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Abstract—Effective location recommendation is an important problem in both research and industry. Much research has focused on
personalized recommendation for users. However, there are more uses such as site selection for firms and factories. In this study, we
try to solve site selection problem by recommending some locations satisfying special requirements. There are many factors affecting
it, including functions of architecture, building cost, pollution discharge etc. We focus on the specific site selection of meteorological
observation stations in this paper with leveraging the factors of functions of architecture and building cost from multi-source urban big
data. We consider not only recommending the locations that can provide more accurate prediction and cover more areas, but also
minimizing the cost of building new stations. We design an extensible two-stage framework for the station placing including prediction
model and recommendation model. It is very convenient for executives to add more real-life factors into our approach. We have some
empirical findings and evaluate the proposed approach using the real meteorological data of Shaanxi province, China. Experiment
results show the better performance of our approach than existing commonly used methods.

Index Terms—Big Data, Location Recommendation, Recommender System, Site Selection, Urban Computing
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1 INTRODUCTION

P ERSONALIZED location recommender systems
mostly focus on exploring user information, which

includes user’s profiles, locations, and trajectories.
Moreover, location recommendation can be used for
site selection for firms and factories which are the new
target audiences. Site selection affects the rationality,
dependability, and efficiency of them. Thus we must take
full account of the factors of functions of architecture,
building cost, pollution discharge etc.

Recently, people concern not only general weather
conditions such as sunny, windy, rainy and snowy but
also the more detailed and accurate weather condition
such as PM2.5, PM10, and NO2. To some extent, the ex-
isting meteorological observation stations cannot satisfy
people’s requirements anymore. Therefore, it is urgent
for us to construct new observation stations. Neverthe-
less, constructing a new observation station is both costly
and time-consuming, which means that we cannot set up
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new stations as much as the existing stations in a short
time. Thus, in this paper, we mainly focus on the specific
site selection of meteorological observation stations by
answering a practical question: How to recommend a
few candidate locations to take the lead in constructing
new observation stations?

In reality, there are several challenges. First, we need
to consider the cost of building new observation stations
in the recommended locations. Second, we prefer that
the recommended locations are homodisperse in the
map. Otherwise, the result may be a set of locations
concentrated together which is obviously not proper. So
our main task is to recommend locations that can make
prediction accurate, construct new observation stations
with low cost, and cover more areas.

In this paper, we propose a two-stage framework.
Figure 1 is the overview. According to different person-
alized requirements, the multi-source data and multi-
factors are taken into consideration. By training our
recommendation model and prediction model, the scores
of different locations are learned which denotes the
importance of locations. Then the rank of candidate
locations is obtained. Compared with our previous work
[1], we 1) add more related works, 2) present more
details about the concepts of total distance and relative
area, 3) show the details about our model training,
4) show some interesting findings on spatial-temporal
information, 5) show the actual result of our model for
the demonstration. The main contributions of this work
are:

• We solve the problem of how to recommend the
locations to construct new meteorological observa-
tion stations by leveraging the factors of functions
of architecture and building cost from multi-source
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Fig. 1. The overview of our framework. According to different personalized requirements, the multi-data and multi-
factors are taken into consideration. By training our recommendation model and prediction model, the scores of
different locations are learned. Then the scores of locations are calculated and the solution is obtained.

urban big data. More specifically, the functions of
architecture should make more accurate prediction
and cover more areas. We propose a prediction
model and a recommendation model which can fuse
multi-source data.

• Geographical location information is explored to
improve the accuracy of our prediction model be-
cause of the assumption that the more close two
locations are, the more similar their meteorological
data becomes. In the recommendation model, we
would like to select the locations that can cover
more geospatial areas. In addition, we utilize the
concept of relative area to remove the border loca-
tion.

• Besides the factor of geographical location, in the
recommendation model, we take building cost into
account. We would like to select the locations whose
benchmark prices of industrial land are low. These
factors are fused into our approach to learn the
importance of locations to satisfy the personalized
requirements of decision-makers.

The rest of this paper is organized as follows: In
section 2, we present some related works on sample
selection, environmental prediction, and location rec-
ommender systems. In section 3, our models proposed
in this paper including recommendation model and
prediction model are described in detail. Experiments
and some empirical findings are introduced and the
evaluation of our approach is given in Section 4. Finally,
we conclude the paper in Section 5.

2 RELATED WORKS

The research is a part of urban computing [2]. Here, we
review some related works on site selection.

