
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 9, SEPTEMBER 2023 4997

SCGNet: Shifting and Cascaded Group Network
Hao Zhang , Shenqi Lai, Yaxiong Wang , Zongyang Da, Yujie Dun , and Xueming Qian

Abstract— Many lightweight networks have been proposed for
resource-limited applications, however, they cannot be efficiently
applied to neural-network processing units (NPUs) due to the
limited operations supported by the NPUs, and few works focus
on efficient network design on the NPUs. The basic blocks of
networks such as MobileNetV2 and RegNet use smaller convolu-
tion kernels with relatively small receptive fields, which are not
conducive to capturing large-scale spatial information. To address
this weakness, we propose Shifting and Cascaded Group (SCG)
block, where we cascade group convolutions with larger kernels
to exploit multi-scale information and propose shifting group
convolution to communicate channel information between differ-
ent groups. Besides, we carefully devise our architecture guided
by some principles and finally build a very efficient network
called Shifting and Cascaded Group Network (SCGNet) on NPUs.
To verify the superiority of our method, we conduct extensive
experiments on various tasks including image classification,
object detection, human pose estimation, person re-identification,
and semantic segmentation to comprehensively evaluate the
performance. Results on widely used datasets such as ImageNet,
PASCAL VOC, COCO, MPII, Market-1501, DukeMTMC-ReID,
CUHK03, and Cityscapes demonstrate that the proposed network
is a more effective network on the corresponding vision tasks.

Index Terms— Lightweight networks, NPU, image classifi-
cation, object detection, human pose estimation, person re-
identification, semantic segmentation.

I. INTRODUCTION

WITH the development of computer vision, lightweight
networks have attached much attention due to the

urgent requirement for mobile applications. As a result,
so many excellent lightweight networks like MobileNet
series [3], [4], [5], ShuffleNet series [6], [7], etc., have been
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widely used due to their fewer parameters and satisfactory
FLOPs. For hardware deployment, the Neural Network Pro-
cessing Unit (NPU) is a popular choice because it is specifi-
cally designed for mobile applications, and is widely used to
replace CPU and GPU in robotics and edge computing with
extremely low power consumption.

To achieve a faster inference, a straightforward thought is
to adapt the classical lightweight models to NPU. However,
the performance and efficiency of existing models on NPU are
unsatisfactory. Some typical lightweight networks, such as [1],
[3], [4], [8], [9], and [10] cannot reach an ideal inference speed
on NPU. Reference [6], [7], [11], and [12] even cannot be
deployed because of the unsupported operation. For example,
the ShuffleNet series could not be embedded in NPU due to
the unsupported “channel shuffle” operation. Few works focus
on the inference speed of NPU, this motivates us to devise an
efficient and effective network on NPU.

An important truth about NPUs is that the lower com-
putational complexity does not always mean a faster infer-
ence. In Table I, we report the FLOPs of some well-known
lightweight networks and the inference speed on NPUs.
As shown in this table, MobileNet series have much smaller
FLOPs and parameters compared with ResNet-18 [13], but
the inference speed on NPU is slower. The reason behind
this observation is a fact that the widely used depthwise
convolution significantly increases the memory access cost
(MAC), which is an important factor for efficient model
design on NPUs. In contrast, RegNetX [14] achieves more
efficient inference with fewer FLOPs, which is an intu-
itive result. Compared with ResNet and MobileNet, Reg-
NetX introduces group convolution to build the network.
Given this, we potentially think the group convolution can
well reduce the computation cost and not bring much MAC
burden.

The above observations inspire us to use the group
convolution operation as the basic operation for better
efficiency. However, the group convolution achieves a
faster inference at the cost of performance dropping,
just the RegNetX-200MF shown in Table I. RegNet and
MobileNet series only use two 1 × 1 convolutions and one
3 × 3 convolution to form the basic unit of the networks,
but this form has a relatively small receptive field and
lacks enough spatial information. Therefore, we propose
to cascade two 3 × 3 group convolutions to get a bigger
reception field. However, two cascaded group convolutions
result in information exchange within only the corresponding
groups, with barriers between different groups. To solve this
problem, we replace the first group convolution with our
newly proposed shifting group convolution, which repeats
circular shifting procedures to adjust the grouping situation.
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TABLE I
A COMPARISON OF DIFFERENT MODELS ON THE IMAGENET. FLOPS,

PARAMS, TOP-1 ACCURACY AND FPS ON NPU ARE REPORTED. FPS
REPRESENTS INFERENCE SPEED IN FRAMES PER SECOND

It exchanges information between different groups, and then
realizes channel information communication between groups.

