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Abstract—Depth estimation aims to predict depth map from
RGB images without high cost equipments. Deep learning based
depth estimation methods have shown their effectiveness. How-
ever in existing methods, depth information is represented by a
per-pixel depth map. Such depth map representation is fragile
facing different kinds of depth changes. This paper proposes
a Compressive Sensing based Depth Representation (CSDR)
scheme, which formulates the problem of depth estimation in
pixel space into the task of fixed-length vector regression in
representation space. In this way, deep model training errors
will not directly interfere depth estimation, and distortions in
estimated depth maps can be restrained in the greatest extent. In
addition, we improve depth estimation from two other aspects:
model structure and loss function. To capture the features in
different scales, we propose a Multiscale Encoder & Multiscale
Decoder (MEMD) structure as the vector regression model.
To further deal with depth change, we also modify the loss
function, where the curvature difference between ground truth
and estimation is directly incorporated. With the support of
CSDR, MEMD and the curvature loss, the proposed approach
achieves superior performance on a challenging depth estimation
dataset: NYU-Depth-v2. A range of experiments support our
claim that regression in CSDR space performs better than
traditionally direct depth map estimation in pixel space.

Index Terms—depth estimation, depth representation, multi-
scale feature.

I. INTRODUCTION

DEPTH estimation is the problem of predicting depth
map from RGB images. It is attracting more and more

research attention, because its wide applications in 3D re-
construction [1] [2], augmented reality[3], virtual reality, au-
tonomous driving and semantic segmentation[4]. For example,
in the field of autonomous driving, the depth map can provide
the distance information of objects around the vehicle, and
assist obstacle detection and avoidance.
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The hardware solution to depth map is Kinect or LiDAR.
Kinect’s depth map estimation is cheaper in price, but not
that accurate compared with LiDAR. In addition to hardware
solutions, there are also estimation methods that are based
on softwares and algorithms. Although the depth estimation
accuracy obtained by algorithms may be not as good as that of
the hardware, the advantage is that no additional cost is needed
to purchase the hardware equipment. In other cases where
the space of the equipment is limited, the LiDAR cannot be
arranged on the equipment due to the space limitation, while
the compact ordinary camera with proper algorithms can meet
the space requirement.

Fig. 1. Existing methods are able to work well in most circumstances.
First row depicts an original RGB image, its ground-truth depth map and
its estimated depth map. The challenge during depth estimation occurs at the
areas with sudden depth changes, such as: (1) the edges between the cabinet
and the wall, (2) the edge between the door and the wall, (3) edges of small
objects. Second row presents a variety of depth changes, such as: wave type
(window curtain), step type (surface of an uneven wall). All of these types
correspond to objects in the real world.

With the development of deep learning, convolutional neural
network (CNN) is applied in many computer vision tasks, in-
cluding depth estimation [5], [6]. Usually, when CNNs become
deeper, the resolution of feature maps becomes lower. In order
to recover the resolution of depth map, an encoder-decoder
architecture is usually employed in CNN based methods [5],
[6]. Some methods use conditional random field to recover
depth map and achieve success [7], [8].

Among existing the deep learning based depth estimation
methods, depth information is represented by a per-pixel depth
map. Such depth map representation is fragile facing depth
changes. Fig.1 illustrates the original images and their ground-
truth depth maps, where different kinds of depth changes are
shown. The depth map estimated by one of the state-of-the-
art method (Fu [9]) does not preserve detail information well.
Specially, its estimated depth map is not that reliable when
facing edges of objects and mirror-like surfaces.
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Deep model training errors have much influence on the
estimated depth map. Existing approaches directly estimate a
per-pixel depth map for an image. Under this architecture, the
system training noise will directly influence the estimated
depth map, especially the depth edges where obvious depth
changes occur. This results in distortions in edge areas of
estimated depth maps. For inner areas of an object, such depth
distortion is less severe. However for edges of objects, accurate
depth estimation is a challenging issue due to sudden changes
in depth, model training errors, object scale variations, etc.

In this work, we seek a different route for depth estimation.
We propose a Compressive Sensing based Depth Representa-
tion (CSDR), which formulates the task of estimating depth
maps in pixel space into a task of vector regression in
representation vector space. CS theory [10] states that pair
wise distances in the original space can be approximately
maintained in the compressed space. So, although CSDR
performs output space encoding for the purpose of depth
representation, the subsequent CNN still aims at the original
space under an equivalent distance measure. The principle
behind the CSDR scheme is straightforward. CS is responsible
for converting depth map to a fixed-length vector. For each
training image, there is a vector generated. Then the CNN for
vector regression is trained between the training image and its
corresponding depth representation vector. During testing, the
regression network estimates such vector for every input.

In addition to CSDR, our method is inspired by the fol-
lowing observations. 1) Existing loss functions calculate the
difference between the ground truth and the estimated depth
map on every single pixel independently. To better capture
depth changes, it is necessary to consider the difference of
curvature in both horizontal direction and vertical direction
between ground truth and estimation. 2) Feature maps of
CNNs represent the network’s different understanding of an
image. Shallow layers have small receptive field and large
resolution inputs, they focus more on details of objects. Deep
layers have large receptive field and can capture global features
of an image. So it is better to use multiscale feature maps.
3) During feature maps decoding, multiple step decoding
(between small sizes and original sizes) is smoother than single
step decoding. At the same time, shortcut connection can make
feature fusion more efficient.