2.1 Sample Selection
Many selective sampling problems were solved based
on information entropy theory [3], [4], [5], [6] and prob-

ability [7], [8]. Hsieh et al. [3] established new stations
at the locations those can minimize the uncertainty of
the prediction model. They pick the location with the
lowest entropy and then put it into the prediction model
as known data. Then pick the second-to-last location
which is the location with the lowest entropy in the new
prediction model and keep running this circle. Finally,
select the top k ranked locations as the location to build
new stations. Du et al. [9] aimed to find a set of locations
for sensor deployment to best measure the surface wind
distribution over a large urban reservoir. They solve this
problem by finding locations with the largest mutual
information with others based on some heuristics. Erdös
et al. [10] aimed to deploy sensors in an information
delivery network to optimize the detection of duplicate
data contents. Wang et al. [11] leveraged the spatial and
temporal correlation among the data sensed in different
sub-areas to significantly reduce the required number of
sensing tasks allocated (corresponding to budget), yet
ensuring the data quality. Karamshuk et al. [12] aimed to
find a set of locations so that the placement of new retail
stores can bring a maximum number of customers. They
formulate the task as a learning-to-rank problem based
on geographical and human mobility features. Krause
et al. [13] proposed to find a set of locations such that
the wireless sensors can best predict some future events,
such as road speeds on a highway. Ordinary Kriging
(OK) proposed in [14] is one of the most widely used
interpolation models. Pourali et al. [15] utilize Bayesian
brief network to find a set of functional locations such
that the placement of sensors can best monitor a complex
power systems.

2.2 Environmental Prediction

There are a lot of ways to prediction based on different
theories such as matrix factorization [16], [17], [18],
probability, cluster and similarity etc. Zheng et al. [19]
proposed a semi-supervised learning approach based on
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a co-training framework that consists of two separated
classifiers to infer the real-time and fine-grained air qual-
ity. Zheng et al. [20] reported on a real-time air quality
forecasting system that uses data-driven models to pre-
dict fine-grained air quality over the following 48 hours.
Satellite remote sensing [21] is a top-down approach to
derive the air quality of the urban surface, which has
been used for many years. Donnelly et al. [22] presented
a model for producing real time air quality forecasts with
both high accuracy and high computational efficiency.
Shang et al. [23] used GPS trajectories of the sample
of vehicles to infer the city-wide vehicular emissions.
Over the past decade, some statistic models, like linear
regression, regression tree, and neural networks, have
been employed in atmospheric science to do a real-
time prediction of air quality [22], [24], [25]. Existing
air quality prediction methods in Environmental Science
are usually based on classical dispersion models, such
as Gaussian Plume models, Operational Street Canyon
models, and Computational Fluid Dynamics [26]. These
models are in most cases a function of meteorology,
street geometry, receptor locations, traffic volumes, and
emission factors (e.g. g/km per single vehicle), based on
a number of empirical assumptions and parameters that
might not be applicable to all urban environments [20],
[26].

2.3 Location Recommender Systems

Recently many researchers pay more attention on recom-
mender system [18], [17], [3], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46]. Zheng et al. [28] presented a com-
prehensive survey of recommender systems for LBSNs
(Location based Social Networks), analyzing the data
source used, the methodology employed to generate a
recommendation, and the objective of the recommenda-
tion. The major methodologies used by recommender
systems in location-based social networks can be divided
into 3 categories, which are content based [47], [48], [49],
link analysis [50], [51], and collaborative filtering [52],
[53].

Content-based recommendation systems make recom-
mendations by matching users’ preferences [47], [54],
[55], [56]. Users’ preferences are discovered from users’
profiles such as gender and age, and features of loca-
tions, such as tags and categories. The methods [35],
[55], [56], [57], [58], [59] make recommendations by
discovering users’ locations and activity histories. Bao
et al. [39] combined user’s location and preference to
provide effective location recommendations. Kang et al.
[60] proposed a web service recommendation approach
incorporating a user’s potential preferences and diver-
sity feature of user interests on web services.

Link analysis algorithms can find special nodes from
a complicated structure which is applied for identifying
important web pages for web searching. By analyzing
the LBSN, link analysis algorithms extract locations

meeting different needs. Zheng et al. [50] explored in-
terests of locations based on HITS algorithm, and made
recommendations by considering the interests of loca-
tions and users’ travel experiences. Raymond et al. [61]
made recommendations based on a random walk-based
link analysis algorithm.

Recommendation systems based on collaborative fil-
tering recommend a location to a user if this location
has been visited by a similar user. It is widely utilized
in products services [52], [53], [62] and travel recommen-
dations [32], [50], [57], [63], [64], [65], [66] and service
recommendation [67], [68], [69]. Jiang et al. [31] proposed
a user topic based collaborative filtering approach for
personalized travel recommendation. Zhang et al. [56]
proposed a probabilistic framework to utilize tempo-
ral influence correlations for location recommendations
by measuring the similarity between users. Sang et al.
[70] [32] considered both sensor and user context to
develop a contextual recommendation algorithm, and a
hierarchical scheme is designed for coarse-to-fine POI
recommendation. They [71] also designed a two-level
solution to solve the problem of location visualization
from multiple semantic themes. It first identifies the
POIs and discover the focused themes, and then aggre-
gates the low-level POI themes to generate high-level
city themes for location visualization. Sang et al. [72]
presented some challenges in social multimedia mining
and reviews current studies on this topic. Moreover, it
also presents some future directions to help to inspire
audiences.

