the spatial priors, this 
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model can produce spatially coherent yet detail-preserving 

saliency maps. However, the boundaries of the salient objects 

are always blurred. 

(8) BL[29]: This model exploits both weak and strong 

models to detect salient object. It first constructs weak saliency 

maps using image priors to generate training samples, based on 

which it then trains a strong classifier to detect salient pixels. 

The selected models exploit different kinds of prior 

assumptions, image features, and computational methodologies. 

For example, CB [11] and CHM [12] are based on local 

contrast. RC [11], PISA [19], and RBD [24] are based on global 

contrast. MC [21], DSR [22], RBD [24], and CHM [12] are 

based on background priors. In addition, BL[29] uses the center 

prior and dark channel prior. From the perspective of image 

features, CB [11] uses color and hue histograms, PISA [19] 

uses color and gradient, and BL[29] additionally exploits the 

Local Binary Pattern (LBP) features. As for the computational 

methodologies, MC [21] computes the image saliency via an 

absorbing Markov chain, CHM [12] uses a hypergraph model 

and a cost-sensitive SVM, and RBD [24] utilizes a principled 

optimization model. 

B. The weak saliency labels for all the regions in the image 

After getting the weak predictions { }1 2, , ..., mSM sm sm sm=  

of I , we generate weak saliency labels for all the image 

regions from these weak predictions. We first execute 

over-segmentation to image I  by a graph-based image 

segmentation algorithm in [30], and decompose I  into a set of 

superpixels 
1 2
, , ...,{ }

N
SP sp sp sp= , where N  is the number of 

all the superpixels in image I .  

Then, a saliency thresholding is performed on 

1 2
, , ...,{ }

m
SM sm sm sm=  to obtain m  binary salient object 

segmentation maps 
1 2, ,...,{ }mSM sm sm sm′ ′ ′′ = . This step aims 

at extracting the salient regions detected by the weak 

predictions. Specifically, for weak prediction ism , the binary 

map 
ism ′  is obtained by:  

( ) ( )1 2

1 2

1, ,
,

0,

i

i

sm x x T
sm x x

otherwise

 ≥′ = 


                (1) 

where ( )1 2,ism x x  is the saliency value of the pixel at location 

( )1 2,x x , and T  is the adaptive threshold which is defined as: 

( )
1 2

1 2

1 1

,
W H

i

x x

T sm x x
W H

λ
= =

=
× ∑∑                     (2) 

where W  and H  are the width and height of i
sm , and λ  is the 

parameter that controls the extraction of candidate salient 

object regions from the saliency map. A small value of λ  

means more image regions will be extracted as candidate 

salient object regions from the corresponding weak prediction. 

Empirically, we set λ  to 2 in our experiments. 

Next, we define each superpixel m  weak saliency labels 

(1/0 for salient/not salient) from 
1 2, , ...,{ }mSM sm sm sm′ ′ ′′ = . 

For the j th superpixel 
jsp , the weak saliency label provided 

by 
ism ′  can be described as follows: 

( )( )
1

1
1, 0.5

0,

jN

i j

kij j

sm sp k
l N

otherwise

=

 ′ ≥= 



∑
               (3) 

where 
jN  is the number of pixels in superpixel 

jsp , and 

( )jsp k  is the position index of the k th pixel of 
jsp  in 

ism ′ . 

As shown in (3), if more than half pixels of 
jsp  belong to the 

salient regions, then the weak saliency label 
ijl  is set to 1. 

Finally, for each superpixel in the input image I , we 

obtain a set of m  weak saliency labels, denoted as 

{ }1 2, ,...,j j j mjl l l=l . The whole input image can be described as 

N  weak saliency label sets { }1 2, , ..., N=l l l l . 

