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Towards Better Railway Service: Passengers
Counting in Railway Compartment

Yuanzhi Liang,Xueming Qian*,and Li Zhu

Abstract—Counting passengers in railway compartments is
an essential problem for improving service quality, user expe-
rience, public security, and disaster relief in the railway system.
Considering many limitations in the compartment, the infrared
sensor, 3D camera, etc. are not practical in this scene. Due to
the flexibility and lower cost, solutions with standard cameras
attract much attention in real applications. However, since the
problem with scale variation in the narrow space is different from
universal detection or counting problems, the specific benchmark
of dataset and methods should be provided and proposed for
this task. In this paper, we provide a passenger counting dataset.
Relying on this dataset, we propose a passenger counting method.
The solution contains a motion supervised multi-scale represen-
tation method which provides proposals against scale variation,
a spatially-temporally enhanced counting which provides precise
counting numbers, and a partial proposal method which conducts
methods to be utilized in reality. With the proposed solution,
the passengers counting task is solved in higher accuracy and
practicable in the compartment environment. In experiments,
the results show that all the modules in our solution are useful
and efficient, and our method outperforms in comparison with
others in the compartment scene.

Index Terms—passenger counting, image processing

I. INTRODUCTION

For higher efficiency in checking tickets, more flexible
allocation to attendants, and more thoughtful and personalized
services in compartments, passengers counting becomes a
general and essential requirement in the railway industry. With
the valuable counting system in the compartment, the railway
corporations can also make a better decision on both sides
of passengers’ experience and profits. Besides, the passengers
counting also useful in public security and disaster relief in
the railway system.

To count people in a specific scene, we can solve this task
via three kinds of devices: infrared sensor, 3D camera (e.g.,
TOF camera), and the standard camera. Generally, the infrared
sensor can fix the most simple condition in counting. How-
ever, in the railway compartment, the sensor is not practical
due to three defeats: 1. Considering the movement of the
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compartment itself and multiple people simultaneously, the
complicate responses of sensor interweave at the same time,
which leads to the sensor useless in real sense for counting.
2. The luggage from passengers always occluded and disturb
the sensor and cause inaccurate results. 3. The installation of
the sensor should be designed for each type of compartments.
It is impossible to develop a solution by sensors to fix every
condition of different types of compartments. Besides, the 3D
cameras can give the most precise results in some counting
problems, but still hard to be utilized in compartments. 1. The
3D camera is expensive. The 3D camera is about 20 times
higher in price than the standard cameras. If installing the
3D camera in each compartment, the overall system is too
expensive to be practised. 2. The 3D camera is sensitive to
the height, which makes the 3D camera can not fit a different
type of compartments. Due to the difference in the internal
spaces (e.g., height and width of compartments, types of seats),
deviations and errors occur when using the original settings
of the 3D camera.

Meanwhile, the standard camera has many advantages in
this scene. The standard camera is cheap, easy to be installed
and flexible to various conditions. Thus, in the real senses of
compartments, the solutions with a typical video camera are
the most practical.

However, in both applications and researches, gathering data
in the railway compartment and using the images captured
in the unique scene are not widely concerned. From real
applications, counting passengers is an essential task in many
railway corporations. From the academic side, the data in this
problem is unique, which can not be fixed entirely by face
detection like in wider face [1] or COCO [2], or by crowd
counting like in Shanghaitech [9] and UCF CC 50 [8] as
shown in Fig.1. The condition of occlusion, the density of
the crowd, and the range and distribution of target scales in
images are different between the passengers counting and the
other problems. Thus, the passenger counting is hard to solve
by detection, since the smallest head in images are on a tiny
scale and occluded by seats. Since the distribution of targets
is not as dense as the open scenes, it is also hard for crowd
counting methods. It is valuable to focus on the compartment
scene and provide a benchmark in the dataset and method. In
this work, we offer a dataset for counting passengers in the
compartment and methods for counting.

Specifically, in method design, considering some unique
properties in the surveillance videos from the compartments,
the ordinary methods from detection or counting are not
always available. We summarize the challenges in this task
as follow:
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Fig. 1. Examples for common detection datasets(Wider face [1], COCO [2]), crowd counting datasets (Shanghaitech datasets [9], UCF CC 50 [8] datasets)
and our passengers counting datasets. The range of head scales in passengers counting dataset is different from others. There are 5 situations in passengers
counting datasets. In every situations, the scale changings are apparently larger than other datasets as well.

1. Scale changing: The scale problem in the compartments
have two aspects: the extreme range and dynamic variation.
1) The extreme range of scale: from a single frame, images
of passengers in the first raw are merely 20 times larger
than the smallest ones in the last raw, which is far from
the typical variation in crowd counting tasks as shown in
the second column of Fig.1. 2) complicated occlusion with
scale changing: considering the passengers walk around in
this cramped space, some passengers have conspicuous scale
changing in adjacent frames, which makes the scale changing
dynamically. Meanwhile, the narrow space also leads to severe
occlusion. The large scale targets near to the camera often
occlude the others, and multiple scale interlace in the same
area makes the condition more complicated.

2. Limited hardware requirement: Considering the unique
electric system, narrow space for equipment, and the cost of
widespread deployment, machines with powerful GPUs and
radiator fans are not available. Meanwhile, since some passen-
gers in the last several raws may show a part of heads, the input
images should keep the detailed information for passengers,
which induce the high-resolution ratio is necessary. (Double
cameras for one compartment is also infeasible due to the
cost and resource limitation.) Directly downsampling is not
useful in this task as well. Thus, the imbalance between high-
quality inputs and limited computational resources should be
attention. Specifically, in our work, we need to design the
methods applied in embedded chips like Hi3519a.