In this paper, we design a novel Shifting and Cascaded
Group (SCG) block and build a more efficient lightweight net-
work named Shifting and Cascaded Group Network (SCGNet)
based on the SCG blocks. To realize faster inference speed
on NPU, reduce memory access cost and efficiently use
group convolution, we cascade our newly proposed shifting
group convolution and group convolution with larger kernels.
Although the exchange of information between groups using
one shifting group convolution is limited, stacking a series of
SCG blocks makes the channel information exchange between
different groups feasible and effective. Besides, we carefully
devise our architecture guided by some principles and finally
build a very efficient network on NPUs.

We expect this work could serve as a solid baseline for
future NPU-focused lightweight models. Our contributions can
be summarized as follows:

• A Shifting and Cascaded Group (SCG) block.
We design an effective and efficient block named SCG
block containing our newly proposed shifting group con-
volution and one group convolution with larger kernels,
which can effectively collect information across spatial
and group dimensions.

• A NPU-friendly lightweight network (SCGNet). We
build a very efficient lightweight network on NPU
using our SCG blocks. Our model achieves an accuracy
improvement of 2.0 points and a 107% improvement on
MobileNetV2 with similar FLOPs. SCGNet also achieves
an accuracy improvement of 3.8 points compared to
MobileNetV3, which is even about 2 times faster.

• Excellent Performance on mainstream vision tasks.
Extensive experiments on a wide range of tasks including
image classification, object detection, human pose estima-
tion, person re-identification, and semantic segmentation
show that our network SCGNet is an excellent backbone.

The rest of this paper is organized as follows: In Section II,
related works are briefly reviewed. We describe how to
construct SCGNet as our method in Section III. Extensive
experiments are shown in Section IV. Conclusions are drawn
in Section V.

II. RELATED WORKS

In recent years, deep networks have improved network
performance by increasing the size of the model, e.g., ViT [16],
ConvNeXts [17], etc. But these networks cannot even be
deployed on the NPU of RK3399PRO due to their large

model size. As a result, lightweight networks have played an
important role in mobile chips with limited computing power
and memory, especially NPUs for neural network operations
and applications. Therefore, a lot of work need to be done
to explore the trade-off between accuracy and speed when
designing deep neural network architectures.

A. Compression and Acceleration of Models

Many deep learning networks achieve high-precision perfor-
mance by designing complex structures or deepening the depth
of the network. Admittedly, these methods are very useful in
some areas. However, complex networks consume a lot of time
in inference, and they are difficult to meet real-time require-
ments. However, the compression and acceleration of models
are very important in many real-time applications, which are
generally divided into pruning, quantization, distillation, and
structural design.

Pruning can be divided into synaptic pruning [18], neuron
pruning [19], weight matrix pruning [20], and other methods,
whose general idea is to set the unimportant parameters in the
weight matrix to 0 and combine the sparse matrix to carry out
storage and calculation. Quantization [21] is a very common
method of model compression. It greatly reduces the size of
the model by reducing the 32-bit floating point to 8-bit or
even 1-bit. To some extent, quantization can achieve model
compression but has little effect on model speedup. Knowledge
distillation [22] is widely used in the training of efficient neural
networks. The essence of knowledge distillation is the learning
of the student network from the teacher network. The structure
of the student network is simple, and it is necessary to learn
useful information from the teacher network and then obtain
comparable results with the teacher network. In this paper,
we mainly focus on the structural design.

