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SDPDet: Learning Scale-Separated Dynamic
Proposals for End-to-End Drone-View Detection

Nengzhong Yin"?, Chengxu Liu

Abstract—Detecting objects in large-scale drone-view images is
notoriously challenging due to their uneven distribution and scale
variation caused by photoing angles. Common approaches promote
drone-view object detection by two-step detection (i.e., detecting
sub-regions first) and multi-scale input. However, all these methods
suffer from onerous computational costs since the high model
complexity and input resolution. In this paper, we propose
a novel one-step detector, called SDPDet, to enable effective
object learning in drone-view images. In particular, a Scale-
separated Activation Pyramid (SAP) serves to focus on the regions
with objects aggregated at each scale, and a Scale-separated
Learnable Proposals (SLP) mechanism learns proposal boxes and
corresponding features on these regions. By such design, the
quantity of learnable proposals allows dynamic adjustment at each
scale separately, which facilitates the objects learning of various
distributions and scales with less computational costs. Experiments
demonstrate SDPDet can significantly outperform the state-of-the-
art one-step detectors on three widely-used benchmarks. On the
most challenging VisDrone dataset, SDPDet with ResNet50 gains
5.4% AP and 6.9% AP, improvements while running 1.9 x faster
than previous models.

Index Terms—Drone-view image, activation pyramid, scale-
separated learnable proposals, object detection.

I. INTRODUCTION

RONE-VIEW image detection aims at classifying and lo-
D cating objects in a large field of view captured by drones
or surveillance cameras. It is a fundamental problem in com-
puter vision and can be applied to numerous applications, in-
cluding agriculture [1], security surveillance [2], and rescue
search [3]. These applications require robust and efficient detec-
tors. Benefiting from the development of various generic object
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detection datasets (e.g., MS COCO [4], Pascal VOC [5], Ob-
jects365 [6]), object detection has developed at a rapid pace
and has a wide range of applications in various fields [7],
[8], [9]. Many state-of-the-art detectors based on CNNs have
shown excellent performance. Such as the Faster-RCNN [10],
and YOLO series [11]. However, these detectors are mostly de-
signed for generic object detection. In drone-view scenarios such
as VisDrone-DET [12] and UAVDT [13], there are more objects
in images, with more extreme scale variation and more uneven
distribution, thus limiting the performance of these detectors.
From the perspective of practical scenarios, drone-view images
suffer from scale and distribution problems: 1). The objects in
the drone view image are unevenly distributed and with fewer
areas than the background. There are some areas in the images
with a high density of objects, while others are mostly without
objects. 2). In drone-view images, the scale varies greatly even
for the same category of objects from different shooting angles,
and the scale disparity is even more pronounced for different
categories of objects, such as trucks and people. Therefore, it
is necessary for the detector to avoid invalid computations on
regions without objects and have the ability to handle multiple
scale variance.

To solve these challenges, recent years have witnessed an
increasing number of drone-view object detection approaches,
which can be categorized into two paradigms: two-step scheme
and one-step scheme. The former attempts a two-step scheme
from coarse to fine detection [14], [15], [16], [17], [18]. As
shown in Fig. 1(a), they first use a coarse detector to obtain
sub-regions that object aggregation, then use a fine detector
to detect them from these regions. One of the classic works
is GLSAN which introduces super-resolution networks to scal-
ing sub-regions to the proper size for better fine detection [16].
However, this paradigm is time-consuming and complex, espe-
cially when it encounters scenarios with discrete object distribu-
tions, the paradigm will dramatically increase the computational
costs and reduce efficiency. The latter detects objects directly
through a one-step scheme mainly by using high-resolution fea-
tures or performing feature fusion [19], [20], [21]. To avoid
invalid computational costs for regions without objects, the lat-
est QueryDet proposes a query mechanism to locate small ob-
jects on high-resolution features [21]. Nonetheless, the NMS
post-processing necessary for such box/point anchor-based de-
tectors is still inefficient in handling objects that are dense and
multi-scale objects.

Inspired by the recent progress of Transformer in computer
vision [22], significant progress has been made in generic object
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Fig. 1. Comparison of different pipelines. (a) Two-step detection usually first
detects the sub-regions containing small objects and then detects the category
and the location of each object in these sub-regions. (b) Our proposed SDPDet
utilizes the feature pyramids to construct dynamic learnable proposals at each
scale separately for object learning.

detection [23], [24], [25]. For example, DETR [23] constructs a
sparse set of object queries in Transformer to reason about the re-
lations of the objects and the global image context for obtaining
the final prediction set. To further avoid dense feature interac-
tions, Sparse R-CNN [24] only uses a pre-defined set of sparse
learnable proposals to learn object positions and categories di-
rectly. The mechanism of learnable proposals learns the distri-
butional of objects in the dataset and alleviates the problem of
uneven distribution in the drone-view image. However, the way
of learning all proposals in a uniform set degrades the ability
when handling uneven distributions and scale variations of ob-
jects, leading to sub-optimal performance. Therefore, exploring
proper ways of utilizing the learnable proposal mechanisms in
drone-view object detection remains a big challenge.