C. Inferring the strong saliency label from weak saliency 

labels 

1) Parameter definition 

Accuracy of the weak saliency model: As different 

saliency models have different performances on the input 

image I , we define a labeling accuracy parameter 

( ),iα ∈ −∞ +∞  for each saliency model i
M  to represent the 

accuracy of its weak prediction to I . A large 
i

α  means that 

the saliency model 
i

M  can detect the salient regions of this 

image more accurately. The saliency model with an 
i

α  greater 

than 0 can be considered as effective, while that with 
i

α  less 

than 0 is considered as invalid and adversarial. When 
i

α  equals 

to 0, it indicates that the corresponding saliency model cannot 

distinguish the salient object regions and the background. For 

this case, the labels given by this saliency model make no 

contribution to the inference of the real saliency labels of the 

superpixels. In the extreme case, when 
i

α = +∞ , the 

corresponding saliency model 
i

M  would be very skilled and it 

can label all the superpixels correctly, and vice versa.  

Difficulty of each superpixel: As mentioned before, even in 

the same image, different image regions may have different 

difficulties to be labeled correctly. Thus we define a parameter 

[ )1 0,jβ ∈ +∞  to denote the labeling difficulty of superpixel 

jsp  .A large 1 jβ  represents that the superpixel 
jsp  is 

difficult to be labeled correctly. When 1 jβ = +∞ , it means that 

the superpixel 
jsp  is too difficult that even the most expertly 

saliency model can only have a chance of fifty percent to label 

it correctly. When 1 0jβ = , it means that the superpixel 
jsp  is 

so simple that even the most obtuse saliency model can label it 

correctly. 

With the parameters defined above, we can figure out that the 

weak saliency labels for one superpixel can be considered to 

depend on the following factors: (1) the weak saliency model’s 

labeling accuracy; (2) the superpixel’s labeling difficulty; (3) 

The real saliency label of the superpixel. Fig. 3 shows the 

causal relationship of these factors. 
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Fig. 3. Graphic model of each superpixel’s labeling difficulty, each weak 
saliency label’s labeling accuracy, the superpixel’s weak saliency labels, and 

real saliency label. Only the shaded variables are available during the inference 

process. 
 

Considering the relationships described above, the 

professionality of a weak saliency label ij
l  can be defined as: 

( ) 1
| ,

1 i j
ij j i jp l z

e
α βα β −= =

+
                     (4) 

where { }0,1jz ∈  is the real saliency label of superpixel j
sp , 

and our ultimate goal is to infer the most likely value of j
z  

from the weak saliency labels and their professionalities. The 

professionality of the weak saliency label ij
l  can also be 

interpreted as the probability that ij
l  equals to the real saliency 

label j
z , i.e. the probability of j

sp  being labeled correctly by 

iM . As can be seen from the equation, more skilled saliency 

models (with higher iα ) can achieve a higher probability of 

labeling a simpler superpixel (with lower 1 jβ ) correctly. In 

addition, when the superpixel’s labeling difficulty 1 jβ  

approaches to +∞ , or the saliency model’s labeling accuracy 

i
α  approaches to 0, the probability of 

jsp  being labeled 

correctly tends to be 0.5, which means that this weak saliency 

label ij
l  makes no contribution to the final labeling result. 

2) The posterior probability of j
z  

After getting the professionality of each weak saliency label, 

we compute the posterior probability of { }0,1jz ∈  from the 

weak saliency labels as follows: 

( ) ( )
( ) ( )
( ) ( )

1

| , , | , ,

 ,   , ,

 , ,

j j j j

j j j j j

m

j ij j i j

i

p z p z

p z p z

p z p l z

β

β β

α β
=

∝

=

∝ ∏

l l

l

α β αα β αα β αα β α

α αα αα αα α            (5) 

where ( )jp z  is the prior probability of j
z , and 

( ) ( ) ,j j jp z p z β= αααα  is based on the conditional 

independence assumptions of the superpixel’s strong saliency 

label, the superpixel’s labeling difficulty, and the saliency 

models’ labeling accuracies.  

The physical significance of (5) can be interpreted as that the 

posterior probability of j
z  is jointly determined by the prior 

probability of j
z , the weak saliency labels, and their 

corresponding professionalities. If we know the labeling 

difficulty and the prior probability of each superpixel, and the 

labeling accuracy of each weak saliency model, then we can 

compute the posterior probability of each superpixel being 

salient directly. 

3) The optimal inference process  

As a matter of fact, only the weak saliency labels for each 

superpixel are available, both the superpixel’s labeling 

difficulty 1 jβ  and the saliency model’s labeling accuracy i
α  

are still unknown. Therefore, according to [26], we use an 

Expectation–Maximization algorithm (EM) to simultaneously 

infer the maximum likelihood estimation of the parameters and 

the posterior probability of j
z . 