In addition, there are some other kinds of recom-
mender systems, such as song recommendation [42],
social friend recommendation [41], product recommen-
dation [18], [37], and video recommendation [43], and
service recommendation [67], [68], [69], [73], [74], [75].

2.4 Differences
In this section, we summarize the differences between
location recommendation for enterprises and location
recommendation for individuals. They are:

• Our target is to recommend new sites for enterprises
to construct new branches, factories, or observation
stations, whereas individual location recommenda-
tion aims at mining the interesting POIs that the
individual user likes to visit. Our targets are quite
different.

• Our data is different from the individual location
recommendation. We explored meteorological data,
GPS information of county, and the benchmark
price of industrial land to recommend locations for
building new meteorological observation stations,
whereas the individual location recommendation
mainly uses the user generated data, including user
check-ins, comments, social circles, and other con-
textual information. Our data are quite different
even both of us utilized GPS information.

• The basic idea of the individual location recommen-
dation model is to find similar users and similar

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 11,2020 at 02:56:36 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2747538, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID 4

POIs, and measure the preferences of users for POIs.
However, in this work, we designed a prediction
model and a recommendation model considering
three factors, including the dispersity of the loca-
tions, building cost, and the accuracy of meteoro-
logical prediction. Our models are quite different.

Besides, compared with the related works on sample
selection, the biggest difference of our work is that we
solved how to recommend the locations to construct
new meteorological observation stations. This is a new
application scene. Moreover, we considered selecting
the locations that can cover more geospatial areas and
considered selecting the locations whose benchmark
prices of industrial land are low. The two ideas are also
different from related works.

3 OUR LOCATION RECOMMENDATION FOR
ENTERPRISES

We would like to recommend the locations to construct
new meteorological observation stations by leveraging
the factors of functions of architecture and building
cost. More specifically, the functions of architecture are
performing more accurate prediction and covering more
areas. Therefore, we propose a prediction model and a
recommendation model. As shown in Figure 1, our task
is to train our recommendation model and prediction
model and rank the locations according to the learned
scores.

We divide the whole geospatial area into several re-
gions by administrative divisions. Each region is the
basic unit in our prediction model. In some of the
regions, there is an observation station which can pro-
vide us the exact record data of meteorology in the
region. The meteorological data could be represented by
Ri(i = 1, 2, ...,n). We assume that m out of n locations
will be recommended in our task to construct new
stations. In addition, the real-life factors will be taken
into consideration to rank candidate locations. Symbols
and notations utilized in this paper are given in Table 1.
A and B are the coefficient matrices to be learned in our
prediction model. C, D and E are the coefficient matrices
to be learned in our recommendation model.

3.1 Prediction Model
The observation data of meteorology in different loca-
tions are correlated with each other in spatial perspec-
tives. Considering the correlation of the meteorological
data between each location in these areas, the unknown
data can be predicted through little-observed data. That
is to say, we use the data observed in recommended
locations to predict the data in un-selected locations. We
propose our initial prediction model given by:

min
A
‖R−AS‖2F + α‖A‖2F (1)

where S is the matrix of meteorological data in rec-
ommended locations. Matrix A consists of coefficient

TABLE 1
Notations and Their Descriptions

Notations Descriptions

A The matrix of meteorological correlation between
every two locations in prediction model

B The matrix of geo-distance correlation between
every two locations

C The matrix of meteorological correlation between
every two locations in recommendation model

D The importance matrix of area coverage
E The importance matrix of benchmark price

G The matrix of geo-distance between every two
locations

P The matrix of benchmark price
R The matrix of meteorological data in each location

S The matrix of meteorological data in selected
locations

W The matrix of coverage score to constrain the
importance of area coverage

apk which represents the correlation of meteorological
data between the recommended location p and the un-
recommended location k. AS is the meteorology predic-
tion of our model. The second term is used to avoid
over-fitting.