Addressing both challenges above, we propose a novel Scale-
separated Dynamic Proposals for End-to-End Drone-View Ob-
ject Detection, called SDPDet, which can automatically adjust
the number of proposals according to the object distribution and
separate the proposals to learn the scale information specifically.
As shown in Fig. 1(b), SDPDet utilizes the feature pyramid to
construct scale-separated dynamic learnable proposals, i.e. , the
quantity of learnable proposals allows dynamic adjustment at
each scale separately, to learn objects with uneven distribution
and scale variation. To achieve this purpose, as shown in Fig. 2,
we first construct a scale-separated activation pyramid (SAP)
to guide the proposals learning in the regions with objects ag-
gregated at each scale, avoiding the invalid costs due to uneven
distribution. Then we propose a scale-separated learnable pro-
posals (SLP) mechanism to separate the proposals into scaled
groups, so each group learns only a certain scale of the objects.
This separation mechanism makes different levels of features
learn the scale feature exclusively, which can avoid sub-optimal
performance caused by scale variations.

Compared with the latest one-step detection methods, the pro-
posed SDPDet not only significantly avoids the computational
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costs of no-object regions, but also optimizes the learning of
objects at different distributions and scales.

Our contributions are summarized as follows:

® We propose a novel one-step detector, called SDPDet,
which is the first work to introduce the learnable proposals
mechanism into drone-view detection. It can significantly
alleviate the problem of uneven distribution and multi-scale
in drone-view images with higher efficiency.

® We propose a scale-separated learnable proposal (SLP)
mechanism, which can dynamically adjust the learnable
proposals at each scale to optimize the object learning of
different scales.

e We propose a scale-separated activation pyramid (SAP) to
enable the model to focus on regions of object aggregation
in images with uneven distribution, significantly reducing
the computational cost of no-object regions.

e Extensive experiments demonstrate the superiority of the
SDPDet over state-of-the-art one-step detectors on three
widely-used benchmarks. On the VisDrone dataset, SD-
PDet with ResNet50 gains 5.4% AP improvements and
runs 1.9x faster.

II. RELATED WORKS

In this section, we first briefly introduce the object detection
methods for general scenarios in Section II-A, and then describe
the related work of drone-view object detection in detail in Sec-
tion I1-B.

A. Generic Object Detection

According to the different post-processing, generic object de-
tection can be categorized into two paradigms. NMS-based al-
gorithms [10], [11], [26], [27] and NMS-free algorithms [23],
[24], [25], [28].

NMS-based methods: The development of these approaches
can be divided into two main groups: two-stage methods, one-
stage methods. The two-stage methods [10], [29] first generate a
region of interest (Rol) that may contain objects, and then further
classify and regress these regions to obtain the final detection
results, such as Faster R-CNN [10], Cascade R-CNN [29]. To
accelerate the detection speed, the one-stage methods [11], [30],
[31], [32] predict the bounding box directly by computing the ex-
tracted features. Both anchor-based (e.g., SSD [30], YOLO[11])
and anchor-free (e.g., CenterNet [32], FCOS [33]) methods are
included. However, all of the above methods regress bounding
boxes by creating dense candidates at fixed locations and require
NMS post-processing to remove redundant predictions during
inference. However, when objects are extremely dense, the pre-
dictions of adjacent objects overlap too much so that the correct
result may be removed by NMS.

NMS-free methods. NMS-free [23], [24], [25], [28] detec-
tors reformulate object detection as a set prediction problem.
They designed a small number of learnable object queries to
model the relationship between objects and the global image
and showed impressive performance. Typically, the DETR series
(e.g., DETR [23], Anchor DETR [28], Deformable DETR [25])
delicately introduces the Transformer to object detection and
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Fig. 2.

Overview of SDPDet. The input image generates multi-scale features by the backbone. Scale-separated activation pyramid (SAP) is used to focus on

the regions with objects aggregated in a scale-separated manner. Scale-separated learnable proposals (SLP) mechanism learns the regression and classification on
different layers separately within the region of activation in multiple stages. Dynamic head is used to refine the prediction among the stages and output the final

detection results without any post-processing.

allows the network to focus on object regions by improving
the design of the query. Sparse R-CNN [24] proposes a learn-
able proposals mechanism, which learns the location of objects
to extract Rol. Methodologically, compared with creating dense
candidates in all regions, using such a learnable proposals mech-
anism reduces more computational costs, especially for objects
with discrete distributions.

B. Drone-View Object Detection

Drone-view object detection aims to detect objects with a
more discrete distribution and scale variation in a high image
resolution. Typical drone-view object detectors are mainly di-
vided into two paradigms, two-step and one-step detection.

Two-step detection: To avoid the invalid computational costs
introduced by the discrete distribution of objects and the cor-
rect results removed by NMS for dense aggregation, this
paradigm [14], [15], [16], [17] first searches a region where ob-
jects aggregated by a coarse detector, and then detects them with
a fine detector. Most of these approaches either optimize the ob-
ject learning by increasing the quantity of samples through data
augmentation [34], [35] or utilize generative adversarial net-
work (GAN) [36], [37], [38] to enhance the representation of
the objects. Some typical approaches (e.g., ClusDet [14], DM-
Net [15], GLSAN [16]) introduce clustering algorithm follow-
ing the coarse detector to locate the object aggregated regions.
Although achieving high accuracy, they generate huge compu-
tational costs for searching many sub-regions due to extreme
distributions in drone-view images.

One-step detection: To further improve efficiency, one-step
detectors directly detect the objects in the drone-view images.
The existing approaches mainly facilitate object learning by in-
creasing the resolution [19], [20], [21], [39], contextual learn-
ing [40], [41], [42], and multi-scale learning [20], [21], [43],
[44], [45]. Among these approaches increasing the image reso-
lution is the most effective, but it significantly increases the com-
putational costs. The recent QueryDet [21] reduces computa-
tional costs while using higher resolution features by introducing
the query mechanism. Nonetheless, this box/point anchor-based

detector is still challenging to handle objects that are dense and
contain more than one scale at the same time.