Under the framework of CSDR, this work develops a Mul-
tiscale Encoder & Multiscale Decoder (MEMD) based depth
estimation model. In existing models that use encoder-decoder
architecture, single scale features are used. When decoding,
small scale feature maps are decoded to their original sizes by
linear interpolation. As mentioned previously, shallow features
can better capture details of objects; deep features carry more
global information. This work performs feature fusion between
deep and shallow features by MEMD to improve the accuracy
of depth estimation, especially when sudden depth change
occurs. The method behind MEMD is different from U-Net
[11]. Unlike U-Net, in the decoding stage of MEMD, the next
scale decoder not only uses the features of this scale, but
also uses the features of the previous scale. A dense fusion
(DF) module is developed to fuse features of different scales.
By introducing the shortcut connections mechanism, fusion

module can receive the output not only from the adjacent
layers, but also from all previous layers, which enriches the
input of later layers. Then, we feed fused features of different
scales into the refinement module to predict final depth maps.

Still under the framework of CSDR, this work develops a
new loss function for depth estimation. The most commonly
used loss function for depth estimation is to calculate the per-
pixel direct difference between ground-truth and estimation
(e.g. mean square loss). Some researchers also add the loss
function based on the gradient difference and normal vector
difference between depth maps. Hu [6] proposed that gradient
and normal vector constraint can be applied to improve the
accuracy. In this work, the difference of curvature in horizontal
direction and vertical direction between ground truth and
estimation is added as a part of our overall loss function.
Thus, a depth map is cut by the plane in horizontal direction
and vertical direction respectively. The curvature loss along
the horizontal direction and the curvature loss along vertical
direction are calculated respectively and contribute to overall
loss independently. In this way, the new loss function helps
to recover the depth value and maintain outlines of objects at
depth edges.

The contributions of this paper are summarized as.
(1) We propose Compressive Sensing based Depth Rep-

resentation (CSDR), which formulates the problem of depth
estimation in pixel space into the task of fixed-length vector
regression in representation space.

(2) We propose a Multiscale Encoder & Multiscale Decoder
(MEMD) based model, which preserves higher resolution to
both details and global patterns of depth maps. A multiscale
feature fusion method is also introduced in the decoder.

(3) We further improve the loss function of depth estimation.
The proposed method calculates the difference of curvature in
both horizontal direction and vertical direction between ground
truth and estimation during model training.

II. RELATED WORK

Depth estimation is the problem of estimating depth infor-
mation from RGB images. Because of its wide application,
many researchers have been studying in this field in recent
years. The depth map obtained by depth estimation can be
used in 3D reconstruction [2], semantic segmentation [4],
augmented reality [3] and other fields. Depth data carries
valuable information. [12] focuses on the problem of 3-D
human detection in complex 3-D space using depth data only.
LiDAR can not work well on mirror-like surfaces, such as
window glasses, water area. If such surface is facing LiDAR
at a certain angle, LiDAR can not capture the reflected
signal, resulting in huge depth estimation inaccuracy at the
corresponding position.

Since the process of getting 2D depth map from 3D object
is irreversible, depth estimation is an ill-posed problem. In
order to solve the ambiguity caused by the projection process,
in recent years, the method based on deep learning usually
adopts the encoder decoder structure to fuse the features
of different scales. The function of encoder is to extract
multiscale features gradually. The decoder uses multistage
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Fig. 2. System overview of the proposed approach. Top row: the proposed compressive sensing based depth representation scheme. Bottom row: the proposed
end-to-end depth estimation network and visualizations of critical results.

upsampling to gradually restore feature maps to original sizes.
[13] develops a novel depth-guided affine transformation to
refine the depth features, since the quality of initial depth
features is low. Multiple active depth cameras would interfere
with each other, this degrades the quality of depth images
significantly. [14] analyzes factors affecting depth accuracy
and improves the accuracy of depth images by utilizing
multiple projected patterns.

Eig [15] proposed a model using two stacked depth neural
networks: one is to make a rough prediction of the whole
and get the general trend of the depth map; the other is to
further refine the rough depth map of the whole in the previous
stage. In terms of the improvement of local details, researchers
proposed many methods. Xu [8] integrated conditional random
field into convolutional neural network to improve the reso-
lution of output depth map in local detail. Li [7] proposed to
use conditional random field as a post-processing method. Xu
[16] introduced attention mechanism to improve the result of
depth estimation.

Most of the previous methods regard the depth estimation
problem as a regression problem. The method of Fu [9] is
different from the previous method. They transformed the
regression problem into a classification problem and designed
corresponding classification loss function. Zheng proposed a
new softmax loss function, which is different from the general
classification loss function and is order sensitive. Laina [5]
proposed a full convolution structure including residual learn-
ing, which can model the mapping between monocular image
and depth image. They propose a new and effective method of
learning feature map upsampling in full convolution network,
which can improve the resolution of output. [17] designed an
end-to-end trained lightweight convolutional network to infer
depths from light fields. An attention module is proposed to
better recover details at occlusion areas.