The EM algorithm can be described as follows: 

E-step: According to a current estimation of αααα , ββββ  from the 

last M-step and the observed weak saliency labels, we compute 

the posterior probabilities of all j
z  according to (5). 

M-step: To estimate the parameters, a standard auxiliary 

function Q :  

( ) ( ) ( ),
, arg max ,Q′ ′ = α βα βα βα βα β α βα β α βα β α βα β α β                     (6) 

where ′αααα  and ′ββββ  are the estimated parameters that locally 

maximize Q . 

The function Q  is defined as the expectation of the joint 

log-likelihood of the observed and hidden variables ( ),l z  

given the parameters ( ),α βα βα βα β , w.r.t. the posterior probabilities of 

all the j
z  computed in the last E-step: 

( ) ( )

( ) ( )
( )

( ) ( )

1 1

1 1 1

, ln ,  ,

  ln   , ,

   since  are cond. indep. given , , 

 ln ln  , ,

N m

j ij j i j

j i

ij

N N m

j ij j i j

j j i

Q E p

E p z p l z

E p z E p l z

l

α β

α β

= =

= = =

 =  

  =   
  

  = +   

∏ ∏

∑ ∑∑

l z

z

α β α βα β α βα β α βα β α β

α βα βα βα β
  (7) 

where the expectation is taken over z  given the previous 

parameter values oldαααα , oldββββ  as estimated in the last E-step. 

The parameters αααα  and ββββ  are updated in iterations. We set 

their initial values to be 0.5 since we have no idea of the 

saliency models’ labeling accuracies or the superpixels’ 

labeling difficulties initially. In addition, the prior probability 

of j
z  plays a vital role to the final result, and we have to 

carefully define it. According to our observation, if all the weak 

saliency labels of a superpixel are 1, the strong saliency label 

should have no chance to be 0 after the fusion process. Thus, we 

define the prior probability of each superpixel as follows: we 

define the superpixels with all their weak saliency labels as 1 to 

be the positive superpixels and set their prior probabilities to 1. 

Conversely, for the superpixels with all their weak saliency 

labels as 0, we define them as the negative superpixels and set 

their prior probabilities to 0. For the superpixels whose weak 

saliency labels contain both 1 and 0, we first find their most 

similar positive superpixel 
possp  and most similar negative 
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superpixel negsp  in the input image via KD-tree search, and 

then define their prior probabilities based on their similarities 

with respect to both possp  and negsp , which is defined as: 

( ) ( )expj neg posp z D D∝ −                       (8) 

where negD  is the Euclidean distance in the feature space from 

jsp  to 
negsp , and pos

D  is the Euclidean distance from 
jsp  to 

possp . Note that all the values of ( )jp z  are normalized to (0,1).  

Finally, we use gradient ascent to estimate the values of ′αααα  

and ′ββββ  by locally maximizing Q . The final saliency label of 

each superpixel is obtained by thresholding at 0.5 the 

superpixel’s posterior probability of being salient. 

 

 
Fig. 4. An illustration of the significance of the local spatial consistency 

constraint. (a) Input images. (b) Ground truth. (c)-(d) Salient object detection 
results before and after introducing the local spatial consistency constraint. 

III. THE LOCAL SPATIAL CONSISTENCY CONSTRAINT 

During the fusion process, all the superpixels in the GLAD 

model are considered to be independent from each other, which 

ignores the interaction between neighboring superpixels. This 

may lead to the poor continuity between the saliency labels of 

neighboring image regions, i.e. the saliency labels of 

neighboring superpixels with similar image features may be 

quite different from each other (as shown in Fig. 4(c)). 

Therefore, we propose a local spatial consistency constraint to 

refine the fusion results, which will lead to high similarity for 

the saliency labels of neighboring superpixels with similar 

image features. 