In this paper, we introduce the learnable proposals mechanism
into the one-step detection paradigm to solve the above problem
in a more efficient way.

III. PRELIMINARY

Previous methods that regress bounding boxes based on the
pre-defined box/point anchors [10], [30], [43]. These methods
require dense candidates and NMS post-processing to remove
redundant predictions during inference. However, in handling
dense and multi-scale object scenarios, NMS usually filters out
some correct prediction results that overlap too much with ad-
jacent predictions.

To solve these issues, the recent learnable proposals-based de-
tectors [24], [46] model regression and classification in detection
as a set prediction problem, which produces an optimal bipartite
matching between ground truth (GT) and predictions without
NMS post-processing. Specifically, these methods are similar to
Faster R-CNN [10], which first extract features by the backbone,
then obtain proposals and further refine them to get bounding
boxes and classification. Rather than generate proposals by the
Region Proposals Network (RPN), they propose the learnable
proposals mechanism. It regresses and classifies objects by a set
of learnable proposal boxes and learnable features. Each learn-
able proposal box contains four parameters (i.e. , the coordi-
nates of the box center, and the width and height of the box)
to obtain the Region of Interest(Rol) in the proposal box area,
and each learnable proposal feature contains a one-dimensional
feature that interacts with the Rol to assist the regression and
classification. The proposal boxes and features can be progres-
sively refined to output prediction results in multiple stages by
dynamic heads during inference and also can be updated by
back-propagation during training.

Although these methods have promising performance in gen-
eral object detection, they fail to handle the severe scale varia-
tion in drone-view object detection. This is because this binary
matching-based approach is sensitive to the dataset. The high

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on May 24,2024 at 05:45:05 UTC from IEEE Xplore. Restrictions apply.



YIN et al.: SDPDET: LEARNING SCALE-SEPARATED DYNAMIC PROPOSALS FOR END-TO-END DRONE-VIEW DETECTION

7815

© |
e | ="
. 0 o0
o= Sl —
ol <= “ <
" ol |N = Ps Learnable Proposal .. ~ Ps Separated Learnable
GT FPN Boxes GT J FPN Proposal Boxes
Baseline Ours

P2 @ P3 @ P4 @ P5

Fig. 3.

Difference between SLP and vanilla learnable proposals. SLP separates proposals into scale groups, the number of each group is determined by the

distribution of the dataset, and all GT's are involved in the training of specific levels according to their scale. In this way, the Rol from each level can be sufficiently

extracted during training for better exploiting the advantages of FPN.

proportion of small-scale objects in the drone-view images will
cause the learnable proposals to be biased toward small-scale
features and neglect other scales.

IV. METHODS

In this section, we first introduce the proposed SDPDet in
Section IV-A, and then we describe in detail the two compo-
nents of SDPDet, scale-separated learnable proposals (SLP) in
Section IV-B and scale-separated activation pyramid (SAP) in
Section I'V-C, respectively. Finally, the training details are intro-
duced in Section IV-D.

A. SDPDet

The overview of our proposed SDPDet is shown in Fig. 2.
Firstly, we feed the input image into the backbone to obtain
the multi-scale features (i.e. , Cy ~ C5). Then, the multi-scale
features are fed into the SAP to obtain the pyramid features
(i.e., P, ~ Pg) and activation maps (i.e. , As ~ Ag). Next, the
SLP mechanism enables each proposal to learn within the ac-
tivation regions at the corresponding scale and extract Rol on
different scales. Finally, we sent the Rol and its corresponding
proposal feature to the dynamic head same as existing work [24],
[46] for obtaining prediction results at multiple stages. The pro-
posed SLP and SAP are described in detail in Sections IV-B and
IV-C, respectively.

The key idea of SDPDet is the scale-separated dynamic pro-
posals mechanism, which is an effective combination of SAP
and SLP. Specifically, we determine whether the learnable pro-
posal box from level [ contains the points in the activation map
A; from SAP. If so, we assume that the proposal contains objects
and preserve it, otherwise discard it. The preserved proposals are
refined through a total of T stages to output prediction results.
With this scale-separated dynamic proposals mechanism, we can
dynamically preserve proposals that contain objects at each scale
separately and avoid invalid ones. The advantages of SDPDet
are to optimize the object learning at each scale while reduc-
ing the invalid computational costs and solving the problem of
uneven distribution and scale variation in drone-view images.

B. Scale-Separated Learnable Proposals

The Vanilla learnable proposal mechanism [24] treats all GTs
as a uniform set to learn during training, and each proposal will
be assigned by its scale to different levels for extracting the re-
gion of interests (Rol). As shown in the left part of Fig. 3, in
drone-view images dominated by small objects, almost all the
proposals are assigned to the feature map with higher resolution
P5, and almost no proposals are available in the remaining lev-
els. Besides, in different images, the same proposals will learn
different scales of objects which leads to sub-optimal solutions.

Therefore, we propose the scale-separated learnable propos-
als (SLP) mechanism. In particular, inspired by the FPN’s idea
of divide-and-conquer, we consider each single learnable pro-
posal as an ‘individual’ and all proposals as a collective ‘whole’.
Each ‘individual’ focuses on only one scale of feature learning,
which constitutes a more complete and effective ‘whole’ for
scale learning.