Considering the practicability of the standard camera in
railway compartment and many defeats in current methods,
we’d like to propose a novel approach to handle this problem,
handle the above defeats and obtain better performance in
passengers counting. In this paper, we focus on the scene in
railway compartments and propose a novel framework with
an apposite method for counting passengers. Our framework
contains two parts: the motion supervised multi-scale represen-
tation method and the spatially-temporally enhanced counting
method. The representation method provides proposals for
passengers’ heads against scale variation and complicated
occlusion. Then, the counting method works out the number by
the proposals. Moreover, to overcome equipment limitations,

we also propose a partial proposal method to adapt the tiny
memory in an embedded device. The experiments show the ef-
ficiency and high performance of our methods in compartment
videos.

The main contributions of this paper are summarized as
follows:

1. We propose a motion supervised multi-scale representa-
tion method. The method solves the extreme-scale changing
by a multi-scale network and introduces inter-frame motion
knowledge in videos against disturbance from complicated
occlusion. The network with motion knowledge enables to
offer a solid proposal for counting method and have better
performance in passengers’ perception in the compartment.

2. We proposed a novel spatially-temporally enhanced
counting method to achieve precise counting numbers from
proposals. In this method, we fully consider the dynamic
changing of passengers’ scales and design a module for
learning the spatial and temporal information in videos, which
further boost performances in counting.

3. The partial proposal method is designed to provide a so-
lution in limited hardware conditions in railway compartments.
With this method, our counting methods can be operated with
smaller memory cost, which can adapt to the actual application
scenes.

4. Considering the scarcity of images in the real scene in
the railway compartment, we propose a passenger counting
dataset. Considering the particularities and values of this task
in both academic researches and practical applications, our
dataset is an essential step for improving counting accuracy
and boost the applications in railway compartments.

Our counting framework provides an efficient solution for
the passengers counting problem in surveillance videos. In
experiments, the proposed methods show better performances
than other counting methods and. We would provide our
surveillance video dataset and annotations to support further
researches in passengers counting like video summarization
[46]. The dataset will be available soon.

The remainder of this paper is organized as follows. In
section II, we review the related work on counting. Section
III demonstrates the details of our method. Experiments of
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different methods and analysis of the proposed method are set
up in section IV. Finally, the conclusion is in section V.

II. RELATED WORK

Crowd counting is a challenging task due to the com-
plicated background in different scenes and various crowd
distribution [10]–[12]. The end-to-end counting gives counting
numbers directly by processing single images like in [13].
Density map based counting provides a representation of the
crowd distribution first, and then count number through the
density map like in [7], [10], [14]–[18]. Compared with the
end-to-end method, the density map gives more details and
more convenient to apply in multi-task, like crowd velocity
estimation and crowd motion analysis. The scale problem also
appears in other computer vision tasks like retrieval. There
are also some works [45], [47] explore the scale problem and
propose some novel methods for representation of multi-scale
targets in images.

Moreover, methods depend on object detection models, like
Faster RCNN [19], YOLO [20], SSD [21] and MPNET [48],
have excellent performance in target detection, which provides
new ideas and a great improvement to various counting tasks.

A. Counting based on density maps

Zhang et al. give a cross-scene crowd counting solution via
a deep convolutional neural network for the first time [10].
The proposed structure produces a density map for crowd
distribution and also contains a fully connected layer for
counting number regression. In the crowd counting task, scale
problem is one of the most important factors that affect the
performance of the algorithm directly. The method in [14] uses
a combination with several shallow networks that correspond
to multiple scales in the crowd. The thought of applying
various networks to capture different scales of crowd develops
in many studies. A CNN structure called multiple-column
network (MCNN) [7] is proposed for handling crowd images
on different scales. Each column of the network applies to a
particular scale of the crowd, and all of them are merged by
1*1 convolution to get a density map. Switchable network [15]
provides a flexible way to change sub-networks for different
scales. It has a switch layer to make the decision for which
sub-network can be used for the current image area, and
then work out a density map for the crowd. Sindagi et
al. [18] showed a Cascaded Multi-task CNN model for a
similar but better way. This model can be divided into two
stages, which are high-level prior stage and density estimation
stage. The prior stage classifies crowd density level and sends
prior density information to the estimation stage for boosting
performance.

In recent, more interesting crowd counting methods are
proposed, Rather than regressing ordinary heatmaps, Sheng
et al. [41] propose an attribute map based counting method
and provide more information for a network in learning the
scene. To better handle the scale variation, the SaCNN [42]
provides a novel structure for counting and a geometry-
adaptive Gaussian kernel used for better representation of
crowd densities. Moreover, infusing more domain knowledge,

Huang et al. [43] propose a method to utilize the body part in
images, which is more robust for occlusion. Issam et al. [22]
give a solution to solve the problem with point annotation.
Viresh et al. [23] propose an iterative thought to count with
two-branch CNN for both low and high-resolution density
maps. To better fuse multi-scale information, the adaptive
fusing module is proposed in [6] and achieve better predic-
tions. Rather than using multi-column networks with heavy
computational costs, Ze el al. [24] proposed SCNet to handle
the task in limited network width. Liu et al. [38] focus on
the self-supervised problem in crowd counting and propose
a ranking strategy combined with the siamese network to
solve the problem. PCC Net [39] is proposed to deal with the
problems of high appearance similarity, perspective changes,
and severe congestion and obtain better performance. Zheng
et al. [40] further explore the problem of diverse densities
in the same scene and propose a method to solve cross-line
pedestrian counting. Shen et al. [44] focus on the problems
of the averaging effects and the cross-scale inconsistency,
and proposed the Adversarial Cross-Scale Consistency Pursuit
(ACSCP) framework to solve the problems.