The local spatial consistency constraint is implemented 

through a similarity matrix W . Specifically, we construct a 

graph ( ),G V E  on the input image, where each node i
v V∈  

corresponds to a superpixel and each edge ije E∈  connects 

certain pair of neighboring superpixels. The edges E  are 

weighted by the similarity matrix ij
N N

w
×

 =  W , where the 

weight ij
w  of the edge ij

e  connecting nodes iv  and j
v , is 

defined as:  

2

2

2
exp    if ,

2

0 otherwise,

i j

ij

ij

f f
e E

w σ

  −  − ∈  =   
 



          (9) 

where if  and 
jf  are the mean image feature vectors of the 

node iv  and node 
jv , respectively, and σ  is a constant that 

controls the strength of the weight. For the image features, we 

use two kinds of features in this work, including color and 

texture. In our experiments, we set =0.07σ . Then, the degree 

matrix of the graph can be computed as { }11,..., nndiag d d=D , 

where 
1

n

ii ij

j

d w
=

=∑ , and the Laplacian matrix is computed as 

= −S D W . 

With the similarity matrix W  and the Laplacian matrix S , 

we introduce the local spatial consistency constraints to all the 

superpixels’ saliency labels through solving the following 

optimization problem: 

( )2 2

2
1 1 1

min
nNN N

i j ij i i
y

i j i

y y w y zγ
= = =

− + −∑∑ ∑           (10) 

where [ ]0,1iy ∈  is the final saliency label of node iv  after this 

optimization process. iv  and 
j

v  are adjacent nodes, and nN  is 

the number of the nodes neighboring to node iv . This equation 

can also be written as: 

( ) ( ) ( )TT
min Trγ + − −

y
y Sy y z y z               (11) 

where [ ]T

1 2, , ..., Ny y y=y  and [ ]T

1 2, , ..., Nz z z=z . 

As can be seen, the first term in (10) and (11) illustrates the 

local spatial consistency constraint for the saliency labels, 

which indicates that if two neighboring nodes iv  and 
j

v  have 

similar image features ( ij
w is large), they should have similar 

saliency labels in the final result. The second term is used to 

ensure that the usage of the proposed constraint does not 

change the original saliency labels too much. The parameter γ  

is used to balance these two constraints. Empirically, we set 

=20γ . The result of (10) is: 

( ) 1

Nγ −= +y S I z                            (12) 

where N N

N

×∈I �  is an identity matrix. As shown in Fig. 4(d), 

the saliency labels of neighboring image regions with similar 

image features in the final salient object detection result are 

more similar to each other. Thus, the final salient object 

detection results can have larger continuity between the 

saliency labels of neighboring superpixels. 

IV. EXPERIMENTS 

A. Experimental setup 

Datasets: Datasets: We evaluated our proposed method on 

five standard benchmark datasets: SOD [31], MSRA-B [10], 

HKU-IS [32], DUT-OMRON [23], and THUR-15K [33]. All 

these datasets contain different kinds of images and somehow 
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challenging. The SOD dataset consists of 300 images from the 

Berkeley segmentation dataset. This dataset is challenging 

since most images in this dataset contain salient objects either 

with low contrast or overlapping with the image boundary. 

Pixel-wise annotations of these images can be obtained for this 

dataset. The MSRA-B dataset contains 5000 images with 

pixel-wise annotations. Most of the images in this dataset 

contain only one object and have complex background. The 

HKU-IS dataset contains 4447 images, and most of these 

images have multiple salient objects which often have low 

contrast to the image backgrounds. The DUT-OMRON dataset 

contains 5168 images. This dataset is also challenging since the 

images have unknown number of salient objects and complex 

backgrounds. The THUR15K dataset consists of 15000 images 

downloaded from Flickr with five keywords: butterfly, coffee 

mug, dog jump, giraffe, and plane. Not every image in this 

dataset contains a salient object, besides, only the images with 

salient objects have pixel-wise annotations.  

Evaluation criterion: We evaluated the salient object 

detection performance using the standard precision-recall (PR) 

curves, F-measure and the intersection-over-union (IOU) score 

[34]. To obtain the PR curve, the saliency map is first converted 

to a binary mask using a threshold, then the corresponding 

precision and curve values are obtained by comparing the 

binary mask with the ground truth. The PR curve is then 

obtained by changing the threshold from 0 to 1 and averaged on 

each dataset.  