B. Lightweight Networks Structural Design

As for the structural design, there are many very classic
works, which greatly reduce the size of the model and the
number of operations, and the loss of accuracy is small.
SqueezeNet [23] only uses 1 × 1 convolution in the squeeze
layer and reduces the input channel of 3 × 3 convolution,
which significantly reduces the number of parameters. Later,
MobileNet [3] uses depthwise separable convolutions to build
lower latency and smaller networks. ShuffleNet [6] generalizes
group convolution and depthwise separable convolution in a
novel form and utilizes “channel shuffle” to greatly reduce
computation cost while maintaining accuracy, which is the
first work investigate the usage of “channel shuffle” in small
model design. MobileNetV2 [4] proposes a new lay module
named the inverted residual with linear bottleneck, which
reduces the need for main memory access. ShuffleNetV2 [7]
introduces a simple operator called channel split and reduces
element-wise operations to speed up. IGCV3 [24] uses the
Interleaved Low-Rank Group Convolutions, which consists
of a channel-wise spatial convolution, and a low-rank group
point-wise convolution, and gets the better performance.
C-GhostNet [8] proposes a Ghost module, which can be taken
as a plug-and-play component to upgrade existing convolu-
tional neural networks. Similarly, G-GhostNet [8] uses cheap
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operations to exploit stage-wise redundancy and achieves
a good trade-off between accuracy and latency for GPU.
Besides, [5], [14], [15], etc., also pay attention to structure
design with the aim of compression and acceleration of
models.

With these previous research and work, we rethink the
design of the basic units of the lightweight network,
and also draw some design lessons from related work,
especially [7], [14].

C. Low Latency on Mobile Chips

Artificial intelligence (AI) mobile chips are mainly divided
into two categories, one can complete the training and rea-
soning of neural networks, and the other can complete the
acceleration of reasoning. Currently, in terminal applications,
users pay more attention to inference speed. That is to say,
real-time performance is a requirement for mobile tasks.
Developers can train models on CPUs or GPUs and deploy
them directly on AI mobile chips. Among them, NPU is an
inference acceleration chip, which has been widely used in
mobile phones, mobile robots, unmanned driving, and other
fields. Compared with traditional chips, NPU has a more
specialized hardware design and lower power consumption due
to relatively fixed algorithms and application scenarios.

Recently, some researchers began to search for low-latency
network structures influenced by the network structure
search algorithm [25]. MobileNetV3 [5] applies squeeze and
excite as effective tools in mobile models and applies the
hardware-aware network architecture search. MobileNext [15]
verifies the effectiveness of the sandglass block by adding it
into the search space of neural architecture search method
DARTS [26], which is also a successful case of neural network
structure search. Some typical lightweight networks, such
as [1], [3], [4], and [8] cannot assign the ideal inference
speed on NPU. Even though MobileNetV3 [5] and Reg-
NetY [14] prove that using Squeeze-and-Excite bottleneck
proposed in [27] can significantly improve the lightweight
network accuracy, its speed tested on NPU is very low as
shown in Fig. 1. [6], [7] even cannot be deployed on some
NPUs because the “channel shuffle” operation is not well
supported. Few works have focused on model inference speed
on NPU. Therefore, this paper focuses on lightweight network
design with low latency on NPU.

III. PROPOSED APPROACH

In this section, we will first introduce our motivation in
section III-A. Then we propose the shifting group convolution
in section III-B. We build Shifting and Cascaded Group block
in section III-C. In section III-D, we construct three net-
works with different parameter configurations to meet various
applications. Hereinafter, the details of each part would be
elaborated.

A. Motivation

In deep convolution neural network, a larger spatial recep-
tive field often means a better performance [28] due to

Fig. 1. The trade-off between FPS and top-1 accuracy for several SOTA
models on ImageNet. Except that the input image size of EfficientNet [1] and
OFA [2] are consistent with [1] and [2] respectively, the input size of other
networks is 224 × 224. All speeds are tested on the NPU of RK3399Pro.
∗ represents the result is our implementation, which is consistent with the
training settings and data enhancement strategy of SCGNet. SCGNet is our
proposed network.