The geo-distance between regions are also an impor-
tant factor in our prediction model. As we can see in Fig-
ure 2, the x-axis represents the distance between regions
and the y-axis indicates the corresponding difference of
the meteorological data. We calculate the sum of mean
absolute error of the thirty years’ thunderstorm data
between every two locations as the corresponding dif-
ference of the meteorological data. It shows the positive
correlation, which means the distance factor is important
and should be considered in prediction model, because
the more close two locations are, the more similar their
meteorological data becomes. We utilize matrix B repre-
sents the similarity between each locations’ distance and
the objective function of prediction model must contain
the following term:

min
B
‖Gmin − BG‖2F + α‖B‖2F (2)

where matrix B consists of coefficient bpk which repre-
sents the correlation of geo-distance between p and k. BG
is optimized to Gmin, which means the bigger the value
of b is, the more close the two locations are, and the more
similar their meteorological data becomes. Therefore, the
objective function of our prediction model is given by:

Φ =‖R− (A+B)S‖2F + α1‖Gmin − BG‖2F
+ α2‖A + B‖2F

(3)

where the first term is used to constrain the errors. The
second term is used to constrain parameter b considering
with the factor of geo-distance. The third item is used
to avoid over-fitting. The task is to optimize A and B
by minimizing this objective function, which will be
reported in Part C of Section III.
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Fig. 2. The relevance between geographical distance and
the difference of observation data.

3.2 Recommendation Model
We would like to select the locations that can help
us to make the more accurate prediction, cover more
regions, and have lower building cost to establish ob-
servation stations. In this study, we propose leveraging
the importance of locations. It includes three aspects, i.e.
the importance of locations with regard to prediction
accuracy, the importance with regard to area coverage,
and the importance with regard to building cost.

First, considering the importance of locations with
regard to prediction accuracy, we ought to reduce the
errors of prediction in our recommendation model. A
linear combination of each location’s record data Rp

is utilized to calculate the prediction. But only m of
the most important locations can be recommended. We
use the weight of each Rp to represent the importance
of location p with regard to prediction accuracy. The
more correlation with others the location has, the more
important the location is. Thus, we propose the initial
recommendation model containing only the prediction
accuracy as:

min
C
‖R− CR‖2F + β3‖C‖2F (4)

where CR represents the prediction of the meteorological
data by the linear combination of the other regions’ data.
This term is used to reduce the square error by solving
the parameter c. c·i, which is equal to

∑
p cpi, represents

the importance of the location i.
Second, we recommend the locations that can cover

most geospatial areas on the map in order to make
sure every location in our province will not leave the
recommended locations too far. It can help us to predict
the more accurate meteorological data which can be
proved by Figure 2. Nevertheless, the coverage area is a
definition that cannot be clearly measured, so as shown
in Figure 3, we propose to employ the total distance w.i

between one location and other locations. It is calculated

Fig. 3. The illustration of the total distance between one
location and other locations. The total distance between
point A and other points is smaller than that with B. It
implies the smaller the total distance is, the more con-
centrated the point is.

Fig. 4. The illustration of the concept of the relative area
which is utilized to remove the border locations. We ran-
domly select several locations on the map. In the case of
location A in (a), first, we establish the coordinate system.
Second, respectively record the number of locations in
the four quadrants. Last, we use the four numbers [1, 9,
20, 0] to describe its relative area. As long as there is a
parameter is 0, it indicates the location is at the border.

by
∑

p tpi where t is the geographical distance. The
smaller the total distance is, the more concentrated the
point is. In addition, for the locations at the border of
the map, we leverage the concept of relative area [76],
[77] to remove them as shown in Figure 4. In the case of
location A in (a), we 1) establish the coordinate system;
2) respectively record the number of locations in the four
quadrants; 3) use the four parameters [1, 9, 20, 0] to
describe its relative area. As long as there is a parameter
is 0, it indicates the location is at the border.

However, in case that the recommended locations are
concentrated together, we suggest to apply the coverage
score that comes from the tuned total distance according
to the dispersity. The process is given in Figure 5: for
the ranked total distances from largest to smallest, 1©
the first location that has the largest total distance (i.e.
the geographical center) is mapped; 2© map the second
location if the distance between it and the previous
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Fig. 5. Score ranking with considering the coverage of
recommended locations by the following steps: for the
ranked total distances from largest to smallest, 1© the
first location which is the geographical center is mapped;
2© map the second location, if the distance between it
and the previous locations are larger than the predefined
parameter r ; 3© if the distance between it and the previous
locations are smaller than r ; 4© its location score will be
multiplied by a coefficient δi.

locations are larger than the predefined parameter r, i.e.
it is not in the coverage area of the previous locations;
3© if the distance between them are smaller than r, 4© its

total distance will be multiplied by a coefficient δi. After
several rounds, we can get the final coverage scores W:

W = Tδ (5)

Then the importance of locations should be propor-
tional to the coverage score:

min
D
‖Wmax −DW‖2F + β3‖D‖2F (6)

where the parameter d·i which is equal to
∑

p dpi denotes
the importance of the location i with regard to area
coverage. δi is the discriminant coefficient as shown in
Figure 5. It is 0.5 if the location belongs to the r-radius
circle of previous locations, and is equal to 1 otherwise.