The F-measure value is the joint performance of the 

precision and recall: 

( )2

2

1+
=

precision recall
F

precision recall
ρ

ρ
ρ

⋅ ⋅

⋅ +
                 (13) 

We set 2 0.3ρ =  here to emphasize precision and obtain the 

binary salient object segmentation map by thresholding the 

saliency map at twice its mean saliency value. The 

intersection-over-union (IOU) score of one dataset is defined 

as: 

1 t t

t
t t

R GT

R GTττ ∈

∩
∪∑                           (14) 

where t
R  is the binary salient object segmentation map of 

image t  obtained by thresholding the saliency map at twice its 

mean saliency. GT  is the ground truth, τ  represents the 

image dataset, and | |τ  means the number of images in the 

dataset. 

B. Examination of design options 

Parameter analysis. Our fusion strategy defines each weak 

saliency model a labeling accuracy parameter to measure its 

contribution to certain image during the fusion process. To 

examine this parameter, we compare the performance ranks of 

the weak saliency models based on their obtained labeling 

accuracy parameters with those based on their mean F-measure 

and IOU scores on the SOD, MSRA-B, HKU-IS, and 

DUT-OMRON dataset, respectively. As shown in Fig. 5, the 

performance ranks of the weak saliency models based on their 

mean F-measure and IOU scores are consistent on all the four 

datasets. Meantime, the performance ranks based on the 

labeling accuracy parameter values of the weak saliency 

models are mostly consistent with those based on the mean 

F-measure and IOU scores.  

 

 
Fig. 5. Comparison between the weak saliency models’ performance ranks 
based on their labeling accuracy parameter values and those based on their 

mean F-measure and IOU scores on the SOD, MSRA-B, HKU-IS, and 

DUT-OMRON datasets. 
 

 

 

Fig. 6. The visualization of labeling difficulty parameter values of the 

superpixels in some example input images. 
 

 

 
Fig. 7. Evaluation of the prior probability determination scheme and the local 
spatial consistency constraint in terms of precision, recall and F-measure on the 

SOD, MSRA-B, HKU-IS, and DUT-OMRON dataset. ‘Prior_05’: fusion 

results before introducing the local spatial consistency constraint, where each 
superpixel’s prior probability is defined as 0.5. ‘Before’: fusion results before 

introducing the local spatial consistency constraint, where each superpixel’s 

prior probability is defined by our prior probability determination scheme. 
‘After’: fusion results after introducing the local spatial consistency constraint, 

where each superpixel’s prior probability is defined by our prior probability 
determination scheme. 
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In addition to the labeling accuracy parameter, our fusion 

strategy also defines each superpixel a labeling difficulty 

parameter to differentiate them during the fusion process. Here 

we visualize the labeling difficulty parameter values of the 

superpixels in some example images in Fig. 6. As we can see, 

for the input image with large homogeneous salient object and 

clean background regions which have strong contrast with the 

salient object, only the superpixels on the edges of the salient 

objects have large labeling difficulties (see Fig. 6 (a)-(b)). 

However, if the salient objects have complex patterns (see Fig. 

6 (c)), the superpixels inside the salient objects are also difficult 

to label correctly. Even worse, when the background regions 

have similar image features with the salient object (see Fig. 6 

(d)), all the superpixels in the input image are difficult to label 

during the fusion process. 

 
TABLE I 

EVALUATION OF THE PRIOR PROBABILITY DETERMINATION SCHEME AND THE 

LOCAL SPATIAL CONSISTENCY CONSTRAINT IN TERMS OF IOU SCORES ON THE 

SOD, MSRA-B, HKU-IS, AND DUT-OMRON DATASETS. ‘PRIOR_05’: 
FUSION RESULTS BEFORE INTRODUCING THE LOCAL SPATIAL CONSISTENCY 

CONSTRAINT, WHERE EACH SUPERPIXEL’S PRIOR PROBABILITY IS DEFINED AS 

0.5. ‘BEFORE’: FUSION RESULTS BEFORE INTRODUCING THE LOCAL SPATIAL 

CONSISTENCY CONSTRAINT, WHERE EACH SUPERPIXEL’S PRIOR PROBABILITY 

IS DEFINED BY OUR PRIOR PROBABILITY DETERMINATION SCHEME. ‘AFTER’: 
FUSION RESULTS AFTER INTRODUCING THE LOCAL SPATIAL CONSISTENCY 

CONSTRAINT, WHERE EACH SUPERPIXEL’S PRIOR PROBABILITY IS DEFINED BY 

OUR PRIOR PROBABILITY DETERMINATION SCHEME. 
 