Fig. 2. The receptive fields obtained by different convolution combinations.
(a) One 5×5 convolution and one 1×1 convolution. (b) Two 3×3 convolutions.
(c) One 3 × 3 convolution and one 1 × 1 convolution.

the broader view and richer information. Intuitively, simply
employing a convolution with a large kernel is a naïve strategy
to harvest a wider receptive field. However, this solution would
introduce more parameters, and the mobile device NPU may
not be able to withstand the additional resource consumption
that comes with it. To trade-off the effectiveness and com-
putation complexity in a resource-limited environment, many
methods only employ 3×3 convolution and 1×1 convolution
interchangeably [3], [4], [14]. Nevertheless, the spatial recep-
tive field of the combined mode of such convolution kernels is
usually too narrow to perceive wider contexts, thus, existing
models on NPU are still unsatisfactory. Given the above, the
problem is how to expand the receptive field without putting
too much burden on memory and computation.

We notice that two cascaded 3×3 convolutions provide the
same field as 5 × 5 convolution, but with fewer parameters,
as shown in Fig. 2. And vanilla convolutions are not efficient
on a mobile platform, e.g., NPUs. The group convolution
achieves a good trade-off between accuracy, FLOPs, and
inference speed on NPUs as mentioned in Section I. These
observations motivate us to introduce cascaded 3 × 3 group
convolutions for a larger receptive field. However, simply
stacked group convolution cannot perform the information
exchange between different groups. To address this problem,
we propose shifting group convolution, which could enable
the information exchange between different groups of group
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Fig. 3. Comparison of the effects of group convolution and shifting group convolution. (a) Two cascaded group convolutions. (b) One shifting group
convolution and one group convolution. Shift GConv means shifting group convolution.

convolution without additional parameters or computation.
To pursue better efficiency, we carefully devise our net-
work following some principles of mobile-friendly architecture
design. Finally, an efficient and effective network (SCGNet)
on NPU is built. In the following, the details of each module
will be presented.

B. Shifting Group Convolution

Given the motivation in the previous subsection, we decide
to use a combination of two 3 × 3 group convolutions to
obtain a larger receptive field and devise the shifting group
convolution to realize channel information communication
between groups.

Specifically, shifting group convolution contains a group
convolution and a shifting operation. The input feature first
passes through the group convolution, and then the shift
operation is performed to adjust the channel groups. As shown
in Fig. 3 (b), the shift operation is a repeated circular shifting
procedure, where the first channel is moved to the tail in each
shifting. And the repeated times are determined by the output
channels and the group size: t = ⌊cout/(4 ∗ G)⌋, where t is
the number of repeated shifting, cout and G are the number
of channels of output features and group number, respectively,
⌊·⌋ is the round down function. Let cout = G × N . For a more
intuitive and simple display, we set G = 4 and N = 4 in Fig. 3
(b) to illustrate the shifting group convolution with 3 repeated
shifting. The output feature map O = [O11, O12, . . . , O44] is
modified to [O14, O21, . . . , O44, O11, O12, O13] by the shift-
ing operation.

Even though shifting group convolution only achieves infor-
mation exchange between adjacent groups, when shifting
group convolutions are stacked, more information between
different groups will be exchanged, thereby capturing more
channel information relationships between groups. Moreover,
compared with group convolution, shifting group convolution
does not increase any computation and parameters.

Discussion: Wu et al. [29] propose end-to-end trainable
shift-based modules based on “shift” operations, which are

used as alternatives to spatial convolutions. However, our shift
operation in shifting group convolution is different from theirs.
Details are as follows:

1) Different Motivations: Wu et al. [29] propose FLOP-
free “shift” to replace the space convolution with a large
computational complexity, and achieve stronger performance
with fewer parameters. But we are to avoid “information
cocoon rooms” between two group convolutions, and promote
information exchange between channels.

2) Different Implementations: Wu et al. [29] perform shift
operations in spatial dimensions, but we perform shift opera-
tions in the channel dimension. Reference [29] is implemented
by designing the underlying operators, which cannot be ideally
supported on the NPU.

3) Different Information Utilization Rate: Some
information on spatial dimensions is abandoned after
the shift operation of [29]. The shift operation in [29]
is equivalent to depth-wise convolution, which sets the
parameters of the convolution kernel to 0 to achieve shift
and inevitably results in information loss. However, we use a
repeated circular shifting procedure in the channel dimension,
and the information of all channels will be retained.