B. Detection Based Counting
In low-density crowd estimation, as the targets can be

recognized respectively, the counting task can be converted to
a detection task. Many detection methods are also practicable
for counting.

In tradition solutions of detection [25], potential regions
proposals give probable regions for targets first. Then, the
regression or classification process is adopted for proposal
areas and produces detection output. Moreover, some binary
classifiers like Bayes method [26], random forest [27] also
broaden the thought of detection and counting tasks. With the
increasing research of deep learning, many approaches [19]–
[21], [28] seeking the multiple target detection solutions are
proposed. The region-based convolutional neural networks (R-
CNNs) [29] greatly improve the performance in detection.
It uses features extracted from CNN models rather than
traditional hand-craft features like Haar [30], etc. Then, in
Faster-RCNN [19], region proposal network (RPN) is designed
and to reduce calculation in the proposal and also provide
faster detection in speed.

Above RCNN related methods can be summarized to
the same thought of two stages processing: proposal and
classification. This kind of methods have high precision in
recognition, but hard to be accelerated. YOLO [20] provides
a new solution for detection and efficiently improves the speed.
It converts the thought of classification to regression in sub-
areas. The input images are divided into several areas; YOLO
computes bounding boxes and probabilities in each area. Then,
compared with given thresholds, the method decides whether
the output contains targets. SSD [21] further improves YOLO
and combines the idea of an anchor box. It adds convolutional
layers after the baseline network, which makes SSD be able
to calculate in multiple scales and has better performance in
the small object than YOLO.

Though detection methods have good performance in mul-
tiple detections, these methods have a problem in dealing
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Fig. 2. Overview of our motion supervised the multi-scale representation
method. With the design of a multi-scale network and utilization of motion
knowledge, the method offers high-quality proposals for counting.

with tiny targets and severe scale changing. Since the primary
purpose of these methods is detection, they would reject some
imperfect targets, which may make detection based methods
inaccuracy for counting.

III. METHODOLOGY

In this work, our solution contains a counting framework
and a unique training method. In the counting framework,
we proposed a motion supervised multi-scale representation
method to offer proposals for passengers’ heads. Then, to
get accurate counting results, a spatially-temporally enhanced
counting method is proposed to deal with proposals from
representation methods and gives counting numbers. Holisti-
cally, we train the counting framework with our novel training
method and solve the passengers counting in actual scenes.
More details would be discussed in this section.

A. Motion supervised multi-scale representation

To overcome the severe changing of scale, we proposed the
motion supervised multi-scale representation method to get
proposals of passengers’ heads. In this method, we design a
multi-scale network to capture and learning targets in images.
We also introduce motion information to lead the network
attention on some person related area and conduct better head
proposals. More details are given as follows.

1) multi-scale network: We propose a multi-scale network
to adapt the scale changing in head sizes. inspired by the works
in [7] and [15], three scales in representation are designed in
networks, which correspond to the large, middle and small
size of head images. As shown in Fig. 2, we first apply
Resnet50 [31] as feature extractor and provide basic feature
for the n-th frame images Fn. Then, three CNN networks
are designed for three scales of features extracted from the
backbone network.

For features selection, generally, the shallow layers are
available to express detailed texture, which corresponds to
local features. The deep layers suit semantic information,
which corresponds to global features. The coalition of shallow
and deep layers features capture information in diverse scales
in images [31]. Thus, we fuse three feature maps on different
scales from Resnet50 as shown in Fig.2. We also provide
further discussion in experiments.

For the network design, rather than small kernel size used
in [31], we applied larger kernel size to capture information
from features and given the scale robustness to the networks. In
detail, our multi-scale CNN extracts three scales features from
Resnet correspondingly, which are 150*150 with 64 channels,
75*75 with 256 channels, and 38*38 with 512 channels.
We denote these features as Scale1, Scale2, and Scale3,
respectively. Then, the different scale features are feed into
three multi-scale modules, as shown in Fig. 2. Concretely,
each multi-scale module contains three convolution layers and
one pooling layer. The kernel sizes of convolution layers in
module 1 are 7*7, 7*7, and 5*5 with 32, 8, and 1 channel. The
kernel sizes of convolution layers in module 2 and module 3
are 3*3, 5*5, and 5*5 with 64, 8, and 1 channel. The outputs
of three multi-scale modules generate small, middle and large
scale features for the further processing in motion supervision
part.

2) motion supervised method: In surveillance videos, the
frames are not isolated. Considering the movement of pas-
sengers, the relationships between frames contain valuable
information about passengers’ locations and states.

In our method, we fully utilized the information in videos
and introduce the motion knowledge into multi-scale network
training. As shown in Fig. 2, we take the frame difference
∆Fn = Fn−Fn−1 into account. An area with a higher value
in ∆Fn stands for a more significant probability of containing
passengers. Thus, ∆Fn can be viewed as prior knowledge for
passenger location.

In the proposed method, we concatenate frame difference
∆Fn with the features of the multi-scale network. With motion
information in ∆Fn, the network enables attention to some
area with passengers’ movements easily, instead of attention
on the background. Meanwhile, we loosen the supervision
to prevent overfitting and forbid the network over-relying on
some conspicuous motion. The motion supervision Sn(t) can
be defined as follows:

Sn(t) = µ(t) ∗∆Fn (1)

µ(t) =

{
1− t

T t < T
0 t ≥ T (2)

where t is the training epoch, µ(t) is a variable changing with
training procedure, and T means the decreasing threshold. In
this paper, we set the T = 30. µ(t) declines from one to zero
linearly during the training procedure and sustains zero in the
last several epochs.