 SOD MSRA-B HKU-IS DUT-OMRON 

Prior_05 0.484 0.713 0.584 0.482 

Before 0.495 0.734 0.607 0.500 

After 0.516 0.758 0.629 0.520 

 

Effectiveness of the prior probability determination 

scheme. As described in Section II-C, each superpixel’s prior 

probability of being salient plays a vital role to the final fusion 

results. Therefore we use a novel scheme based on KD-tree 

search to carefully define them. To show the effectiveness of 

the prior probability determination scheme, we performed 

comparison experiments on the SOD, MSRA-B, HKU-IS, and 

DUT-OMRON dataset, where the prior probability of each 

superpixel is set to 0.5. The comparison results are shown in 

Fig. 7 and Table. 1. As can be seen, the superpixels’ prior 

probabilities of being salient affect a lot on the final fusion 

results and our prior probability determination scheme is very 

effective.  

Effectiveness of the local spatial consistency constraint. 

After the fusion process, we further introduce a local spatial 

consistency constraint to ensure high similarity for the saliency 

labels of neighboring image regions with similar features. Here 

we compared the salient object detection results of our method 

before and after using the constraint in Fig. 7 and Table 1. The 

comparison results show that the usage of this constraint can 

improve the salient object detection results. 

 
TABLE 2 

PERFORMANCE COMPARISON OF THE PROPOSED APPROACH AND THE USED 

WEAK SALIENCY MODELS IN TERMS OF IOU SCORES ON THE SOD, MSRA-B, 
HKU-IS, DUT-OMRON, AND THUR-15K DATASETS. 

 

 SOD MSRA-B HKU-IS 
DUT-OM

RON 

THUR

-15K 

BL 0.403 0.666 0.509 0.397 0.432 

CB 0.313 0.587 0.485 0.400 0.432 

CHM 0.370 0.624 0.505 0.402 0.438 

DSR 0.411 0.642 0.519 0.408 0.426 

MC 0.407 0.677 0.520 0.425 0.444 

PISA 0.401 0.673 0.545 0.433 0.454 

RBD 0.415 0.684 0.531 0.430 0.431 

RC 0.254 0.399 0.315 0.271 0.287 

Ours 0.516 0.758 0.629 0.520 0.503 

 

C. Performance comparison of the proposed approach with the 

weak saliency models 

We compared our salient object detection results with the 

weak saliency predictions to be combined, i.e. 

{ }1 2, ,..., mSM sm sm sm=  described in Section II-B. The 

comparison results are shown in Fig. 8 and Table 2. As can be 

seen, the saliency detection performance improves significantly 

compared with the weak saliency predictions used to fuse, 

especially on the DUT-OMRON dataset, where both the 

F-measure and IOU scores improve about 10% compared with 

the best weak saliency prediction, which directly demonstrates 

 
Fig. 8. Performance comparison of the proposed approach and the used weak saliency models in terms of PR-curves, Precision, Recall and F-measure on the 

SOD, MSRA-B, HKU-IS, DUT-OMRON, and THUR-15K datasets. 
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the effectiveness of the proposed framework for saliency 

fusion. 

Fig. 9 shows some visual comparison results of our salient 

object detection results and the weak predictions of the weak 

saliency models. We can see from the comparison results that 

our approach can consistently perform better than the used 

weak saliency models. 

D. Comparison with other salient object detection approaches 

based on fusing existing saliency models 

As mentioned before, Boji et al. [2] presented a salient object 

detection approach which also fuses multiple existing saliency 

models. Here we compared the proposed approach with the 

approaches in [2], which fuses the weak predictions via several 

simple pre-defined standard combination functions. As all of 

these simple combination functions are executed on pixel level 

in [2], we run an improved version of these models by 

executing them on superpixel level. The fusion results of these 

simple combination functions are denoted as mean, exp, log, 

multi, respectively, in the following parts.  