C. Shifting and Cascaded Group Block

In the last subsection, we present our basic operation, i.e.,
shifting group convolution. In this subsection, we will describe
how to use cascaded group convolutions and shifting group
convolutions to build a more efficient neural network basic
unit, i.e., Shifting and Cascaded Group Block, including SCG
convolution block and SCG downsampling block.

1) SCG Convolution Block: As shown in Fig.4 (a), assume
that the number of channels is N in the input feature map and
the output feature map has M channels. The steps of our basic
SCG block are as follows:

1) The number of channels N of the input feature map is
changed to M

2 by 1 × 1 convolution.
2) The 3 × 3 shifting group convolution is further applied

without changing the channels of feature maps channels. And
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TABLE II
NETWORK CONFIGURATIONS FOR SCGNET-S, SCGNET-M AND SCGNET-L. THEY ARE BASED ON SCG BLOCKS AND TARGET AT DIFFERENT

COMPUTING RESOURCES AND MEMORY SPACES

Fig. 4. Shifting and Cascaded Group Blocks. (a) SCG convolution block.
(b) SCG downsampling block. Batch Normalization (BN) is one operation for
data, ReLU is the activation function of neurons. Shift GConv means shifting
group convolution.

the stride of the 3 × 3 shifting group convolution is set to 1.
The use of shifting group convolution brings more information
communication between groups.

3) One 3 × 3 group convolution is followed to further fuse
the features. The two group convolutions used consecutively
also enlarge the receptive field.

4) The output feature maps from step 1) and 3) are concate-
nated together to get a feature map with M channels. In this
way, more information can be preserved.

In step 4), we do not use additional residual connections,
which further reduces the memory access cost, consequently,
the inference can be accelerated. Experiments in subsec-
tion IV-A well validate this claim.

2) SCG Downsampling Block: To facilitate feature com-
pression and build a complete architecture, we also design an
SCG block with downsampling operations. As shown in Fig.4
(b), it has two branches. As for the first branch, assume that

the input feature map has N channels and the output feature
map has M channels. The detailed design steps are as follows:

1) The number of channels N of input feature map is
changed to M

2 by 1 × 1 convolution.
2) Then, a 3 × 3 shifting group convolution with stride

2 is followed to achieve the downsampling, while the output
channels remain unchanged, i.e., M

2 .
3) Next, one 3 × 3 group convolution is also utilized to

further fuse the feature and the output channels are still M
2 .

4) We fuse the output features of 2) and 3) to produce a
feature map with M channels.

The second branch is used to make up for the information
loss of downsampling. Additional detailed steps for SCG block
with spatial down-sampling are as follows:

1) The input feature map size is reduced to half by one
3 × 3 depthwise convolution with stride 2.

2) An 1 × 1 convolution is followed to perform the channel
fusion.

3) The element-wise addition is used to enable information
communication between two branches.

D. Towards More Efficient Networks

With our SCG blocks, we realize channel information
communication and capture a wider context. And then we
finally develop three networks: SCGNet-S, SCGNet-M, and
SCGNet-L, which are based on SCG blocks and target dif-
ferent computing resources and memory spaces. SCGNet-S
is our most lightweight model for better efficiency, while
the SCGNet-L composes of more blocks, pursuing better
performance.

Inference efficiency is an important concern for mobile
applications, therefore, we attempt to further adjust the
architectures for better efficiency. Guided by some princi-
ples proposed by [7] and [30], we also make the following
improvements when building SCGNet: 1) Reduce the depth
of the network as much as possible. 2) Reduce the channels
of vanilla convolutions to abate activations. 3) Adjust the
input and output channels of convolutions to be the same if
possible. Following these principles, we finally build three
efficient variants of SCGNet, Table II gives the detailed
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architecture configurations. As shown in Table II, there are
four 3 × 3 convolutions at the beginning of SCGNet. Then
there are three stages of structure, which consist of stacking
of SCG blocks. In each stage, the stride of the first block is set
to 2, and the other blocks are set to 1. Then a 1×1 convolution
is used to expand the channels followed by a global average
pooling layer and two fully-connected layers to predict the
final score for each category.