In detail, as shown in Fig.2, we concatenate the motion
supervision Sn(t) with features from the multi-scale network.
Then, we use a proposal module to generate proposal Pn, as
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Fig. 3. Pipeline of our spatially-temporally enhanced counting method. The
enhanced proposals Dn use the spatial information in ∆Fn and temporal
knowledge in Dn−1 jointly.

shown in Fig.2. The proposal module contains two convolution
layers with kernel size in 3*3 and 5*5 and channels in 4 and
1.

B. Spatially-temporally enhanced counting method

To get a precise counting number, we proposed a novel
method to process proposals from the representation methods.
Our counting method not only utilizes the information in the
proposals but also exploits the spatial knowledge in videos and
temporal knowledge in previous proposals. Specifically, the
whole counting methods can be divided into three parts, the
spatially enhanced module, the temporally enhanced module,
and the proposal counting module. More details are given in
the following parts.

1) Spatially enhanced module: Since the motion infor-
mation in ∆Fn always provides the instantaneous spatial
information and is valuable in counting, we utilize the ∆Fn
to enhance the proposals in the spatial side further.

We divide ∆Fn into three scaled sub-areas: 32*32, 16*16,
4*4, which corresponding to the condition of k = 1, 2, 3, and
then we compute their mean value mk.

mk(i, j) =

∑b i∗subk
w c+subk

b i∗subk
w c

∑b j∗subk
h c+subk

b j∗subk
h c

∆Fn(i, j)

w ∗ h/(subk)2
(3)

where i and j are the position value of the horizontal and
vertical coordinate. The subk indicates sub-area scale in the k-
th partitioning pattern (e.g., sub1 = 32). b∗c, w, and h indicate
rounding down operation, width and height of ∆Fn. On each
scale, we get the corresponding spatial proposal candidates of
pattern k as follows:

Un(i, j, k) =

{
1 if∆Fn(i.j) ≥ mk(i, j)
0 else

(4)

Then we fuse the three scale spatial proposal candidates to
get the jointly spatial proposal Cn of frame n as follows:

Cn(i, j) =

∑3
k=1 Un(i, j, k)

3
(5)

Next, we get a smoothed response Rn by filtering Cn with
a 5*5 Gaussian kernel as follows:

Rn(i, j) = Conv(Cn(i, j), G5) (6)

where Conv is convolutional operation.

2) Temporally enhanced module: With the video data, con-
tinuous proposal outputs are available on the output side. The
proposals are not isolated and also contains useful temporal
information to improve proposals. In this part, we fully explore
the temporal connection between proposals and enhanced this
information to get better proposals.

Based on Hebb learning rule [33], we fuse current raw pro-
posal Pn from motion supervised multi-scale network with the
final proposal of the previous frame Dn−1 to get the temporal
enhancement. The Hebb learning rule can be explained to self-
adapt network weights: increasing weight when neurons have
high response simultaneously and vice versa [33]. As shown
in Fig. 3, dn is obtained by a weighted sum of Dn−1 and Pn
as follows:

dn(i, j) = sigmoid(W 1
n(i, j)∗Pn(i, j)+W 2

n(i, j)Dn−2(i, j))
(7)

where W 1
n and W 2

n are the weight matrix for each pixel, which
has the same sizes as the proposals.

W 1
n(i, j) = (1− γ1) ∗W 1

n−1(i, j) + α1 ∗Dn−1(i, j) ∗ Pn−1(i, j),

W 2
n(i, j) = (1− γ2) ∗W 2

n−1(i, j) + α2 ∗Dn−1(i, j)
2

(8)
where γ1, γ2, α1 and α2 are predetermined parameters [33],
for example, γ1 = γ2 = 0.5, α1 = α2 = 0.5. In initial setting,
W 1

0 is all-one matrix and W 2
0 is all-zero matrix.

At last, we get the spatially-temporally enhanced proposal
Dn by the certainty based weighting as follow:

Dn(i, j) = Rn(i, j) ∗ dn(i, j) (9)

Dn take both enhancements into account, which is more robust
and accurate than original proposals for counting.

3) Proposal counting module: In proposal counting, we
first define a series of counting kernels. Each kernel is a two-
dimensional matrix with the two factors: {width, height}.
Concretely, the quadrate kernel is Q{Sq,Sq} and the rectangular
kernel is R{2Sr,Sr}, where Sq means the width of quadrate
kernel and Sr means the height of rectangular kernels. The
kernels can be defined as follows:

Q{Sq,Sq}(i, j) =
1√

10πSq
e
−

(i−
Sq
2

)2+(j−
Sq
2

)2

10Sq ,

R{2Sr,Sr}(i, j) =
1√

20πSr
e−

(i−Sr)2+j2

20Sr

(10)

where Sq , Sr ∈ {30+n∗k|k = 10, n = 0, ..., 7}. We operate
convolution to the proposal with generated kernels respectively
and get the result by counting the peak of convoluted maps.
The pseudo-code description of the method is given as Algo-
rithm 1.

C. Partial proposal training method

We proposed a scene-aware partial input method for the
limited computation resources. We keep the inputs in a small
size cropping from the raw images corresponding to the
specific scene. Details are given as follows.
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Fig. 4. In our partial proposal method, according to the prior knowledge of the scene, the images are parted into 6 sub-areas. Rather than random crops in
the overall images, the partial inputs are cropped in the sub-areas. Then, to better represent the targets, pixel-level annotations are given for network.