Similar to the observation in [18], we also find that depth
maps predicted by existing self-supervised methods tend to
be blurry with many depth details lost. To overcome this
limitation, [18] paid efforts to obtain per-pixel depth maps
with shaper boundaries and richer depth details. They use a
multi-level feature extraction strategy to learn rich hierarchical
representation. Then, a dual attention strategy is proposed

to intensify the obtained features both globally and locally,
resulting in improved depth maps with sharper boundaries.
[19] also found that most existing approaches treat depth
prediction as an isolated problem without considering high-
level semantic context information. To ameliorate this issue,
[19] develops a scene-aware contextualized convolution neural
network, which characterizes the semantic context relationship
at the class-level and refines depth at the pixel-level. [20]
demonstrates a trade-off between a consistent scene structure
and the high-frequency details (e.g. edges of objects). This
shares a similar goal as our paper. To do that, [20] presents
a double estimation method to merge low-resolution and
high-resolution estimations. In addition, [20] designs a patch
selection method that adds local details to the final result.

For saliency detection in RGB-D image, depth information
also plays a critical role in distinguishing salient objects
from cluttered backgrounds. Low depth qualities may result
in a degraded detection performance in RGB-D images. To
improve saliency detection in RGB-D images, [21] devel-
oped a two-phase depth estimation and selective deep fusion
scheme. Slightly similar to our motivations, [22] also aims
to improve the depth estimation quality in detailed areas and
edges. [22] leverages both the low-level and high-level features
from multiple input images and generates appealing results,
especially with sharp details.

III. THE PROPOSED METHOD

A. System Overview

The proposed approach is made up of three components: (1)
a Compressive Sensing based Depth Representation (CSDR)
method, (2) a Multiscale Encoder & Multiscale Decoder
(MEMD), (3) a curvature based loss function. Fig.2 presents
the overall framework of our approach.

The MEMD model consists of three parts: (1) an encoder
composed of multiscale feature extraction network; (2) a
multiscale multistage decoder composed of up sampling layers
and convolution layers; (3) a refinement module composed of
convolution layers. To encode training labels, CSDR scheme
converts depth map to compressed vector representation. When
testing, the observation layers of the network estimate a CSDR
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vector for every test image. Then, sparse reconstruction layers
of the network estimate the pixel level depth map.

B. Depth Map Representation and Reconstruction

This section encodes the ground truth depth map into a
dense vector, which our MEMD is trained to estimate. The
representation scheme consists of Discrete Cosine Transform
(DCT) [23] followed by a compressive projection.

Regarding the encoding scheme shown in Fig.2, B denotes
a ground truth depth map with size h×w. In the first step of
encoding, DCT converts B to a matrix a. Because the matrix
a is sparse, we apply compressive sensing based encoding to
compresses the sparse matrix a into a much denser vector x
with a sensing matrix D by:

x = Da, (1)

where D is a m × n random Gaussian distribution matrix
(every element is under independently and identically distri-
bution, zero-mean Gaussian with variance 1/m), with typically
m� n. CS theory [10] claims that given x and D, a convex
optimization can reconstruct a, given that the sensing matrix
D can satisfy a restricted isometric property (RIP) condition
and m ≥ Cmklog(n), where Cm is a small constant larger
than one and k is the maximum number of non-zero elements
in a.

Given D and x, the reconstruction of a depends on a convex
optimization of joint L1 norm and L2 norm:

min
a

1

2
‖x−Da‖22 + λ‖a‖1, (2)

where the L1 norm part is a penalty item, λ is a non-
negative weight balancing the two items in the cost function
(2). Various existing algorithms are able to optimize (2).
Examples are orthogonal matching pursuit (OMP) [24] and
dual augmented Lagrangian (DAL) [25]. In this paper, we
choose to realize the reconstruction process by a recurrent
neural network rather than simply using existing algorithm, in
purpose of making the whole network end-to-end trainable.

The trainable sparse decoder is able to approximate sparse
codes as in (2) over training set using the stochastic gradient
descent method. The architecture of the encoder is denoted as
a = f (x,W ), where W represents all the trainable parameters
of the encoder. During training, the stochastic gradient descent
method is performed to minimize a loss function L(W ), which
measures the squared error between the predicted code and the
optimal code averaged over a training set

(
x1, . . . , xP

)
:

L(W ) =
1

P

p−1∑
p=0

L (W,xp) (3)

L (W,xp) =
1

2
‖âp − f (W,xp) ‖2 (4)

where âp = argminaE (xp, a,D) is the optimal code for
input instance xp. The training method follows the stochastic
gradient descent:

W (n+ 1) =W (n)− η (j)
dL
(
W,x(n mod P )

)
dW

(5)

where η (n) equals to 1/n to guarantee convergence.The
optimal sparse code is obtained by iterating: a (k + 1) =
hα (Wex− Sa (k)), with a(0) = 0, where x is the input,
hα is a coordinate wise shrinking function with threshold α.
We = DT is the transpose of the dictionary matrix D, and
S = DTD.

The ”sparse reconstruction layers” in Figure 2 illustrates the
structure of the trainable sparse decoder, which is based on a
time unfolded recurrent neural network (RNN) with 3 iterative
units. For the reconstruction layers, we use the differentiable
iterative shrinkage and thresholding architecture to approxi-
mate the sparse vector by a recurrent neural network with
a fixed number of iterations (T ). The sparse reconstruction
layers include trainable parameters We and S.