Third, we focus on the cost of building new stations.
When the decision makers are facing this kind of se-
lection problems, they try to minimize the cost in the
whole project. Therefore, we need to fuse the factor of
cost into our model. Brevity we utilize the benchmark
price of industrial land to represent the cost. Thus, the
optimization is given by:

min
E
‖Pmin − EP‖2F + β3‖E‖2F (7)

where the value of parameter e·i which is equal to
∑

p epi
denotes the importance of the location i with regard to
the building cost. P is the matrix of benchmark price. EP
is optimized to Pmin, which means the bigger the value
of e·i is, the lower the cost is, and meanwhile the more
important the location is.

Then the objective function of the final recommenda-

tion model is given by:

Ψ =‖R− CR‖2F + β1‖Wmax −DW‖2F + β2‖Pmin − EP‖2F
+ β3(‖C‖2F + ‖W‖2F + ‖E‖2F )

(8)
where the first term is used to constrain solve the im-
portance of locations with regard to prediction accuracy.
The second term is utilized to solve the importance with
regard to area coverage. The third term is leveraged to
optimize the importance with regard to building cost.
The last term avoids over-fitting.

In a word, we have three essential parts in our rec-
ommendation model. The first part selects the most im-
portant locations for the meteorological data prediction.
The second part chooses the locations which possess the
larger coverage and the third part opts the lower cost lo-
cations. Changing coefficients β1 and β2 can balance the
three factors. At last, top-m biggest values of c·i +d·i +e·i
are figured out and the corresponding regions are the
final locations we seek.

3.3 Model Training

Given the proposed prediction model and recommen-
dation model, the objective functions represented in
Equation (3) and (8) can be minimized by the gradient
decent approach as in [16], [18], [17]. The gradients of
the objective function of recommendation model with
respect to the variables C, D, and E are given by:

∂Ψ

∂C
= −2(R− CRs)S + 2β3C (9)

∂Ψ

∂D
= −2β1(Wmax −DW)W + 2β3D (10)

∂Ψ

∂E
= −2β2(Pmin − EP)P + 2β3E (11)

Once we get the gradients, we update these matrices
during each iteration as follows:

C(t) = C(t−1) − l(t)1

∂Ψ(t−1)

∂C
(12)

D(t) = D(t−1) − l(t)1

∂Ψ(t−1)

∂D
(13)

E(t) = E(t−1) − l(t)1

∂Ψ(t−1)

∂E
(14)

As mentioned before, when we get the final C, D, and
E, top-m biggest values of c·i+d·i+e·i are figured out and
the corresponding regions are the final recommended
locations.

The gradients of the objective function of prediction
model with respect to the variables A and B are given
by:

∂Φ

∂A
= −2(R− (A + B)S)S + 2α2(A + B) (15)
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Algorithm 1 The Procedure of Our Approach

Input: The matrices of our data, including matrices R, S, G, T,
and P.
Setting the parameters, including iteration count t1, t2,
learning rate l1, l2, and tradeoff parameters α1, α2, β1,
β2, and β3.

Output: The final rank of candicate locations.
The corresponding evaluation of the solution.
The building cost of this solution.

1: Initialize the variable matrices those denote the importance
of locations, including matrices C, D, and E.

2: for n = 1 : t1 do
3: Calculate the gradients of the objective function proposed

in Equation (8) with respect to the variables C, D, and E
respectively by Equation (9), (10), and (11).

4: Update matrices C, D, and E with the gradients by the
learning rate l1 by Equation (12), (13), and (14).

5: end for
6: Top-m biggest value of c·i + d·i + e·i are figured out and the

corresponding regions are the candidate locations.
7: Calculate the building cost and the dispersity of the locations.
8: Output the candidate locations, the building cost, and the

dispersity.
9: Initialize the variable matrices those denote the correlation

of locations in prediction model, including matrices A and B.
10: for n = 1 : t2 do
11: Calculate the gradients of the objective function proposed

in Equation (3) with respect to the variables A and B
respectively by Equation (15) and (16).

12: Update matrices A and B with the gradients by the
learning rate l2 by Equation (17) and (18).

13: end for
14: Predict the meteorological data by the learned A and B.
15: Calculate the prediction error by RMSE and MAE.
16: Output the accuracy evaluation.

∂Φ

∂B
=− 2(R− (A + B)S)S− 2α1(Gmin − BG)G

+ 2α2(A + B)
(16)

we update these matrices during each iteration as
follows:

A(t) = A(t−1) − l(t)2

∂Ψ(t−1)

∂A
(17)

B(t) = B(t−1) − l(t)2

∂Ψ(t−1)

∂B
(18)

Algorithm 1 summarizes the whole procedure of our
framework. Steps 1 to 8 show the details of our recom-
mendation model. Steps 9 to 16 show the details of our
prediction model.