The structural differences of the three networks are as
follows: First, the number of output channels of the first four
3 × 3 convolutions is different. Second, we set the group
number of group convolution to 4 in SCGNet-S, 6 in SCGNet-
M, and 8 in SCGNet-L. Besides, the number of SCG blocks
included in each stage is also different, SCGNet-L has more
SCG blocks while SCGNet-S is configured with the fewest
SCG blocks.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
network SCGNet for image classification and test the inference
speed of SCGNet on the NPU of RK3399PRO. Besides,
we use SCGNet-L to replace the backbone of wide vision tasks
methods,1 such as SSD [31] and SSD-Lite [4] for object detec-
tion task, SimpleBaseline [32] for human pose estimation,
MGN [33] for person re-identification and Deeplabv3plus [34]
for semantic segmentation to compare with other state-of-the-
art networks. All of these experiments are verifying SCGNet is
an effective and efficient lightweight network for many vision
tasks.

A. Ablation Study

In this subsection, we first study the following cases to
validate the proposed Shifting Group Convolution. A. Directly
cascading two 3 × 3 group convolutions. B. Our shifting
group convolutions. C. We also discuss the case of introducing
additional residual learning to show the efficiency of our
architecture.

1) Dataset: The ImageNet dataset is first introduced in [35].
It is a well-known large-scale image classification dataset con-
taining over 1.2 million training images and 50,000 validation
images belonging to 1000 categories. We train the model on
the training set and evaluate our method on the validation set
separately.

2) Experimental Setup: For a fairer comparison, all experi-
mental settings and data augmentation strategies are kept con-
sistent with ShuffleNetV2 [7]. Not using “Cascaded Group” in
the experiments means that we replace the second 3×3 group
convolution of the main branch of the SCG block with a
1 × 1 vanilla convolution. Not using “Shifting Group” in
the experiments means that we replace the 3 × 3 shifting
group convolution of the main branch of the SCG block with
3 × 3 group convolution.

3) Results Analysis: As shown in Table III, when the
3 × 3 shifting group convolution is replaced by a 3 × 3 group
convolution, the performance of all our variants drops. For

1SCGNet-L is employed for better performance, in our practice, SCGNet-L
is a better trade-off between performance and speed.

TABLE III
PERFORMANCE OF SCGNET ON THE IMAGENET DATASET UNDER DIF-

FERENT ABLATION SETTINGS. “C-GROUP” REPRESENTS CASCADED
3 × 3 GROUP CONVOLUTION. “S-GROUP” REPRESENTS SHIFTING

GROUP CONVOLUTION

TABLE IV
COMPARISON OF ADDITIONAL RESIDUAL LEARNING EFFECTS.

WE REPORT TOP-1 ACCURACY AND FPS ON NPU

example, the Top-1 accuracy of SCGNet-L deteriorates from
75.3% to 74.9%, which indicates that the shifting group
convolution promotes the information exchange between chan-
nels and realizes the channel information exchange between
groups. When the cascaded group convolution is further can-
celed, the performance of SCGNet-L drops by 0.3 points,
and SCGNet-M and SCGNet-S get worse as well, which
indicates that the cascaded 3 × 3 group convolution obtains
the performance improvement brought by the large recep-
tive field. We also find that the FPS sacrifice brought by
the shifting group convolution is 3.81,1.97,1.42, respectively,
which is particularly small. So these tiny sacrifices are not
worth mentioning compared to the performance improvement
it brings.

We also compare the performance of SCGNet with addi-
tional residual learning, that is, introducing an identity branch
in Fig. 4 (a): adding the input map to the output of the
original structure. As shown in Table IV, we can see that
the accuracy of SCGNet with residual learning achieves a
certain improvement, but the inference speed is reduced by
at least 30%. In particular, SCGNet-M increases accuracy
by 0.9 points, and FPS is reduced by 128.35 after adding
additional residual learning. But SCGNet-L is 4.1 points
(4× vs. 0.9) higher than SCGNet-M, and FPS decreases
by 194.67 (1.5× vs. 128.35), which means that increasing
the size of the SCGNet achieves a better trade-off between
accuracy and inference speed. Actually, we can equip the
residual learning for higher precision, however, too much
computational burden will be introduced. Specially, adding
additional residual learning increases the number of branches
of the network. The information of each branch has to be
stored to compute the next tensor in the graph, which increases
the memory access cost (MAC) [38] and brings computational
burden. Besides, additional residual learning introduces more
element-wise operations, which is non-negligible [7] and not
conducive to inference speed. Therefore, we finally abandon
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the residual learning branch in our SCG block, to achieve a
good trade-off between effectiveness and efficiency.