Algorithm 1: Proposal counting algorithm
Input: proposal Pn, quadrate kernels Q, rectangular

kernels R, proposal width wp, proposal height hp
Output: counting numbers Numn

1 ξ = 1;
2 for kernel Tk in {Q,R} do
3 Eq = Conv(Pn, Tk);
4 for i = 1 to wp, j = 1 to hp do
5 î, ĵ = arg maxEq(i

∗, j∗)
i∗∈[i−10,i+10],j∗∈[j−10,j+10]

6 Θξ = (̂i, ĵ);
7 ξ + +;
8 end
9 end

10 Numn = 0;
11 for µ = 1 to ξ, ν = 1 to ξ do
12 η = ‖θµ − θν‖2;
13 if η ≥ 30 then
14 Numn + +;
15 end
16 end

1) Scene-aware partition method: As the specialty of com-
partment scene, regular crop method always produces bro-
ken head images and exacerbates the difficulty in counting.
Because of the diversity of passengers’ heads images that
contain faces, hairs, necks, headwears, etc., the incomplete
image data may further increase the difficulty of network
learning. Besides, the random crop in the images brings more
uncertainty of the scale distribution.

To avoid getting too many incomplete samples, we propose
the scene-aware partial input method. As shown in Fig. 4, our
method offers more complete head images as useful samples.
The details of the method are given as follows.

To adapt the changing of compartments and some deviations
in the installation of the camera, we partition the images via
the corresponding scene. We calculate the partition according
to the seats in the compartment based on images without
passengers, e.g., Fig.1. According to [32], the connection of

the real world distance and the pixels of the image is shown
as follows:

y = fy
Y

Z
+ Cy (11)

where y and Y denote the object height in images and the
real world, Z is the distance between object and camera, fy
and cy are the coefficients for mapping the coordinate system
from the real world to images. Considering that every row of
seats has the same distance to each other, and every seat has
the same height Y in the real world coordinate, the position
of a ε-th row of seat y(ε) can be rewritten as follows:

y(k) = α/ε+ β (12)

where α and β are coefficients for mapping. ε = 1, 2, ..., 10
These coefficients, as the basis of partition images, would

be estimated by following three steps:
(a) We used Hough transform [34] to extract horizontal lines

via the edge image obtained by Sobel edge detector [35] in an
image without passengers. We choose the lines by constraining
the absolute value of slope less than 0.1. K-medoids [36] is
adopted to find 10 clustering centers in lines intercepts from
Hough transfer. The 10 clustering centers would be used to
fitting a ŷ and estimate the coefficients α̂ and β̂, which is
inversely proportional to ε. (b) We take ŷ(ε), ε = 1, 2, ..., 10 as
the position of 10 rows. Then, we classify every two rows into
a sub-area and generate five sub-areas. The farthest part of the
camera (without seats) would be divided into an independent
sub-area. Thus, we partition each image into 6 horizontal sub-
areas: A1, A2, ..., A6, as shown in Fig. 4. (c) The input data
are cropped according to the partitions’ edges. As shown in
Fig.4, by cropping in sub-areas, we avoid generating too many
incomplete head images for training.

2) Proposal annotation: As shown in Fig. 4 and 5, Rather
than common counting problem, the intense variation of scale
in passenger counting make the heat map hard to represent
targets. The bounding box annotation in detection is also
impracticable due to the universal phenomenon of incomplete
head images and occlusion in images. As shown in Fig.4,
the bounding boxes are dense and have too many overlaps
in annotations.
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Fig. 5. Examples for image annotations. Examples in the left column are raw
images and in the right are corresponding annotations.

In this case, we apply the mask annotation to give 0 or 1
labels for every pixel. Through this measure, even a small
part of an incomplete target can be noticed and provided
for the network to learn. Furthermore, attributing to the
mask annotation, we convert the common regression-based
counting thought (regression for the heatmaps, or bounding
box position values) to a classification problem (whether the
pixel belongs to a head or not). That reduces the difficulty of
network learning. The annotations would also be released in
our dataset.

IV. EXPERIMENT

In this section, we evaluate our method for passengers
counting on the compartment surveillance video. We compare
the proposed passenger counting approach with the detection
based approaches, such as Faster RCNN [19], YOLO [20], and
SSD [21]. We also test the common crowd counting method
like CSRNet [5], SFCN [4], and SANet [3]. To train the
detectors with passenger data, we use ground truth proposals
to generate a bounding box. Utilizing our counting method, we
get the peak points as the center of bounding boxes and take
the kernel size as box size. Then, we train the data together
with VOC2007-2012 [37] to avoid overfitting. For counting
methods, the heatmaps are annotated according to methods
in [7], [10]. In the setting of our experiment, with the partial
proposal method, the inputs to our network are 300*300. The
network train with SGD optimizer in the learning rate of 0.01
and the decay step is 0.1 for every ten epochs. We finally train
75 epochs in our experiments.

A. Dataset

TABLE I
RATIO OF DIFFERENT SITUATION IN OUR COMPARTMENT COUNTING

DATASET

Situations DJ NP DB BE DE

Ratio 0.616 0.21 0.062 0.074 0.038

The data we have contained 500 video sequences, each
video is 8-10 minutes, and the frame size is 1280*720*3.
The video data can be repartitioned into five situations, which
are: during the journey (DJ), during boarding (DB), during
exiting (DE), boarding and exiting simultaneously (BE), and

no passengers (NP). The examples of situations are shown as
Fig. 1. The ratio of every situation in compartment video data
shown as TABLE I. Our partition settings and crop method are
also available soon in the open-source version of the dataset.