The matrices We and S, are trained to minimize the
estimation error to the optimal sparse code. The method allows
us to impose restrictions on S in order to further reduce the
computational complexity (e.g. keeping many terms at 0, or
using a low-rank factorized form). Parameters W = (We, S, θ)
are iteratively optimized over a set of training samples.
The gradient dL(W,xp)/dW is computed during the back-
propagation phase. We implement the trainable sparse code
predictor using the deep learning library Pytorch, on which
the CNN based regressor is also implemented.

Fig. 3. Network architecture of the proposed multiscale encoder & multiscale
decoder. DF stands for the dense fusion module.

C. Multiscale Encoder & Multiscale Decoder

The following part details the MEMD network proposed
in this paper. The multiscale encoder can be composed of
different types of backbone networks, such as ResNet [26],
DenseNet [27], SENet [28], and the performance of models us-
ing different backbone networks is tested in Section IV-C. Our
MEMD network makes use of the feature maps of different
layers of backbone network in order to learn the global features
without losing the local detailed features. The MEMD network
uses pre-trained weights to initialize backbone network, and
then finetune the model in depth estimation dataset. Taking
the SENET-154 [28] backbone network as an example, the
encoder of MEMD network uses 1/4, 1/8, 1/16, 1/32 size
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feature maps as the input of the decoder. In the backbone
network, the number of channels in the feature maps increases
in the order of 256, 512, 1024 and 2048, while their size
decreases gradually. The feature maps of different scales
extracted by the multiscale encoder are used as the input of
the multiscale decoder for further processing. The multiscale
decoder consists of convolution layers, upsampling layers [5],
and DF module. The feature maps are processed by CNNs
with kernel size of 1. The size of these feature maps is fixed
while the number of channels is halved.

Fig. 4. Structure of Dense Fusion (DF) module and Refine module.

After the output of conv4 is upsampled by up41, on the
one hand, it directly passes through up42, up43 and up44 to
increase the size gradually to restore the original resolution;
on the other hand, it is directly added with the output of conv3
and sent to DF module. In Fig.3, we adopts the upsampling
method proposed by Laina [5]. The upsampling layers in Fig.3
first increase the size of feature maps by bilinear interpolation
and then smooth them by CNNs.

The structure of DF module is shown in Fig.4, which
is based on the design of Densenet [27]. The input of DF
module is the the sum of the feature map from this scale and
the adjacent smaller scale feature map after passing through
the upsampling layer. DF module is composed of several
convolutional layers with kernel size of 3. The input of deeper
layers in DF module not only includes the output of direct
upper convolution layer, but also includes all the output from
indirect upper layers. This is equivalent to the introduction of
shortcut connection. The later layers can receive not only deep
level information, but also shallow level information.

The output size of DF module from this scale is doubled by
upsampling. On the one hand, the output of DF module will
continue to be upsampled step by step and finally it will be
recovered to the original size. On the other hand, it will be part
of the input of DF module in adjacent larger size branches,
as shown in the multiscale decoder in Fig.3. The multiscale
decoder in this paper recovers the depth information gradually
from coarse to fine. The feature maps obtained from deeper
convolutional layers represent more abstract information, and
the recovered depth map is rough and more related to the
global information. The feature maps obtained by shallow
layers have a better understanding of image details, because
these feature maps have input of higher resolution.

In the decoding process, the decoder of each scale not only
receives the feature map of this scale, but also receives the
feature map of the previous scale and fuses it with feature
map from this scale, and transmits the fused feature to the
next scale. It can be seen that the depth estimation method in
this paper is a method that gradually recovers the global and
local depth information of image from coarse to fine.

The multiscale decoder outputs four feature maps of the
same size. Refine module is the last part of MEMD network
and predicts final depth map. The structure of refine module
is shown in Fig.4. It consists of three convolutional layers
with kernel size of 5, batch normalization layers and activation
layers. Table.I shows the number of input and output channels
and the size of output feature map of each module.

TABLE I
OUTPUT SIZE OF DIFFERENT MODULES IN MEMD NETWORK.

module name input channels output channels output size

block1 64 256 57x76
block2 256 512 29x38
block3 512 1024 15x19
block4 1024 2048 8x10
conv1 256 128 57x76
up11 128 64 114x152
conv2 512 256 29x38
up21 256 128 57x76
up22 128 64 114x152
conv3 1024 512 15x19
up31 512 256 29x38
up32 256 128 57x76
up33 128 64 114x152
conv4 2048 1024 8x10
up41 1024 512 15x19
up42 512 256 29x38
up43 256 128 57x76
up44 128 64 114x152

Refine 256 1 114x152

D. Limitations of the Existing Loss Function

The most commonly used loss function of early depth
estimation method is the difference between the estimated
value di and ground truth value gi of depth:

l1 =
1

n

n∑
i=1

ei (6)

where n is the number of training images. ei is defined as
ei = |di − gi|. Under such loss function, the difference of
1mm between the predicted value and the ground truth value
has the same effect on the final loss at different depths. Lee
[29] pointed out that the value of the loss function should be
larger in the near place and smaller in the far place. Inspired
by Lee [29], Hu [6] modified Equation (6) by logarithmic
function:

ldepth =
1

n

n∑
i=1

F (ei) (7)

where F (x) is defined as following:

F (x) = ln(x+ α) (8)

where α is manually set parameter.
The above loss function is only sensitive to the difference of

depth value, not to the sudden change of the depth in the scene,
not to the change of the normal vector, not to the different
curvature of the surface. Fig.5 shows the sensitivity of different
types of loss functions to depth changes. The figure shows
one-dimensional depth value difference, while the depth map
is two-dimensional, this does not affect the analysis, because
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the two dimensions can be calculated separately. The solid line
and dotted line on the left represent the ground truth and the
estimated value of depth map respectively. “Y”, “N” and “P”
indicate the responding level of a loss function to a type of
depth change. Details can be found in the caption of Fig.5.