B. Image Classification

In this subsection, we compare the performance and infer-
ence speed of SCGNet with other state-of-the-art networks
on image classification. For the inference speed, since we
focus on the NPU-based mobile applications, so the frame per
second (FPS) on RK3399Pro is employed as the speed metric,
and we use the top-1 accuracy for performance comparison.
The choice of dataset and experimental setup is consistent with
the previous subsection.

1) Results Analysis: To show the improvement of SCGNet
in terms of accuracy and speed more intuitively, we draw
the accuracy-speed map of it and SOTA lightweight net-
works in Fig. 1. As we can see, SCGNet gets the fastest
speed on NPU with the same accuracy as the other mod-
els compared with MobileNet series [3], [4], [5], [15], C-
GhostNet [8], G-GhostNet [8], RegNetX [14], RegNetY [14],
EfficientNet [1], OFA [2], Proxyless [37], MobileOne [38],
and RegNetY [14].2 Particularly, SCGNet has a greatly obvi-
ous advantage in speed compared to EfficientNet. Different
networks perform differently on different hardware platforms,
which is related to the underlying design of the hardware and
the resource capacity of the hardware. Then some existing
networks designed for hardware have their own more suitable
hardware, as follows: MobileNetV3 [5] for mobile phone
CPUs, FBNet [36] for Samsung S8, MobileOne [38] for
iPhone 12, OFA [2] for Samsung Note10, etc.Therefore, it is
normal for different networks to show an accuracy-speed
trade-off inconsistent with the original paper on the NPU.

More specifically, as shown in Table V, SCGNet-L gets
1.4 points gain in accuracy and is 51% faster than C-Ghost.
SCGNet-L gets 3.1 points gain in accuracy compared with
IGCV3, however, the latter cannot be deployed on NPU. It gets
2.0 points gain in accuracy and 107% faster than MobileNetV2
1.4× with similar FLOPs. And SCGNet-L is 32% faster than
RegNetX-600MF with 1.2 points gain in accuracy. Partic-
ularly, SCGNet-L also performs better compared to some
hardware-ware NAS backbones, e.g., OFA [2], FBNet-B [36]
Proxyless [37], Single-One-Shot [12]. Our SCGNet variants
also show great superiority of efficiency on NPU. SCGNet-M
gets 3.8 points gain in accuracy and is even about 2 times
faster than MobileNetV3 Small, which is even based on NAS.
SCGNet-S gets 4.3 points improvement in accuracy com-
pared with ShuffleNetV2 0.5×, while ShuffleNetV2 cannot be
applied on the NPU of RK3399PRO because of the “channel
shuffle” operation. Besides, SCGNet-S achieves 0.9 points
gain in accuracy with 86% faster than MobileNetV1 0.5×.
And SCGNet-S achieves 0.2 points gain in accuracy compared
with CondenseNetV2-A, while CondenseNetV2-A also cannot
be applied on the NPU of RK3399PRO because of the
“channel shuffle” operation. Above all, benefiting from the
ability of our network to capture multi-scale information and

2ShuffleNet series, CondenseNetV2 [11], IGCV3 [24], Single-One-
Shot [12] cannot be deployed on NPU of EK3399PRO because of the “channel
shuffle” operation, so we cannot show them in Fig. 1.

TABLE V
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON IMAGENET.

THE FRAME PER SECOND (FPS) ON NPU AND THE TOP-1 ACCURACY
ARE REPORTED. ∗ REPRESENTS THE RESULT IS OUR IMPLEMENTA-

TION, WHICH IS CONSISTENT WITH THE TRAINING SETTINGS
AND DATA ENHANCEMENT STRATEGY OF SCGNET

large-range information communications between channels of
different groups, we get better performance and inference
efficiency simultaneously on image classification task.