4 EXPERIMENT
This section introduces the experiments in detail. The
definition of the problem to be solved is that there are 22
meteorological stations to be built in Shaanxi Province,
China, and then how to select the locations. We perform
the proposed models to solve this problem. Here, 1) the
details of our dataset are introduced, 2) some analysis
of meteorological data is presented, 3) the performance
measurements are reported and 4) some experimental
results and discussions are given.

Fig. 6. The distribution of benchmark price of industrial
land in Shaanxi Province. The higher the column is, the
higher the price is.

4.1 Dataset Introduction
4.1.1 Meteorological Data
The meteorological data used in this paper is provided
by Shaanxi Provincial Lightning Protection Center. It
contains the count of thunderstorm days in each county
of Shaanxi. In addition, the ten prefecture-level divisions
of Shaanxi are subdivided into 107 county-level divi-
sions. But some of them are too small so that they are
merged into near divisions in the provided meteorologi-
cal data. In a words, there are 96 divisions in our dataset.
Moreover, the data range is from 1974 to 2011 based on
one-month intervals. We utilize the meteorological data
before 2000 as the training set and the other as the test
set.

4.1.2 Geographical Location Data
Geographical location data is represented by Global
Position System (GPS) coordinate which contains the
longitude and latitude. The geographical distance be-
tween two latitude/longitude coordinates is calculated
by using the Haversine geodesic distance equation pro-
posed in [78]. We crawled the geographical location data
of each county from the Internet.

4.1.3 Benchmark Price of Industrial Land
The benchmark price of industrial land released in 2010
was crawled from the Internet to approximately repre-
sent the cost of building stations. The benchmark price
in Xi’an is almost 13 times higher than it in Yijun County
from which we can see that it is necessary to take the
benchmark price of industrial land into consideration.
Figure 6 shows the distribution of benchmark price
of industrial land in Shaanxi Province. The higher the
column is, the higher the price is.

4.2 Some Empirical Findings
4.2.1 Temporal Findings
Figure 7 shows the trend of thunderstorm day count
in Shaanxi Province. The blue line denotes the count
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Fig. 7. The trend of thunderstorm day count in Shaanxi
Province. The value of x-axis is the year. The value of y-
axis denotes the count of thunderstorm days in different
years.

Fig. 8. The trend of the month with most thunderstorm
days in Shaanxi Province. The value of x-axis is the
year. The value of y-axis denotes the month of most
thunderstorm days in different years.

of thunderstorm day in different years. The dotted line
in red implies the trend with years. We can see that
the count of thunderstorm day in Shaanxi is overall
decreasing with the years. It reached the lowest level
in 2009.

Figure 8 shows the Change of the month of most thun-
derstorm days in Shaanxi Province. The blue line denotes
the month of most thunderstorm days in different years.
The dotted line in red implies the trend with years based
on the 2nd order polynomial. It can be seen that the
month of most thunderstorm days is overall shifting to
an earlier date with the years, especially after 2000.

4.2.2 Spatial Findings
Figure 9 shows the distribution of meteorological data
in Shaanxi Province. The warm color represents more
thunderstorm days. The cool color implies fewer thun-
derstorm days. It can be seen that there are more thun-
derstorm days in the Plateau of Northern Shaanxi and
in the mountains of southern Shaanxi than those in the
plain of Central Shaanxi.

Fig. 9. The distribution of meteorological data in Shaanxi
Province. The warm color represents more thunderstorm
days. The cool color implies fewer thunderstorm days.

Fig. 10. The probability of the first thunderstorm day and
the last thunderstorm day appeared in different regions of
Shaanxi Province.

Fig. 10 shows the probability of the first thunder-
storm day and the last thunderstorm day appeared in
different regions of Shaanxi Province. It can be seen
that early in the year the first thunderstorm day mostly
appears in the mountains of southern Shaanxi, including
Ankang, Hanzhong, Shangluo. However, we find that
the last thunderstorm day also mostly appears in above
regions. So we suppose that the monsoon should be
associated for figuring this meteorological phenomenon
out. Shaanxi Province belongs to monsoon region as
shown in Fig. 11. When the rainy season is coming, the
climate of Shaanxi is influenced by the East Asian Mon-
soon. Monsoon comes from the southeast and southwest.
Thus, the mountains of southern Shaanxi are the first
to enter rainy season. When the rainy season is fading
away, the monsoon blows toward the sea. That is to say,
the monsoon retreats from north to south. Finally, the last
thunderstorm day mostly appears in southern Shaanxi.