Huang [30] made statistics on the natural image, and found
that there are many such jumps of depth values in natural
images, which reflects the gradient changes in the depth map.
Such jumps can also be seen from the true value of dataset.
Fig.6 shows the RGB image and corresponding depth map of
some NYU depth V2 datasets. It can be seen that there is
indeed a jump of depth value in the depth map.

Therefore, it is necessary to improve the loss function of
depth estimation. Hu [6] think that the traditional loss function
is not sensitive to the error at the edge of the object, so it can
not describe the depth value difference at the contour of the
object, and propose a gradient loss to punish this type of loss:

lgrad =
1

n

n∑
i=1

(F (|∇x(di)−∇x(gi)|)+F (|∇y(di)−∇y(gi)|))

(9)
In Equation (9), ∇x and ∇y represent gradients of depth map
in x direction and y direction respectively. This loss function
is sensitive to the sharp variation of the depth value at the
edge of the object, as shown in Fig.5. The loss functions from
Equation (9) and (6) are complementary to each other.

Fig. 5. Different types of loss are sensitive to different types of depth changes.
“Y” indicates that a loss function is able to respond to this type of depth
change; “N” means the loss function can not respond to the depth change;
“P” stands for that the loss function only partially respond to the depth change.

Besides, Hu [6] proposed to use the difference of normal
value between ground truth value and predicted value:

lnormal =
1

n

n∑
i=1

(1− < ndi , n
g
i >√

< ndi , n
d
i >
√
< ngi , n

g
i >

) (10)

where < ·, · > is inner product of vectors, ndi and ngi
are normal values of predicted value and ground truth value
respectively.

E. Curvature Loss Function

After adding gradient difference and normal vector differ-
ence to the loss function, the difference between the true value
and the predicted value is better described. However, there
is still room for further improvement in the loss function
of depth estimation. Neither gradient difference nor normal
vector difference can capture the curvature difference between

the true depth map and the predicted depth map. In a real
scene, the surface of an object has not only a plane, but also
a curved surface, such as a spherical object or a cylinder like
object. From a geometric point of view, it is the difference
in the degree of curvature between the plane formed by the
true value and the predicted value. Therefore, another loss
function is needed to describe the difference and add it to the
final loss function in order to punish such difference. So we
add curvature difference loss which is related to the difference
between the true value and the predicted value at a certain
point to the final loss function.

Because the image pixels are discrete, in the experiment
of this paper, we use three points to fit a curve, and then
calculate the curvature of the curve. The curvature difference
loss proposed in this paper is represented as:

lcurvature =
1

n

n∑
i=1

(F (|κx(di)−κx(gi)|)+F (|κy(di)−κy(gi)|))

(11)
where κx represents the curvature in x direction, κy represents
the curvature in y direction.

If a plane parallel to the x direction is used to cut the surface
formed by the true value depth map, a curve can be obtained
from the intersection of two planes; similarly, a plane intersects
with the predicted depth map, a curve can also be obtained.

Fig. 6. Gradient changes of depth map in natural scenes.

As shown in Fig.5, two curves may have different curvature
at the same point. Solid lines show the true depth edges,
dotted lines depict the estimation. Each vertical axis is depth
degree, its horizontal axis is along x or y direction of an
image. Loss functions have distinct sensitivities to different
types of depth changes. The ”depth” loss is sensitive to shifts
in depth degree (i.e. vertical axis), but insensitive to shifts in
horizontal axis. The ”curvature” loss focuses on the difference
between estimation and GT. The ”normal” loss allows a shift
in horizontal axis, and is still able to compute the difference.

Equation (11) represents such difference. The Equation
includes not only the curvature difference in x direction, but
also the curvature difference in y direction. It includes not
only the curvature difference at a certain point, but also the
curvature difference between predicted depth map and the
true value depth map at all points. The final loss function
is composed of four kinds of loss functions:

L = ldepth + λ1lgrad + λ2lnormal + λ3lcurvature (12)

where λ1, λ2 and λ3 are weight factor, we will give the value
of these weights in section IV-C.
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IV. EXPERIMENT

A. Data and data preprocessing

We adopt three depth datasets: NYU-Depth-v2 [31], KITTI
[32] and Make3D [33]. NYU-Depth-v2 contains 50000 pairs
of RGB indoor scene images and depth maps as training data
and 654 pairs of images as test data. KITTI contains outdoor
scenes with images of resolution about 375 × 1241 captured
by cameras and depth sensors in a driving car. All the 61
scenes from the ”city”, ”residential”, ”road” and ”Campus”
categories are used as our training/test sets. We test on 697
images from 29 scenes split by Eigen et al. [15], and train
on about 23488 images from the remaining 32 scenes. We
train our model on a random crop of size 385×513. Make3D
contains 534 outdoor images, 400 for training, and 134 for
testing, with the resolution of 2272×1704. We reduce the
resolution of all images to 568×426, and train our model on
a random crop of size 513×385.