In addition, we also compared our proposed approach with 

the approaches in [27, 35]. We adopted the fusion method 

proposed in [27, 35] to combine the same set of weak saliency 

models in our work and the obtained results are denoted as 

Rank and MCA, respectively.  

 
TABLE 3 

COMPARISON OF THE MEAN RUNNING TIME BETWEEN OUR METHOD AND [2, 

27, 35]. 
 

 [2] [27] [35] Ours 

Time(s) 0.31 3.65 0.35 0.63 

 

 
Fig. 9. Visual sample comparisons of the proposed approach and the used salient object detection approaches. 
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We first compared the mean running time of our method for 

one input image after obtaining the weak saliency predictions 

with that of [2, 27, 35] in Table 3. As can be seen, [2] spent the 

least time for fusion since it only exploited some simple 

pre-defined standard combination functions for fusion. In 

addition, the mean running time of our method is slightly longer 

than [35]. This is because we execute the fusion process on 

superpixel level and have to perform superpixel segmentation 

and define each superpixel a set of weak saliency labels first. 

On the other hand, although those additional steps have to be 

executed first, the mean running time of our method is still 

lower than [27] to a large extent.  

The performance comparison results are shown in Fig. 10 

and Table 4. As can be seen, the proposed approach 

outperforms [2, 27, 35] on all five benchmark datasets, which 

demonstrates the superiority of the proposed saliency fusion 

strategy over other saliency fusion approaches. 

E. Comparison with state-of-the-art salient object detection 

approaches 

Next, to further evaluate our saliency detection performance, 

we compared the proposed approach with some state-of-the-art 

saliency detection models such as RR [36], GP [37], DRFI [38], 

LEGS [39], where DRFI [38] and LEGS [39] work in the 

supervised manner. The comparison results are shown in Fig. 

11 and Table 5. We can see that our method significantly 

outperforms the unsupervised state-of-the-art saliency 

detection methods on all tested datasets. More encouragingly, 

our saliency detection method has also shown to perform even 

better than the supervised saliency detection methods, 

including the recent deep learning-based LEGS method, which 

demonstrates the core insight of this paper, i.e., fusing 

imperfect unsupervised saliency models may yield superior 

saliency prediction that is better than the state-of-the-art 

saliency models, even the supervised ones trained on massive 

of labeled data.  

V. CONCLUSION 

In this paper, we have proposed to tackle the salient object 

detection as a model fusion problem, where only the weak 

predictions from the existing imperfect saliency models are 

offered and no ground truth information is required. We 

proposed to fuse these weak predictions to obtain the strong 

saliency predictions by fully making use of each saliency 

model’s strength. During the fusion process, we defined a 

labeling accuracy parameter for each saliency model to 

measure its contribution to the input image and a labeling 

difficulty parameter for each superpixel to differentiate it from 

all other superpixels. Then we adopted the GLAD [26] model to 

simultaneously infer each saliency model’s labeling accuracy, 

each superpixel’s labeling difficulty, and each superpixel’s 

strong saliency label, respectively. Furthermore, we also 

 
Fig. 10. Performance comparisons of the proposed approach and other fusion based saliency detection approaches [2], [27], and [35] in terms of PR-curves, 

Precision, Recall and F-measure on the SOD, MSRA-B, HKU-IS, DUT-OMRON, and THUR-15K datasets. 
 

 
Fig. 11. Performance comparison of the proposed approach and four state-of-the-art salient object detection approaches in terms of PR-curves, Precision, 
Recall and F-measure on the SOD, MSRA-B, HKU-IS, DUT-OMRON, and THUR-15K datasets. 
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introduced a local spatial consistency constraint to ensure high 

similarity of the saliency labels for neighboring image regions 

with similar features. The experimental results on five public 

benchmark datasets have demonstrated that the proposed 

approach is superior compared with a number of 

state-of-the-art salient object detection approaches. In future 

work, we tend to explore some other factors that may also 

influence the fusion performance and utilize more forthcoming 

saliency detection models to further refine our results. We will 

also apply the proposed approach for the tasks of event saliency 

detection [40] and co-saliency detection [41-42]. 
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