In the training stage, we choose 120 videos as the training
set. We randomly capture two adjacent frames from each video
to avoid repetition (one as the training input, the other for
calculating ∆Fn). We annotate the 120 frames with the pixel-
wise annotation, as mentioned in the last section, and shown
in Fig. 4 and 5. In the test stage, we take 1000 frames from the
other 380 videos. All training and test images are annotated
with counting numbers.

B. Metric

We used the mean squared error (MSE) and the absolute
error (MAE) as in [7], [10], [15], which are defined as follows:

MSE =

√√√√ 1

N

N∑
i

(xi − x̂i)2,

MAE =
1

N

N∑
i

‖xi − x̂i‖

(13)

where N is the number of test frames, xi and x̂i are the ground
truth and values of predictions. Generally, MAE and MSE
manifest the accuracy and stability of estimation correspond-
ingly.

C. Objective Performances

Comparisons of different methods under different situations
are shown in TABLE II and TABLE III, respectively. All
detection based methods [19]–[21] have low MSE and MAE
values in NP since the numbers in this situation are less than
5, and occlusion is not severe. The detectors can distinguish
people in the scene. But the actions of people may cause
deformation and occlusion, which may disturb the detector.
On the contrary, the counting based methods [3]–[5] can
handle some crowded scenes. But when the passengers have
complicated interaction in BE, performances of these methods
become worse. In NP situation, the counting results are also
affected by the background of seats or adversarial. In the
experiments, our method is more robust to these disturbances
and obtains better performances.

Meanwhile, we find that the DJ situation is the hardest but
is the common case of the dataset. Due to the severe occlusion
for passengers behind the seats, detection-based methods are
hard to find convincible targets. In YOLO, because the YOLO
is not good at small object detection, in this case, the method
performs worse than in other situations. In comparison with
other methods, our method still achieves better performance
in the accuracy (MSE) and stability (MAE).

Besides, the improvements of our method are not all from
DJ situations. Our method also outperforms in other situa-
tions in all the metrics. In DJ, DE, and BE, the large-scale
movements of passengers induce more severe occlusion and
scale changing, which are hard for other methods. In our
method, the motion information and historical information
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TABLE II
MSE FOR VARIOUS SITUATIONS IN DIFFERENT COUNTING METHODS.

Situations

MSE

Detection based methods Counting based methods
Ours

Faster-RCNN [28] YOLO [20] SSD [21] CSRNet [5] SFCN [4] SANet [3]

DJ 15.16 18.78 9.24 12.62 25.55 13.84 3.71

DB 5.65 7.13 5.72 5.89 9.35 8.02 3.42

DE 7.68 13.33 4.60 4.97 13.32 10.79 3.03

BE 15.79 16.56 11.18 20.75 35.51 15.83 4.40

NP 1.73 0.89 0.93 3.69 4.37 20.86 0.73

TABLE III
MAE FOR VARIOUS SITUATIONS IN DIFFERENT COUNTING METHODS.

Situations

MAE

Detection based methods Counting based methods
Ours

Faster-RCNN [28] YOLO [20] SSD [21] CSRNet [5] SFCN [4] SANet [3]

DJ 14.85 18.60 8.65 11.32 24.88 13.18 2.90

DB 5.18 5.86 5.18 3.84 8.90 6.90 2.74

DE 6.77 11.56 3.91 4.32 12.02 9.15 2.49

BE 15.54 14.14 10.56 20.38 35.45 14.90 3.68

NP 1.48 0.52 0.48 3.56 4.25 20.81 0.42

are all considered, which lead to better representations in
proposals. The results show that our method are more efficient
in situations with massive movements.

In the view of generality, the MSE values in our method
are about 4.0, and the MAE values are about 3.0. While, the
other methods show a large gap between all the situations, and
have higher volatile. In the application of reality, the values of
metrics should be stable, and methods should be useful in all
the possibilities. Thus, our method has a significant advantage
in practical application, as well.

D. Subjective Performances
The results of Faster-RCNN, YOLO, SSD, and ours for

the DJ, DB, DE, and BE situations are shown in Fig. 6.
To visualize our proposal for comparison, we take the peaks
position in counting module as the centers of boxes and the
kernel scales as the box sizes.

In experiments, YOLO is not good at the small object, and
the method tends to predict a large bounding box output,
as shown in the second column of Fig. 6. Sometimes, even
the counting number is correct, the passengers’ locations are
wrong, and the bounding boxes contain multiple people at the
same time.

Moreover, due to the region proposal module, Faster-RCNN
is sensitive to potential head images, which causes the method
more likely to give false detection, as shown in the second
column of Fig. 6. Some areas may similar to the occluded head
and recognized by Faster-RCNN as targets. That makes the
counting numbers via Faster-RCNN larger, which also causes
errors in the NP situation.

SSD also has more detection results and counting value
in the same frame, but SSD is better than Faster-RCNN for

passengers counting in most situations. In some cases which
contain severe occlusion disturbance and scale problems like
in BE situation in the fourth raw of Fig. 6, the SSD method
also has many duplicate results and does not locate the correct
head position.

Our method is better in counting passengers for the com-
partment images. The proposed method can count heads in
the various scale against scale variation and also shows better
performance than other methods.

E. Discussions in Motion Supervised Multi-scale Network

1) Multi-scale network comparison: We fuse the features
from Scale1, Scale2, and Scale3 for generating a proposal. In
the combinations of features in different scales, the proposals
generated from low-level layers, such as Scale1, Scale2, and
their combinations are not accurate for counting in large scale
heads. Since Scale3 contains a more semantic feature which
is useful to identify human heads. The proposals generated
from three scale levels features are best among all the com-
binations. Moreover, as shown in Fig. 7, with the addition
of different scales, the proposal tends to be refined gradually.
The proposals generated by Scale1 is raw and large. With the
Scale2 added, the proposal becomes smaller and finer. Finally,
with all scales utilized, the proposal is accurate and better to
present targets.