Due to the variety of real scene changes, we perform
data augmentation to enhance the generalization ability of
the model. The data augmentation method used in this paper
includes rotation, translation and color jitter. We downsample
the images from 640× 480 to 320× 240 and the crop images
to the size 304× 228.

B. Evaluation Criteria

Assuming the number of all effective pixels in the test
set is S, we use the following criteria for depth estimation
evaluation. Besides, edge accuracy introduced by [6] is also
used as another evaluation criteria.

Root mean square error (RMS):
√

1
S

∑S
i=1(di − gi)2.

Mean relative error (REL): 1
S

∑S
i=1

|di−gi|
gi

.
Mean log10 error (log 10): 1

S

∑S
i=1 |log10di − log10gi|.

Thresholded accuracy: ratio of points that satisfy
max(digi ,

gi
di
) = δ < θ, where θ is threshold and its

commonly used values are 1.25,1.252 and 1.253.

C. Comparison with state-of-the-art

We compare our proposed approach with 13 recent state-
of-the-art methods including [19], [5], [34], [22], etc on three
datasets: NYU-Depth-v2, KITTI and Make3D. Table.II, Ta-
ble.III and Table.IV present the depth estimation performance
comparison of all the approaches.

In all the experiments, our MEMD model uses the Imagenet
pre-trained encoder [35]. We use Adam optimizer to train the
model in an end-to-end manner, and sets the batch size to 8
during training. We set λ1, λ2 and λ3 in Equation (12) to 1
and α in Equation (8) to 0.5.

From Table.II, it can be seen that the our method is better
than the previous methods in terms of REL, log 10 and δ-
threshold accuracy. Similar to our method, Laina et al. [5]
also use an encoder-decoder model. Compared with [5], our
method has smaller error rate and the higher accuracy. Fu [9]
is better than our method in terms of RMS. But if considering
the estimated depth map, their method is not quite good as
ours in detail of depth map. It can be seen from Fig.9 that
their depth estimation results are not good enough in small

TABLE II
DEPTH ESTIMATION RESULTS OF 9 METHODS ON THE TESTING SET OF
NYU-DEPTH-V2 DATASET. RED AND BLUE COLORS LABEL THE BEST

AND SECOND BEST LOCALIZATION RESULTS IN EACH COLUMN.

Method REL RMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen [15] 0.205 0.607 0.611 0.887 0.971
Laina [5] 0.127 0.573 0.811 0.953 0.988

Li [7] 0.202 0.821 0.621 0.886 0.968
Xu [8] 0.163 0.586 0.811 0.954 0.987
Fu [9] 0.171 0.549 0.828 0.965 0.992
Qi [36] 0.188 0.569 0.834 0.960 0.990
Hu [6] 0.157 0.530 0.841 0.966 0.983
Li [17] 0.125 0.548 0.845 0.969 0.991

Song [19] 0.114 0.541 0.857 0.973 0.993
Zhang [22] 0.115 0.525 0.866 0.975 0.991
Ranftl [34] 0.114 0.535 0.851 0.977 0.993

Ours 0.113 0.527 0.875 0.986 0.997
Ours(noCSDR) 0.164 0.598 0.645 0.869 0.930

objects such as legs of chair, legs of table and wheels of
bicycle. This is because our method uses the network structure
of multiscale encoder and multiscale decoder. In the decoder,
dense feature fusion module is used to fuse the features of
different scales to make full use of the multiscale features.
[34] is a strong competitor, which achieves the second best
depth estimation results in terms of REL. Similar to our
motivation, [34] proposed a robust training objective that is
invariant to changes in depth range and scale, advocate the
use of principled multi-objective learning to combine data
from different sources. In comparison, we use improved loss
function to train our model.

TABLE III
DEPTH ESTIMATION RESULTS ON THE TESTING SET OF KITTI DATASET.

Method REL RMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen [15] 0.230 8.063 0.713 0.895 0.926
Make3D [33] 0.280 8.73 0.601 0.820 0.926

Fu [9] 0.234 8.205 0.747 0.926 0.923
Qi [36] 0.258 7.349 0.726 0.873 0.914
Hu [6] 0.237 7.578 0.688 0.894 0.916
Li [17] 0.231 7.725 0.694 0.902 0.939

Song [19] 0.190 7.156 0.747 0.945 0.943
Zhang [22] 0.186 8.034 0.703 0.913 0.928
Ranftl [34] 0.201 7.714 0.718 0.932 0.903

Ours 0.183 6.976 0.737 0.953 0.954
Ours(noCSDR) 0.234 8.205 0.632 0.839 0.907

Table.III presents depth estimation results on KITTI dataset.
It can be seen that the proposed obtains a slight best per-
formance over all the other comparison approaches includ-
ing strong competitors [19] [34]. Furthermore, [19] gives
quite promising REL value (0.190) among the comparison
approaches. This supports their motivation that it is important
to characterize a scene-aware context relationship at class-level
and refines depth at pixel-level. Another quite competitive
approach is [22] (REL=0.186), which leverages both low-
level and high-level features and generate appealing results,
especially for sharp details. The proposed method achieves
REL=0.183 with close to 0.02 REL below [34].