4.3 Performance Measurements
The evaluation metrics of the prediction accuracy used
in our experiments are Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). They are the most pop-
ular accuracy measures in the literature of recommender
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Fig. 11. Monsoon and non-monsoon regions in China.
The heavy curve in black is the border of them. Shaanxi
province that is in red locates in the area of the East
Asian monsoon. The arrows indicate the directions of the
summer monsoon. When the rainy season is coming, the
monsoon comes from the southeast and southwest.

systems [3], [20], [17] [16]. RMSE and MAE are defined
as:

RMSE =
‖Rtest − (A + B)Stest‖F

|Rtest|
(19)

MAE =
‖Rtest − (A + B)Stest‖1

|Rtest|
(20)

where Rtest is the real meteorological data. A and B
are the matrices learned by Equation 3. Stest is the
real meteorology data in recommended locations. |Rtest|
denotes the number of data in the test set.

For cost comparison, we utilize the total benchmark
price of industrial land in recommended locations to
approximately evaluate the cost of building stations.
It is defined as COST = ‖Precommended‖1, where
Precommended is the benchmark price of industrial land
in the recommended locations.

In fact, the dispersity of selected locations are also
important, which has been illustrated in Figure 2. There-
fore, we propose a measurement of dispersity. The min-
imum of the distances between a location to others is
calculated by Disi = min {Disi,1, Disi,2, · · · , Disi,m},
where i is belonged to the set of un-recommended
locations, and m is the number of recommended lo-
cations. Then the variance is used to represent the
dispersity as Dispersity = var(DIS), where DIS =
{Dis1, Dis2, · · · , Disn−m}. n is the total number of re-
gions.

In a word, four measurements including RMSE, MAE,
COST, and Dispersity are utilized to evaluate our ap-
proach, and the lower, the better.

4.4 Evaluation
4.4.1 Compared Algorithms
We compare our algorithm with some other commonly
used methods,including Divergence, Rate of Change,
K-means, Spectral Clustering, Gaussian Mixture Model
(GMM), Artificial Neural Network (ANN) with back prop-
agation technique, Support Vector Machine (SVM) and
Matrix Factorization (MF).

• Divergence, denoted by
µ1 − µ2

1
2 (σ2

1 + σ2
2)

, where µ is the

mean of a data set and σ is the variance of the
data set. This approach selects data that have the
minimum divergence value with the center data as
a cluster.

• Rate of Change (RC), which is usually used in stock
price prediction. It selects the data that have the
minimum rate of change value with the center data
as a cluster.

• K-means, which is one of the most popular methods
in clustering.

• Spectral Clustering (SC), which is one of the most
popular clustering methods based on Spectral
Graph Theory.

• Gaussian Mixture Model (GMM), which is one of the
most popular clustering methods aiming at learn-
ing probability density function for soft assignment
clustering.

• Artificial Neural Network (ANN). We choose ANN
with back propagation technique as another base-
line. The ANN method is simply used as a classifi-
cation model for meteorological data prediction.

• Support Vector Machine (SVM) is one of the most
popular supervised learning models with associated
learning algorithms that analyze data used for clas-
sification and regression analysis.

• Matrix Factorization (MF) is a factorization of a ma-
trix into a product of matrices. It is usually used to
learn the latent features in recommender systems.

Note that the last three algorithms are only used in
the comparison of prediction performance. Our methods
include NoN, Geo-distance, Cost, and LRE:

• NoN, which denotes the approach without any fac-
tors.

• Geo-distance, which denotes the approach with con-
sidering the factor of geo-distance.

• Cost, which denotes the approach with taking the
factor of benchmark price of industrial land into
account.

• LRE, which denotes the Location Recommendation
for Enterprises with fusing all proposed factors.

4.4.2 Performance Comparison
Figures 12, 13, 14, and 15 show the performance compar-
ison of different algorithms based RMSE, MAE, COST,
and Dispersity respectively. Note that, the lower the four
measures are, the better the performance is. It can be
observed that our approaches are mostly better than
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Fig. 12. Prediction performance comparison of different
algorithms based on RMSE. In addition, the methods in
the red box are ours.

Fig. 13. Prediction performance comparison of different
algorithms based on MAE. In addition, the methods in the
red box are ours.

the compared algorithms, especially in the comparison
of COST and Dispersity. Moreover, from performance
comparison, it can be seen that the factors fused in
our approach are all effective. When we only consider
the factor of cost, the performance of our approach
on COST is much better than other algorithms. When
we only take the factor of geo-distance, our approach
also reaches the best performance on Dispersity. If we
combine the two factors, our approach (LRE) achieves
the optimal solution with balancing the two factors. Then
decision makers can adjust the model according to their
personalized requirements.

Figure 16 shows the actual results of K-means and our
method LRE. In this figure, the rectangle landmarks in
green are all the counties involved in our dataset. The
counties with the pie landmarks are the recommended
locations for building new meteorological observation
stations. We also show their performances on RMSE,
MAE, Dispersity, and COST. We can see that our method
LRE not only could improve the prediction accuracy,
but also could avoid selecting the border locations, such
as A and B selected by K-means. Besides, compared
with K-means, LRE also avoid the over-concentration of
locations, such as C in K-means where three locations
gather in a small scale.