To choose the best combination of feature maps, we test
the counting performance in the situation of DJ with different
scale features. As shown in Fig. 8, we compare the perfor-
mances of the average MSE and MAE values of our method
using various features extracted from CNN. In Fig., S1, S2,
and S3 means only using Scale1 feature, Scale2 feature and
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Fig. 6. Results of detection based methods and our methods. Our method is more robust for scale changing in every situation and more accurate in counting
tasks.

(a) (b) (c) (d)

Fig. 7. The proposal generated from different features. (a) is the original
frame. (b) is the proposal from Scale1 features. (c) is the proposal from
Scale1 and Scale2 features. (d) is a proposal from features of all the scales.
Only using features in all scales can generate the best proposal for counting.
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Fig. 8. The different scale features comparison. S1, S2, and S3 mean using
only use Scale1 feature, Scale2 feature and Scale3 feature separately for
proposal.

Scale3 feature separately for proposal generation. S1 + 2,
S2+3, S1+3, and All means using the combination of Scale1

and Scale2 features, Scale2 and Scale3 features, Scale1 and
Scale3 features, and all the three scale features respectively.

Scale1 and Scale2 features contain some fine-textured
information of head images, which are useful in small head
detection. Scale3 has more semantic information, which is
essential in detecting head and generating a proposal. In our
experiment, the Scale2 features are useful when combining
with semantic information in Scale3, but it’s hard to produce
a correct proposal only with Scale2 features individually or
the combination of Scale1 and Scale2. When we use Scale1
features for proposal, with the detailed texture information,
the proposals tend to be coarse and large, which could be
captured by kernels in the counting method and produce
counting results primarily. While, when with Scale2 features,
the proposals tend to be finer and smaller. As shown in
Fig. 7(c), the finer proposal may bring more noise for the
counting method, but better in representing targets. On the
other side, in the experiment, Scale2 features offer some sort
of compliment to Scale1. The over-fitting always appears
when we try to generate a proposal only with S2 or S1 + S2
features. Moreover, when combining all the features of three
scales, the proposals become stable and reliable. All these facts
indicate that texture information in Scale1 and Scale2 and
semantic information in Scale3 are all necessary for counting.

2) Motion supervision: As shown in Fig. 9, considering
the occlusion and scale changing in images, proposals with
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(a) (b) (c)

Fig. 9. Comparison with or without motion supervision. (a) is the raw image.
(b) and (c) are from the method training without and with motion supervision.

motion supervised focus on the passengers’ head better. On
the contrary, without motion information, the network tends to
misrecognize the objects as passengers and give much larger
proposals.

Numerically, in MSE and MAE metric, the inaccurate
proposals bring the values to more than 20 in the DJ and
the BE situations, which is unusable in passengers’ count-
ing. In overall, as shown in Fig.7 and Fig.9, our methods
can handle the complicated occlusion and scale changing in
the passengers counting task. The proposals generated from
representation methods efficiently capture the targets.

F. Discussion in Spatially-temporally Enhanced Counting
Method

To verify the efficiency of the proposed module, exper-
iments of utilizing spatial and temporal enhancement are
operated and discussed in this part.
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Fig. 10. MSE comparison of the passenger counting with spatial and temporal
enhancements. MSE can reflect the stability of the system. The enhancements
effectively keep the proposals more stable and reliable for counting.
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Fig. 11. MAE comparison of the passenger counting with spatial and temporal
enhancement. MAE measures absolute accuracy in counting. Though proposed
enhanced methods, the proposals are better to represent targets and boost
performances in counting.

As shown in Fig. 10 and 11, our motion supervised multi-
scale network is already able to offer counting proposal. With
the enhancement, the proposal can be better in all situations.
Since the more intense movement of passengers brings more
severe scale changing, in the situations of DB, DE, and BE,

the improvements become more apparent. If there is excessive
movement in a single frame, the faulty proposals may connect
to or adhere to others and form a broader range of mistakes.
That makes the counting number plunge and produces larger
MSE and MAE.

Further, the performances are improved a lot when utilizing
temporal information. The average MAE and MSE values de-
crease by about 22.03% and 8.30%, respectively, compared to
the original proposal. Moreover, with the spatial information,
the MAE and MSE values decrease by about 32.81% and
22.63%, respectively.

Moreover, in BE situation, the single temporal enhancement
may result in worse performance, as shown in experiments.
Because the BE situation has the most intense activity of
passenger movement, the proposal from the last frame is
different from current proposal. Addition of the historical
knowledge would disturb the prediction of a new proposal in
this case. However, benefiting from the spatial enhancement,
the instantaneous information of passengers’ states are given.
The influence of dramatic movements can be modified and
reduced by spatial prior, which leads to a better performance
in final proposals.

0 .5, 0.5, 0.5, 0.5
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𝜸𝟏 = 0.5,   𝜸𝟐 = 0.5,
𝜶𝟏 = 0.5,   𝜶𝟐 = 0.5

Fig. 12. The results of grid search for comparing hyper-parameters γ1, γ2,
α1 and α2. All parameters are tested from 0.1 to 0.9 with the step size 0.2,
and the overall number of settings in experiments is 625. The searching is
operated in DJ condition, and we rank all the settings with the sum of MSE
and MAE value. In this figure, we draw the lowest 20 settings. Some settings
have the same results in MAE and MSE(e.g. γ1 = 0.7, γ2 = 0.5, α1 = 0.7,
α2 = 0.7 and γ1 = 0.7, γ2 = 0.5, α1 = 0.7, α2 = 0.9 have the same
results of MSE=3.74, MAE=2.92), so the number of the points in figure is
less than 20.