As shown in Fig. 3, we decouple the learnable proposals at
each scale and train them separately with separated GT on dif-
ferent layers of the FPN [43]. Specifically, during training, for
a bounding box with width w and height %, we assign it to the
level P of the feature pyramid by:

2, Vwh < is
|lo + logsy mj, 15 <Vwh < 4s, (D

S

6, 4s < Vwh

=

where [ refers to the pyramid level. | - | denotes the floor function.
We empirically follow existing work that adapts the assignment
strategy of FPN-based detectors [10], [43] setting s to 224. [
is the target level on which the Rol with w x h = 2242 should
be mapped into, and [ is set to 4 for the ResNet-based object
detection framework.

Based on the assignment results of the proposal boxes in the
FPN during training, each different proposal only focuses on
the prediction at the corresponding scale during inference. By
such design, we make the proposals robust to scale variation and
focus on learning different scale objects in a separate way.
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C. Scale-Separated Activation Pyramid

Due to the uneven distribution of objects, detecting in drone-
view images usually produces onerous and invalid computa-
tional costs on the regions without objects, especially for shal-
low features with higher resolution of FPN. Inspired by this, we
propose the scale-separated activation pyramid (SAP), which
activates regions of object aggregation in the feature pyramid at
each scale separately by designing a simple activation head.

Specifically, for an image with input size h X w, we use
P = {P, € Rm*wixe} (o denote the feature maps output from
SAP, where [ refers to the pyramid level, ¢; is the feature chan-

5 %) We input the

features P; at the [ level of SAP for generating the activation
maps A; € RM*wix1 at each level separately. The detailed pro-
cess can be divided into the following two steps. 1) Feeding
P, into the activation head consisting of several convolutional
layers to obtain a single-channel heatmap, which represents the
confidence of the aggregated region presence. 2) Generating ac-
tivation map by setting the regions in the heatmap with values
larger than the threshold 7}, to 1 and the rest to 0.

During training, based on the assignment strategy in (1),
we enable the activation head at each level to only learn the
regions with objects aggregated at the corresponding scale. In
this simple but effective way, SAP focuses on the regions where
object aggregation in drone-view images at each scale better,
while consuming very little costs.

Unlike QueryDet [21], which introduces an additional query
head branch after the output of the feature pyramid to detect
the small objects coarsely. It uses sparse convolution [47] to
reduce the computational cost by computing only the areas of
small objects in high-resolution features. The learnable propos-
als mechanism does not use convolutional operations on the full
image, which means there is no need to use sparse convolution
to reduce computational costs. Therefore, we concentrate more
on how to obtain robust aggregation regions in parallel with the
output feature pyramids. Specifically, the activation head in our
SAP is to detect the region of object aggregation separately at
each scale, so as to avoid invalid calculations without object
regions.

nel of level [, and (h;,w;) refers to

D. Training

We divide the loss into two parts, one part used to guide the
activation maps generation in the SAP, and another part used to
supervise the classification and regression of SLP.

1) SAP: To enable the generated activation maps to focus
on regions with objects aggregated, we construct pseudo-labels
based on GT and train the activation head. Specifically, we de-
note each object as b = (x, Y., w, h), where (x.,y.) as the
center, and w and h are the width and height, respectively.
We construct the circle with (z.,y.) as the center and r =

(w/2)2 4 (h/2)? as the radius. The GT of the activation map
Aqr can be formulated as:

AGT = U A(iC, y)

T,y

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

N

Fig. 4. We use circles covering the objects as labels. When multiple objects
gather, multiple circles overlap with each other to obtain higher confidence, thus
obtaining the aggregated region. (a) Original image. (b) Ground-truth of SAP.
(c) Visualization activation map obtained by SAP.

1 if D(z, a
if D(z,y) < r 7 )

Ale.y) = {0 if D(w,y) > 74

where D(z,y) = \/(z — 2.)% + (y — y.)? refers to the Eu-
clidean distance between the point (x, y) in Agr and the center
of the circle (., y.), the r, refers to a multiple of  and uses
to measure the distance between aggregated objects. The loss of
activation maps generation £, can be defined as:

£a = FL(Aa AGT)a (3)

where A is the activation map output from the SAP. FL(-) de-
notes the FocalLoss [31]. As shown in Fig. 4, the network is
trained to obtain a circle region centered on the objects, and the
aggregated regions obtain higher confidence scores due to the
circles of objects overlapping each other. It is worth noting that
this design of generating A can be applied at different scales
to allow the training of activation heads in the SAP.

2) SLP: We use the same loss design as the set prediction
paradigm approach [23], [24], [46] for SLP. Specifically, this
loss function supervises the learnable proposals by generating
an optimal bipartite matching between the prediction and GT.
The loss £,, i.e. , the matching cost, can be defined as:

Lp = Aels Ccls + At ELl + )"giou : ﬁgioua (€))

where L. denotes the FocalLoss [31] between predicted clas-
sification and GT label. L1 and L;,,, represent the L1 loss and
generalized IoU loss [48] between predicted bounding box and
GT box, respectively. As, Ar1, and Ag;0, are the coefficients
of three part. To optimize the feature learning in different lay-
ers better, we calculate the loss function in each layer with only
matched pair that satisfies the scale in (1). i.e. , The proposals
on P, will only match the smallest object and vice versa.
Finally, the overall loss L;,;4; can be represented as:

‘Ctotal = ﬁa + £p7 (5)

where L, is the activation maps loss at all scales, and £,, is the
classification and regression loss at all scales.
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V. EXPERIMENTS

A. Implementation Details

To trade off the complexity and accuracy of our model, we
construct the activation head using five convolutional layers of
size 3 x 3. Considering the runtime and the FLOPs, we filter out
the proposals at P» and set the threshold 77, to 0.3. We set 7, to
2 times 7 to better obtain the regions with objects aggregated.
Besides, to obtain the optimal proposals through the multi-stage
refinement mechanism in SLP, we follow previous works [24],
[46] to set T to 6. We use the AdamW optimizer with weight
decay 0.0001, and use the batch size of 1 for 50 epochs. The
initial learning rate is set as 2.5 x 1075 and then decreases by a
factor of 10 for epochs 30 and 40. We follow previous work [24],
[46] to perform data augmentation by random horizontal, and
scale jitter of resizing the input images. We follow previous
works [23], [24], [25] to set the coefficients Acjs, Az, and Agion
as 2,5, and 2, respectively. Our proposed SDPDet is based on the
Detectron2 toolkit and PyTorch, and all models are conducted
on an NVIDIA RTX 2080Ti GPU.

B. Datasets and Metric

1) Datasets: To demonstrate the superiority of SDPDet, we
validate performance on three widely-used drone-view im-
age and remote sensing detection benchmarks, VisDrone [12],
UAVDT [13], and DOTA [55].

VisDrone is acquired by drones at different viewpoints and al-
titudes, including 6,471 training images, 548 validation images,
and 3,190 test images. The dataset has 10 categories, and its res-
olution is about 2000 x 1500. The object size can be divided into
small (area < 322), medium (322 < area < 962), and large
(area > 962). And the proportions in the dataset are [60.5, 34.0,
5.5]. For fair comparisons, we follow previous works [14], [15],
[16] to evaluate SDPDet on the validation set.

UAVDT is a popular drone-view image dataset, which con-
tains 23,258 images for training and 15,069 images for testing.
It mainly contains three categories of objects, and the average
resolution is 1080 x 540.

DOTA is the constructed dataset by selecting from the remote
sensing benchmark DOTA [55]. For fair comparisons, we follow
previous works [14], [18] to select 920 images for training and
285 images for testing, which included movable objects, such
as airplanes, helicopters, efc.

2) Evaluation Metric: We follow existing works [14], [15],
[16], [20], [21] and use the widely-used evaluation protocol of
the MS COCO dataset. It involves six metrics AP, APq 5, AP 75,
AP, AP,,, AP;, where AP denotes the average precision for ten
IoU thresholds whose range is from 0.5 to 0.95, while AP 5
and APg 75 are 0.5 and 0.75, respectively. AP, AP,,, and AP,
are the AP for the objects with area < 322, 322 < area < 962,
and area > 96, respectively.

C. Comparisons With State-of-the-Art Methods

We compare SDPDet with 13 state-of-the-art methods and
categorize these methods according to the number of detectors
used: two-step detection methods [14], [15], [16], [17], [18],

7817

[49], [501, [51], [52], [53], [54] and one-step detection meth-
ods [20], [21]. For fair comparisons, we obtain the performance
from their original paper or reproduce results by authors’ offi-
cially released models. We use the runtime of an image, denoted
as s/img, to verify the model complexity.

We compare SDPDet with other SOTA methods on the most
widely-used VisDrone dataset [12]. As shown in Table I, the up-
per and lower parts of the table show the results of the two-step
detection methods and the one-step detection methods, respec-
tively. Among them, since the strategy of detecting regions and
slicing original images for training and testing, the two-step de-
tection [14], [15],[16], [17], [18], [49], [50], [54] achieves higher
accuracy, they have a more complex structure and longer runtime
than one-step detection, especially when it encounters scenarios
with the discrete distribution. Recent years have witnessed an in-
creasing number of one-step detection methods [20], [21], which
detect information-limited objects directly through one detector.
Such as Focus&Detect [54], although it achieves the highest per-
formance, the heavy structure and post-processing make its poor
runtime. HRDNet [20] and QueryDet [21] attempt to optimize
the feature extraction and runtime when high-resolution images
are input. Nonetheless, these methods based on box/point an-
chors are still challenging to handle objects with uneven distri-
bution and scale variation. Different from them, SDPDet tries
to solve these problems by linking the regions of object ag-
gregation and the learnable proposals mechanisms together in
a scale-separated manner. Due to such merits, using the same
backbone, SDPDet achieves a result of 33.7 AP and significantly
outperforms QueryDet [21] by 5.4 AP on the VisDrone [12] and
runs 1.9x faster (0.196 s/img vs. 0.364 s/img), and also has
better performance than HRDNet [20] using a larger backbone
(33.7 AP using ResNet50 vs. 31.4 AP using ResNet18+101).
This large margin demonstrates the power of SDPDet in uneven
distribution and scale variation.

To further verify the generalization ability of SDPDet,
we evaluate SDPDet on other two popular drone-view and
remote sensing image detection benchmarks, UAVDT [13]
and DOTA [55]. For fair comparisons, we follow previous
works [14], [15], [16], [17], [18], [50], [55] to use the same
training and testing strategy on the dataset. As shown in
Table II, due to the well-designed dynamic adjustment mecha-
nism of the learnable proposals, SDPDet achieves better results
in all datasets. It is worth noting that since the images in DOTA
are too large, two-step detection can detect by slicing the image
from the detected sub-regions, but the images for one-step de-
tection are too large to fit, so we use the official toolkit [55] to
slice the images. The results verify that our SDPDet has strong
generalization capabilities under different scenarios.