With regard to the statistical comparison, as shown

Fig. 14. Recommendation performance comparison of
different algorithms based on COST. In addition, the
methods in the red box are ours.

Fig. 15. Recommendation performance comparison of
different algorithms based on Dispersity. In addition, the
methods in the red box are ours.

in Figures 12, 13, 14, and 15, we decrease 6.4% on MAE,
17.6% on RMSE, 35.6% on COST, and 5.2% on Dispersity.
Note that, the lower the four measures are, the better the
performance is.

4.4.3 Discussions
There are some parameters to balance the fused factors.
In Equation (8), the parameter β1 is the weight of the
importance of geographical Dispersity. In Figure 5. The
parameter r is used to avoid the concentration of rec-
ommended locations. In other words, r is designed to
control the degree of dispersity directly. β1 is served to
regulate the extent of importance of dispersity. Both of
them are related to the final performance on dispersity.
Figures 17(a) and (b) show the impact of β1 and r on per-
formance. It can be seen that our approach could provide
different solutions according to different requirements of
dispersity. The cost of building new stations is one of
the most concerned criterions. Adequate capital is the
foundation of a booming company. Thus a cost-saving
solution is expected. In our approach, the parameter of
β2 is set to manage the degree of importance of cost.
Figure 17(c) demonstrates the effect of β2 on perfor-
mance of our approach in light of the cost of establishing
new stations. Apparently, our approach offers various
solutions according to different requirements of cost.
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Fig. 16. The actual results of K-means and our method LRE. In this figure, the rectangle landmarks in green are all the
counties involved in our dataset. The counties with the pie landmarks are the recommended locations for building new
meteorological observation stations. We also show their performances on RMSE, MAE, Dispersity, and COST. Note
that, the lower the four measures are, the better the performance is. We can see that our method LRE not only could
improve the prediction accuracy, but also could avoid selecting the border locations, such as A and B selected by K-
means. Besides, compared with K-means, LRE also avoid the over-concentration of locations, such as C in K-means
where three locations gather in a small scale.

Fig. 17. Discussions on the impact of parameters on performance of our approach.

Fig. 18. The impact of factor parameter β2 on different
measures.

However, actually, we cannot find out the locations
where all the factors could perform best. We use three
factors: the accuracy of the prediction, the price of the
selected land and the dispersity of all the selected lo-
cations to evaluate our model. When we try to seek
the best performance on COST, we find our model will
perform worse on other measures as shown in Figure
18. When we change the parameter β2 of the benchmark
price, the performance on COST becomes better with
the increasing parameter. However, the performances on
RMSE, MAE, and Dispersity are irregular, and most of
them are inverse to the performance on COST. Thus, it is
difficult to seek the best performance on all the measures.

With regard to the speed and efficiency, The space
complexity of our algorithm is O(n× k+ 4n2 + 4n), and
the time complexity is O(t1 × n2 × k + t2 × n ×m × k),
where n is the number of regions. m is the number
of recommended locations. k is the dimension of the
meteorological data. Generally, because of k � n,m, the
space complexity is O(n×k). The time complexity of K-
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means is O(n×m×t1×k), and the time complexity of the
recommendation part of our algorithm is equal to that of
GMM which is alsoO(n2×k×t) [79]. However, generally,
n � m, the time complexity of our algorithm is higher
than K-means. For Spectral Clustering, its time complex-
ity is high, because it needs to figure out the eigenvectors
[79]. For the prediction part of our algorithm, the time
complexity is equal to MF, which isO(t×n×m×k). Other
cluster based methods all directly regard the values of
centers as the predictions. Thus, they do not cost any
computing, but the weakness of their performance is
apparent as shown in Figures 12 and 13.

5 CONCLUSIONS

In this paper, we introduced a framework to recommend
locations for solving the problem of site selection. The
factors of prediction accuracy, area coverage, and build-
ing cost are taken into account. We proposed a recom-
mendation model and a prediction model to find out the
optimized candidate locations. The weights of different
factors can be fine tuned according to the personalized
requirements. We solved the practical optimization prob-
lem and provided the solution with more intelligence.
Additionally, we had some empirical findings which
show the characteristics and trends of thunderstorm
days, and some latent reasons were analyzed.

In our future work, the nonlinear prediction model
will be performed, and more types of meteorological
data, more urban data and more real-life factors will
be considered. Besides, enterprises always have differ-
ent requirements, so it is difficult to balance the fused
factor parameters. For now, we just use the empirical
parameters for the performance comparison. We would
like to do more research on this topic and try to figure
out how to balance the parameters with an auto-learning
method in the condition of some basic requirements to
improve performance most significantly.
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