We also compare the hyper-parameters γ1, γ2, α1 and α2

in this part, as shown in Fig. 12. We find that the sum of
MSE and MAE of the best 20 settings are all in range of 6.62
to 6.66. After the comprehensive consideration of MSE and
MAE, We choose the setting of γ1 = 0.5, γ2 = 0.5, α1 = 0.5,
α2 = 0.5.

G. Discussion in Crowd Counting Datasets

Our main contribution is solving the counting problem for
passengers in compartments. The scene is specific and has
many differences to the common crowd dataset, which makes
the counting of passengers are hard to be handled by other
methods. The density, occlusion condition, and the ranges of
scales are different as shown in Figure. 1.

In detail, there are three differences in data.
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(a) (b)

Fig. 13. We give some examples for typical crowd counting dataset (a) and
the passengers counting data (b). Though both datasets have problems in the
multiple scales, occlusion, etc., the problems are different in datasets.

(a) (b)

Fig. 14. We provide from examples from Shanghaitech[1] dataset. Since
the factors like position, angle, resolution, etc. are different in each image
in typical crowd counting dataset, the variation and range of head scales in
images are various. However, the compartment videos are taken from the same
cameras with the same settings, which indicates the same range of head scale,
as shown in Figure. 1 and Additional Figure. 2.

(1). The conditions of scales are different. As shown in Fig.
13, we take the same size of the area from the normalized
images from Shanghaitech[3] (a) and passengers counting
dataset (b). In Fig 13(a), the overall value is 6256 and the
value in parted box is 216. In Fig 13(b), the overall value
is 30 and the value in parted box is only 2. Compared with
the images of compartments, the density in common crowd
datasets is significantly larger.

(2). The condition of occlusion is different. As shown in
Fig. 13, though occlusion is severe in (b), the edge of each
image of the head is more explicit. However, the density of
common crowd counting is enormous. It is hard to locate all
the people in images.

(3). The ranges of scales are different. Due to the same
angle of cameras with the indoor condition in passengers
counting dataset, as shown in Fig. 1 and 13, all the images
in dataset contain the same range and the similar distribution
of scales. However, in common dataset, every images have
different scale condition as shown in Fig. 14. Our contributions
of Spatially-temporally enhanced counting method and Partial
proposal training method are hard to be reflected.

Moreover, in our proposed pipeline, we take advantage of
the motion information in the video which are lack in typical
crowd counting datasets. Thus, the contributions in motion su-
pervision and spatially-temporally enhanced counting method
can not be reflected. Considering the aforementioned differ-
ences, especially in the range of scales, the partial proposal
training method is also infeasible as well. So, we only compare
the multi-scale network in crowd counting dataset as follow:

Among the crowd datasets, our multi-scale network works

TABLE IV
THE RESULTS OF OUR MULTI-SCALE NETWORK IN CROWD COUNTING

DATASETS. THE SH A, SH B AND UCF INDICATE THE SHANGHAITECH A,
SHANGHAITECH B AND UCF CC 50 DATASETS.

Methods SH A [9] SH B [9] UCF [8]
Metrics MAE MSE MAE MSE MAE MSE
MCNN [7] 181.8 277.7 32.0 49.8 377.6 509.1
CSRNet [5] 68.2 115.0 10.6 16.0 266.1 397.5
SFCN [4] 64.8 107.5 7.6 13.0 214.2 318.2
SANet [3] 67.0 115.0 10.6 16.0 258.4 334.9
Our network 132.6 193.3 17.8 21.7 541.5 703.4

better in Shanghaitech B [9], because the Shanghaitech B [9]
has the relatively stable position of the camera and the ranges
of scale in images are similar. On the contrary, the images
in Shanghaitech A [9] and UCF CC 50 [8] have different
angles and positions of the camera, which lead to the range
of head images are various in each image. These problems
deviate from the original aims of our design. Moreover, the
UCF CC 50 [8] dataset only contains 50 images, and we use
40 images for training. The limited data is not beneficial to
network training as well. The problems of crowd counting
datasets are far from our passengers counting. The passenger
counting is a unique problem and contains a high value in both
sides of researches and applications. In this work, we focus on
proposing a novel pipeline to solve the problem and a dataset
to boost the researches in passengers counting.

H. Discussion in Partial Proposal Training

The proposed training method leads the tiny multi-scale
network to operate in the embedded devices. In the specific
value of the method, the overall network without the backbone
is 6.6M, and enable to train in 680M of memory with batch
size 24. The total training epoch is 75, and the overall
procedure on board is about 10 hours. With the proposed
method, all the procedures can be operated within a limited
condition of hardware devices. All this fact makes our methods
practicable and feasible in limited equipment in the compart-
ment environment.

V. CONCLUSION

In this paper, we focus on the passengers counting problems
in the railway compartment and offer a benchmark in both
datasets and methods. We present a complete pipeline for
giving head proposals, counting numbers, and operate the
system in the limited hardware condition for passenger count-
ing problems. The proposed motion supervised representation
provides reliable and robust proposals against scale changing
and occlusion. The spatial and temporally enhanced counting
offers accurate counting result from proposals. With the given
partial proposal training method, the methods can operate and
solve the problem in the actual scene of railway compartments.
The advantages of our approach are particularly significant in
this scene, and our method achieves better performance than
the other methods in all situations in datasets.
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