D. Ablation Study

To analyze how SAP and SLP influence the accuracy and
complexity of SDPDet, we conduct ablation studies on the Vis-
Drone validation set. We introduce s/img and FLOPs to verify
the runtime and complexity. The results are shown in Table III.
After introducing the SAP, we get a better performance in both
accuracy (+0.8 AP) and complexity (—0.017 s/img and —34.6 G

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on May 24,2024 at 05:45:05 UTC from IEEE Xplore. Restrictions apply.



7818

TABLE I
RESULTS IN VISDRONE VALIDATION SET

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Paradigm Method Backbone AP APps APo.7vs | APs AP, AP s/img
ClusDet [14] ResNeXt101 28.4 532 26.4 19.1 40.8 544 | 0.773 (GTX 1080Ti)
DMNet [15] ResNeXt101 29.4 49.3 30.6 21.6 410 569 | 0.610 (GTX 1080Ti)
CRENet [49] Hourglass104 33.7 54.3 335 25.6 453 587 | 0.901 (RTX 2080Ti)
Two-step | CDMDet [17] ResNeXt101 319 52.9 332 238 434 451 -
Detection | GLSRN [16] ResNet101 30.7 55.6 22.9 - - - 0.760 (TiTAN Xp)
UCGNet [50] DarkNet53 32.8 53.1 339 - - - -
ADaZoom [18] ResNeXt101 37.6 66.3 39.5 - - - -
UFPMP-Det [51] ResNeXt101 40.1 66.8 413 - - - -
PRDet [52] ResNeXt101 32.0 53.9 332 25,6 40.8 529 | 0.195 (RTX 3090)
CZ Det [53] ResNet50 332 58.3 332 26.1 426 434 0.118 (A100)
Focus&Detect[54] ResNeXt101 42.1 66.1 44.6 32 479 545 | 1.362 (RTX 2080Ti)
QueryDet [21] ResNet50 28.3 48.1 28.8 19.8° 359 403 | 0.364 (RTX 2080Ti)
One-step | HRDNet [20] ResNet18+101 | 31.4 53.3 31.6 - - - 0.357 (RTX 2080Ti)
Detection | SDPDet(Ours) ResNet50 33.7 56.6 343 267 429 457 | 0.196 (RTX 2080Ti)
SDPDet(Ours) ResNeXt101 34.2 57.8 34.9 27.5 432 419 | 0.346 (RTX 2080Ti)
Bold font indicates the best result of one column.
TABLE 11
RESULTS IN UAVDT AND DOTA DATASET
Dataset Paradigm Method Backbone AP  APos APo7s | APs AP, AP
ClusDet [14] ResNet50 13.7 26.5 12.5 9.1 25.1 13.2
DMNet [15] ResNet50 14.7 24.6 16.3 9.3 26.2 35.2
CDMDet [17] ResNet50 20.7 355 22.4 13.9 33.5 19.8
UAVDT Two-step | GLSRN [16] ResNet50 19 30.5 21.7 - - -
Detection | UCGNet [50] DarkNet53 19.1 36.7 18 11.1 31 36
ADaZoom [18] ResNet50 19.6 33.6 21.3 14.4 28.6 31.2
CZ Det [53] ResNet50 19.8 34.1 21.3 - - -
UFPMP-Det [51] ResNet50 24.6 38.7 28.0 - - -
One-step | QueryDet [21] ResNet50 14.3 27.2 16.6 11.1 242 14.7
Detection | SDPDet(Ours) ResNet50 20.0 32.0 23.1 13.3 33.0 21.1
Two-step ClusDet* [14] ResNet50 32.2 47.6 39.2 16.6 32 50
DOTA Detection AdaZoom* [18] ResNet50 36.0 62.7 37.0 - - -
CZ Det* [53] ResNet50 34.6 56.9 36.2 18.2 37.8 43.8
One-step | QueryDet [21] ResNet50 33.9 58.1 36.3 163 403 394
Detection | SDPDet(Ours) ResNet50 40.9 62.3 47.8 224 47.8 53.5
* indicates using the uncropped original image as input.
SAP stands for scale-separated activation pyramid, SLP stands for scale-separated learnable proposals.
TABLE III
ABLATION STUDIES ON VISDRONE VALIDATION SET
SAP SLP AP AP()5 AP()A75 APS AP,,,L APl s/lmg FLOPs
29.9 50.9 30.5 234 384 45.9 | 0.177 155.8G
v 30.7 52.0 31.5 242 40.0 374 | 0.160 121.2G
v 33.3 56.1 34.3 26.0 429 449 | 0.215 175.1G
v v 33.7 56.6 34.3 26.7 42.9 45.7 | 0.196 139.7G

SAP stands for scale-separated activation pyramid, SLP stands for scale-separated learnable proposals.

FLOPs). It demonstrates that SAP can improve both accuracy
and efficiency by enabling the detector to focus on the aggregated
region and filter out invalid proposals. In addition, the utilization
of aggregated region information during training the SAP has
led to significant improvements in the detection performance of
smaller objects. This was achieved by augmenting the detector’s
heightened attention toward such regions where smaller objects
aggregated. The introduction of the SLP mechanism can largely
increase accuracy (+3.4 AP), especially in small objects (+2.6
AP, and +4.5 AP,,). It proves that by scale-separating learnable
proposals, the learnable proposals can learn scale information
to handle object uneven distribution and scale problems more
effectively. However, the mechanism of SLP increases the run-
time and computational costs. After combining SAP and SLP
in SDPDet at the same time, we get a further performance with
a gain of 3.8 AP and 16.1 G fewer FLOPs, which proves the
superiority of our proposed SAP and SLP.