Table.IV presents depth estimation results on Make3D
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TABLE IV
DEPTH ESTIMATION RESULTS ON THE TESTING SET OF MAKE3D DATASET.

Method REL RMS δ < 1.25 δ < 1.252 δ < 1.253

Eigen [15] 0.305 12.350 0.758 0.874 0.937
Make3D [33] 0.370 11.326 0.799 0.887 0.927

Fu [9] 0.279 10.798 0.782 0.905 0.936
Qi [36] 0.314 11.006 0.777 0.907 0.920
Hu [6] 0.281 11.061 0.781 0.903 0.924
Li [17] 0.276 10.742 0.740 0.917 0.948

Song [19] 0.306 11.085 0.743 0.920 0.915
Zhang [22] 0.253 10.891 0.872 0.915 0.951
Ranftl [34] 0.267 10.552 0.886 0.921 0.968

Ours 0.260 10.491 0.869 0.920 0.955
Ours(noCSDR) 0.313 11.842 0.751 0.836 0.879

dataset. [34], [22] and our method perform quite well on
Make3D dataset. [34] achieves the lowest REL=0.253 and
demonstrates a trade-off between a consistent scene struc-
ture and high-frequency details (e.g. edges of objects. This
shares a similar goal as our paper. This partly explains the
improvements of our method and [34] over other methods.
Besides, [34] presents a double estimation method to merge
low-resolution and high-resolution estimations. While, we seek
a different route for depth estimation. We perform depth
estimation by regression in CSDR space rather than directly
predicting depth value for each pixel.

To visualize the depth estimation results, Fig.9 shows the
comparison results of depth maps estimated by different
methods. It can be seen that the depth maps estimated by
Zhang [22], Song [19] are more distorted, and the depth maps
obtained by Fu et al. [9], Li [17] are not as delicate as our
method at edges of objects. Because our method adopts a
dedicated depth change representation module for edges. And
our encoder-decoder structure makes full use of multi-scale
feature maps. In the decoding phase, the feature map of one
scale is sent to DF module for fusion and then decoded step
by step to recover the feature of depth map of this scale.

The estimation of the final depth map is completed by the
refine module proposed in this paper, so that the model makes
full use of the deep and shallow features. Deep features and
shallow features focus on the global information and local
information of the image respectively. The predicted depth
map not only reflects the overall depth trend of the image,
but also recovers the texture in detail. At the same time, the
curvature difference loss function is added in this paper, which
makes depth map obtained by our method can retain the details
better when there are small objects.

D. Ablation study

We carry out ablation experiments to better understand the
effect of major components of the proposed approach.

1) Effect of CSDR: To explore the contribution of CSDR,
we perform an experiment on the effect of CSDR. In our
proposed approach, CSDR is responsible for converting depth
map representation to fixed-length vectors representation. For
a training image, there is a such vector generated. After that, a
regression-oriented neural network is trained between training
images and their representation vectors. During testing, the

regression neural network estimates this vector for every
testing image. It is during the vector inference process that
inevitable system error occurs.

In Fig.7, ”a” visualizes the effect of system error. The
red curve indicates the ground truth according to CSDR, the
blue curve represents the vector estimated by the regression
network. Please note the differences between the red curve
and the blue curve. The differences are obvious between their
peaks, bottom areas and general trends. The differences result
from the existence of the system error.

Fig. 7. How CSDR influences depth estimation from the view of CSDR
vector space and from the view of depth map space.

The system error exists regardless of whether CSDR is used
or not. For existing depth estimation approaches, they do not
conduct CSDR-like representation conversion between vector
space and pixel space. They purely work in pixel space and
directly estimate per-pixel depth map. Thus, the system error
can directly influence the pixel values of depth maps. But
in the proposed approach, CSDR stops the direct transmit
of the system error to depth maps. Fig.7(b)(c)(d) present the
reconstructed depth signal by our approach with CSDR and
without CSDR. Every reconstructed depth signal corresponds
to a depth distribution in pixel space, since DCT transform is
used here. Generally speaking, CSDR is able to approximate
the ground truth in terms of reconstructed depth signals.

To better understand details, Fig.7(e)(f) illustrates the same
row of Fig.7(b)(c)(d). It can be seen that, CSDR maintains the
patterns of the ground truth curve and carries valuable infor-
mation. However without CSDR, the patterns of the predicted
curve shows much more distortion compared with the ground
truth. At last, Fig.7(h)(i) give the final depth estimation results.
As mentioned previously, the patterns of the reconstructed
signal in Fig.7(d) have been interfered. Consequently, one can
see more obvious depth inaccuracy and distortion in Fig.7(i)
than that in Fig.7(h).

With CSDR between pixel space and vector space, the
patterns of the curves that carry valuable depth information
are maintained. In comparison, without CSDR, the patterns
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Fig. 8. Depth maps estimated by models trained with different loss functions. The 1st to 5th column depicts the Ground truth, ldepth, ldepth + lgrad,
ldepth + lgrad + lnormal and complete loss respectively.

of the curves show much more distortion compared with the
ground truth. More details regarding the above explanation are
available in Fig.7. After a range of experiments and analysis,
we claim that CSDR-based depth representation shows more
robustness to the system noise, compared with the per-pixel
depth map representation. The ”Ours (noCSDR)” row in
Table.II presents the localization performance without CSDR.
We can observe the big performance gap between ”Ours” and
”Ours (noCSDR)”.