E. Visualization

To verify the effectiveness of the activation map generated
by the activation head. As shown in Fig. 5, we visualize it and
its corresponding detection results. Regardless of whether the
objects are dense or discrete, the activation map focuses on the
regions with objects aggregated, which indicates the superiority
of the activation map.

VI. DISCUSSIONS

In this section, we analyze each factor in SAP and SLP to
prove their validity as much as possible. All experiments are
conducted on the VisDrone [12] validation set.

A. Influence of the Activation Map Threshold T,

As described in Section IV-C. The activation map is used to
search the regions with objects aggregated and filter proposals
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a) Input Image (b Activation Map
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Fig. 6.  Sensitivity of activation map thresholds for model accuracy (left) and

complexity (right).

in regions smaller than the threshold 7, to reduce computational
costs. Therefore, we explore the sensitivity of the 7}, in the ac-
tivation map. As shown in Fig. 6, the effect of threshold 77, on
runtime and computation costs is almost linear, while the effect
on detection performance has little change up to 0.3 and starts
to drop sharply when it exceeds 0.3. Setting 77, as 0.3 can filter
out invalid proposals and reduce the complexity almost without
reducing accuracy. Yet further increasing 7, would filter out the
correct proposals and reduce the performance. We set the 7}, to
0.3 after a trade-off.

B. Influence of Activation Map on Different Layers

To explore the influence of activation maps on complexity,
we construct comparisons by adding activation maps on dif-
ferent layers of SAP separately. As shown in Table IV, com-
pared with no activation map, using activation maps at the higher
resolution P, can reduce much computational costs (—35.4 G
FLOPs) without reducing accuracy. Since the proposals are com-
puted in parallel, the reduction in runtime is not significant
(—0.020 s/img). It is worth noting that the performance of AP;
decreases by 3.3 when using the activation map at Ps, which is
due to the fact that the object distribution is more discrete at this
scale and the activation map causes the proposals lost to some
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(c) SDPDet(Ours)

Visualization of the activation map and detection results on VisDrone validation set, We remove the category labels in the bounding box for a better visual

TABLE IV
COMPARISON OF PERFORMANCE AND COMPLEXITY USING ACTIVATION MAP IN
DIFFERENT LAYERS

Layer AP APs AP, AP, s/img  FLOPs

- 33.8 26.8 429 458 | 0216  175.1G

P 337 267 429 457 | 0.196 139.7G

Ps 33.6  26.8 427 424 | 0212 169.6G

Py 33.7 268 429 452 | 0215 173.9G

Ps 33.8  26.8 429 454 | 0215 173.7G
TABLE V

COMPARISON OF DIFFERENT METHODS OF OBTAINING ACTIVATION MAP

Method AP APg APy, APy s/fimg  FLOPs
QueryDet 33.0 258 423 455 | 0.181 1254G
Ours(rg 2) | 337 267 429 457 | 0.196 139.7G
Ours(rq 4) | 337 267 43.0 459 | 0.207 159.4G

extent. Since objects are much rarer in other scales, they have
little impact on performance. After a trade-off between accu-
racy and complexity, we use the activation map at P as the final
model.

C. Different Methods of Obtaining Activation Map

We apply our method and QueryDet to SAP for comparison,
respectively. We use 7, to measure the distance between aggre-
gation objects when making pseudo-labels to make the network
detect the regions of object aggregation. The results are shown
in Table V, although the way of QueryDet brings more runtime
and complexity improvement, the improvement is limited, and
the performance decreases too much. Our method balances per-
formance and complexity, improving model efficiency without
reducing performance. we also find that using a large distance
would keep many invalid proposals, which has more complexity.
We set the distance 7, to 2 after a trade-off between accuracy
and complexity.
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(a) P2
Fig. 7.
TABLE VI
COMPARISON OF PERFORMANCE AND COMPLEXITY USING PROPOSALS FROM
DIFFERENT LAYERS
Layer AP AP AP, AP;
Py 303 267 408 4.7
Ps 52 0.1 6.7 41.1
Py_¢ 1.3 0 04 15.7

D. Visualization of Proposals From Different Layers

For a further representation of the performance of our pro-
posed SLP on scale separation, we visualize the detection re-
sults of proposals from different layers separately. The results
are shown in Fig. 7, the proposals from P5 only detect the small
objects, while the proposals from P3 and P,_¢ detect only larger
objects. This demonstrates that our proposed SLP makes learn-
able proposals scale-separated well, which allows specific pro-
posals to focus only on specific scales.

E. Influence of Proposals From Different Layers

As described in Section IV-B, we explore the influence of
proposals from each level on the detection ability. As shown in
Table VI, when only using the proposals with the P, we get
superior performance only on the AP, and AP,,. With more
layers involved (i.e. , from Ps to P;_g), the performance of AP,
is significantly improved (i.e. , from 5.3 to 41.1 and 15.7). It
demonstrates that enabling the proposals from different layers
to learn objects with different scales effectively facilitates the
detection of multi-scale objects.

FE. Influence of Proposals Numbers

The number of proposals pre-defined by the model limits the
maximum number of objects predicted. To study the influence of
proposal numbers on SDPDet, we progressively increase initial
proposals from 1500 to 2500. As shown in Table VII, increasing
the number of proposals to 2000 can effectively improve the de-
tection performance. However, when the number of proposals is
larger, it can significantly increase computational costs and even

(b) P3

(c) Pas

Visualization of proposals from different layers. Because there are fewer objects with large scales, we combine the detection results from P4_g.

TABLE VII
COMPARISON OF PERFORMANCE AND COMPLEXITY USING DIFFERENT INITIAL
PROPOSAL BOX NUMBERS

Num AP AP AP, AP s/fimg  FLOPs

1500 | 33.0 259 421 427 | 0.183  136.1G

2000 | 33.8 268 429 458 | 0216 175.1G

2500 | 33.6 263  43.1 440 | 0253 214.0G
TABLE VIII

COMPARISON OF THE DIFFERENT STAGE NUMBERS SDPDET USES

Num AP AP AP, AP, s/fimg  FLOPs
2 145 10.6 19.3 19.9 | 0.145 71.2G
3 234 167 31.8 36.9 | 0.162 97.2G
4 309 236 40.1 43.1 | 0.179 123.2G
5 33.1  26.0 422 459 | 0.198 149.1G
6 33.8  26.8 429 458 | 0216 175.1G
12 324 25.6 41.8 448 | 0.310 330.9G

reduce performance. It is because a large number of proposals
will cause duplication between the predictions of proposals. We
finally set up 2000 initial proposals after a trade-off between
accuracy and complexity.

G. Influence of the Number of Stages

Existing works have demonstrated that iterative struc-
tures [24], [46] can effectively improve object detection per-
formance. As shown in Table VIII, with the number of stages
increasing, the accuracy improves very significantly in the first
few stages. However, further increasing the number of stages,
the performance improvement is not obvious or even worse,
which is because too many stages tend to result in accurate pre-
dictions being filtered out. Besides, the runtime and FLOPs are
almost linearly related to the number of stages. After a trade-off
between complexity and accuracy, we set six stages.

H. Influence of Different Label Assignments

To further validate the effectiveness of our method, we applied
different label assignments on Sparse R-CNN and the results are
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TABLE IX
COMPARISON OF THE DIFFERENT LABEL ASSIGNMENTS

Method AP APp5 APo75 | APs AP, AP
IoU 7.8 13.3 79 7.0 10.3 8.0
GloU 9.5 16.9 9.3 8.3 11.8 13.9

L2 - - - - - -
ToU+cls 28.9 49.7 29.2 223 356 383
baseline 29.9 50.9 30.5 234 384 459
POTO [56] | 32.3 553 32.7 255 409 409
Ours 33.7 56.6 34.3 26.7 429 457

IoU indicates selecting the proposal with the maximum IoU of the GT as the
positive sample, GIoU indicates selecting the proposal with the maximum GloU
of the GT as the positive sample, L2 indicates selecting the proposal with the
minimum L2 distance of the center of GT as the positive sample, and IoU+cls
means combining the classification predictions of the proposals and the iou to
select positive samples. ‘- indicates that the model cannot converge.

shown in Table IX. IoU achieves a poor performance result (7.8
AP), GloU also performs badly (9.5 AP) and L2 can’t even con-
verge. The static label assignment provides sub-optimal positive
samples, and the few and inaccurate positive samples lead to in-
efficient feature learning in Sparse R-CNN due to its one-to-one
matching strategy. With the supervision of classification added
(iou+class), the performance improves significantly (+21.1 AP),
which shows that joint supervision of classification and local-
ization is vitally important for dynamic one-to-one label assign-
ment in Sparse R-CNN. We also introduced another one-to-one
label assignment from POTO [56]. Compared with the base-
line, POTO has some improvement on small and medium ob-
jects (+2.1 AP, +2.5 AP,,,), but has a larger performance gap on
large objects (-5.0 AP;). Since there are more small and medium
objects in the dataset, the AP is also higher than the baseline.
Our method improves the performance of small and medium ob-
jects while keeping the performance of baseline on large objects
and achieves better performance than POTO, which shows the
efficiency of our method.

VII. LIMITATIONS

Although SDPDet can effectively localize objects with dis-
crete distributions and various scales, it still suffers from some
limitations. 1) Compared with the two-step detection methods of
fine detection by zooming in sub-regions, the appearance fea-
tures of objects used in SDPDet are very limited, which re-
duces the classification performance. 2) When training the de-
tector in the two-step detection methods using the zoomed-in
sub-regions, it implicitly expands the data magnitude and op-
timizes the class distribution. In contrast, SDPDet also suffers
from extreme class distributions (e.g., long-tail).

VIII. CONCLUSION

In this paper, we pay more attention to the uneven distribu-
tion and scale variation in drone-view images and present a new
end-to-end drone-view image detection model, called SDPDet.
In particular, SDPDet includes 1) a scale-separated activation
pyramid (SAP) to focus on the regions that have object aggrega-
tion at each scale, and 2) a scale-separated learnable proposals
(SLP) mechanism to learn proposals in these regions at different
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scales. To our best knowledge, SDPDet is the first work to en-
able the learnable proposals mechanism to handle object uneven
distribution and scale variation in drone-view object detection.
The experimental results show a significant superiority between
the proposed SDPDet and the existing models. In the future, we
will enable the scale-separated learnable proposals mechanism
to solve the problem of unbalanced category distribution through
more explorations.
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