2) Effect of Depth Change: Table.V shows the edge accu-
racy of different methods under different thresholds. Because
the definition of edge point is to define the point that satisfies√
fx(i)2 + fy(i)2 > η as edge point, that is to say, the point

with large gradient in x direction and y direction is defined
as the edge point, so such point is generally the edge of
the object, such as the edge of the table, the outline of the
chair, etc. Therefore, the higher precision (P), recall (R) and
F1 score, the better the depth map can be recovered at the
boundary of the object, which shows that the method can
better reflect the real depth map at the details. One example is
the method of Fu [9]. Although RMS value is relatively low,
that is, the error on test set is relatively small, the depth map
obtained is not very good in object details, which is shown
in Table.V as the corresponding score is relatively low. This
also reflects the effectiveness of taking edge accuracy as a
complementary of other evaluation criteria.

3) Effect of Curvature Difference Loss: Now we will dis-
cuss the function of DF module and curvature difference loss
function proposed by us.

Table.VII shows the results with DF module and without DF
module. It can be seen from the Table that after DF module
is removed, the errors increase and the accuracy decreases.
This shows that the DF module proposed in this paper can
effectively fuse the features of different scales and improve
the performance of the model.

Fig.8 shows the results of training the MEMD model in
this paper by using different loss functions and estimating the
depth map by using the trained model. It can be seen that with
the increase of loss function types, the depth map predicted by
the model is more accurate, and the corresponding depth map
can be recovered well at places with details, such as the edge of
objects and the outline of small objects. The quantitative result

TABLE V
ACCURACY COMPARISON OF DEPTH EDGE ESTIMATION WITH 4 MOST

COMPETITIVE METHODS. RED AND BLUE COLORS LABEL THE BEST AND
SECOND BEST LOCALIZATION RESULTS IN EACH COLUMN.

Threshold Method P R F1

0.25

Fu [9] 0.489 0.435 0.454
Li [17] 0.516 0.400 0.436

Zhang [22] 0.320 0.583 0.402
Song [19] 0.644 0.508 0.562

Ours 0.664 0.529 0.569

0.5

Fu [9] 0.536 0.422 0.463
Li [17] 0.600 0.366 0.439

Zhang [22] 0.316 0.473 0.412
Song [19] 0.668 0.505 0.568

Ours 0.671 0.511 0.574

1.0

Fu [9] 0.670 0.479 0.548
Li [17] 0.794 0.407 0.525

Zhang [22] 0.483 0.512 0.485
Song [19] 0.759 0.540 0.623

Ours 0.787 0.545 0.627

TABLE VI
QUANTITATIVE ANALYSIS ON THE EFFECT OF CURVATURE LOSS.

Loss function REL RMS δ < 1.25 δ < 1.252

depth 0.195 0.639 0.769 0.850
depth+grad 0.186 0.583 0.799 0.907

depth+grad+normal 0.157 0.552 0.821 0.931
complete 0.113 0.527 0.875 0.986

in Table.VI is consistent with the visualization result in Fig.8.
A combination of loss types bring lower error rates to ? in REL
and ? in RMS. Especially the pure introduction of curvature
loss reduces ?cha in REL and ?cha in RMS, see the difference
between row-4 and row-5 in Table.VI. This is because more
kinds of loss functions can more accurately depict difference
between the ground truth depth map and predicted depth map.
The difference between them can make the model learn more
abundant feature expression in the process of model training.

V. DISCUSSION

[Strength] (1) Our method find a different route (i.e. CSDR),
which solves the problem of depth estimation by fixed-length
vector regression. So that our method shows more robustness
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TABLE VII
THE EFFECT OF DENSE FUSION (DF) MODULE.

Method REL RMS log 10 δ < 1.25 δ < 1.252

With DF 0.113 0.527 0.048 0.868 0.976
Without DF 0.118 0.537 0.051 0.859 0.971

to sudden depth change compared with cutting-edge methods
that purely estimate depth in pixel space. (2) We study how
different types of depth changes affect the result of depth esti-
mation. This is a new study in the research of depth estimation.
And our proposed loss function calculates the difference of
curvature in both horizontal and vertical direction.

[Limitation] One limitation is our computational complex-
ity. Although our method gives state-of-the-art or mostly the
best localization accuracy in experiments. However, our infer-
ence speed is relative low (approximately 3.5s per 640*480
size image). This is due to the existence of several iterative
units in our sparse reconstruction layers, which bring slower
forward inference speed. However, because weights of iterative
units are shared, the total number of parameters of our method
still remains at a relatively low level. CSDR scheme is a new
route for depth estimation. In the future, we plan to improve
the design of our sparse reconstruction layers (possible not to
use iterative units) to speed up.

VI. CONCLUSION

This paper develops a depth estimation method to deal
with the challenges from sudden depth changes, object scale
variations, etc. The proposed method contains a Compressive
Sensing based Depth Representation scheme, a Multiscale
Encoder & Multiscale Decoder based model, and a new
loss function based on curvature difference. Various experi-
ments show that our approaches obtain obvious performance
improvement over existing methods, including several quite
competitive state-of-the-art approaches. Experiments support
our insight that it is effective to cast depth map estimation as
regression in representation signal space. We hope the insight
may prove useful for other depth estimation related works.
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