C. Object Detection

In this subsection, we use SCGNet-L to replace the back-
bone of SSD network [3] and the backbone of SSD-Lite [4]
to further evaluate the performance and speed of SCGNet on
object detection, which is the same as [53]. We compare the
mean precision (mAP) and inference speed on the NPU of
RK3399PRO with other classical and state-of-the-art networks.

1) Datasets: The classic datasets PASCAL VOC and MS
COCO are taken to perform the object detection experiments.
PASCAL VOC contains 20 object categories, each image has
pixel-level segmentation annotations, bounding box annota-
tions, and object class annotations. The union of VOC2007
and VOC2012 trainval dataset is used for training, which has
16,551 pictures. The VOC2007 testset, in which there are
4,952 images, is used for testing. The MS COCO dataset is a
large-scale object detection, segmentation, key-point detection,
and captioning dataset. Based on community feedback, the
training/validation split is 118K/5K. And we train the model
on the training part and test on the validation part.

2) Experimental Setup: As for PASCAL VOC, we choose
SSD as the basic network. The input size is resized to 300 ×

300 with data augmentation strategy such as flip, brightness
adjustment, contrast adjustment, and saturation adjustment,
etc. And we adopt the cosine learning rate decay method and
use SGD optimizer. The momentum is set to 0.9 and the weight
decay is set to 0.0005. We set the learning rate starting from
0.001 to 0 within 120 epochs. As for MS COCO, we choose
SSD-Lite as the basic network. The input image size is resized
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TABLE VI
RESULTS ON PASCAL VOC DATASET. THE FPS ON NPU AND MAP ARE REPORTED

TABLE VII
RESULTS ON MS COCO DATASET. THE FPS ON NPU AND MAP ARE REPORTED

TABLE VIII
COMPARISONS OF LIGHTWEIGHT NETWORK ON MPII DATASET. THE FPS ON NPU, PCKH@0.5 AND PCKH@0.1 ARE REPORTED

to 320 × 320. The data augmentation strategy and training
strategy are consistent with [24]. We terminate the training
at 240 epochs. The learning rate starting is set as 0.004 and
discounted by 0.1 every 60 epochs. Besides, in this subsection,
all backbones are pretrained on ImageNet.

3) Results Analysis: The results on the PASCAL VOC
dataset are shown in Table VI. Compared with ShuffleNetV2-
SSD, SCGNet-SSD improves mAP by 1.99 points, while
ShuffleNetV2-SSD cannot be applied on NPU. Particularly,
SCGNet-SSD gets 4.14 points gain in terms of mAP com-
pared with MobileNet-SSD and achieves a comparable speed
on NPU. The results on MS COCO dataset are shown
in Table VII. SCGNet-SSDLite gets 0.85 points gain in
terms of mAP compared with MobileNet-SSDLite with
11.95 points higher FPS on NPU. Besides, SCGNet-SSDLite
gets 0.85 points gain in terms of mAP compared with IGCV3-
SSDLite. Consequently, SCGNet also gets better performance
and speed on object detection than other methods.

D. Human Pose Estimation

In this subsection, we use some lightweight architectures
to replace the backbone of human pose estimation network
proposed in [32] to evaluate the performance and speed
of SCGNet. We use PCKh (head-normalized probability of
correct keypoint) score as the performance metric. If the key-
joint is located within αl pixels of the real position, the human
key-joint prediction is thought as correct. α is a constant.
l corresponds to 60% of the diagonal length of the real
head bounding box. The PCKh@0.5 (α = 0.5) score and
PCKh@0.1 (α = 0.1) score are reported. We also test the
inference speed of NPU on RK3399PRO.

1) Dataset: The MPII dataset is extracted from online
videos, which has about 25K images. Each image has

uncertain number of people with over 40K people annotated.
We train the model on a subset of MPII training set [54] and
evaluate on 2975 images as validation set [54].

2) Experimental Setup: All backbones are pretrained on
ImageNet. And The input size is cropped to 256 × 256.
The data augmentation is the same as [54], which includes
random scale, random rotation, and flipping. We also use
Adam optimizer. The total epoch is set to 150 and the base
learning rate is set as 1e-3, and is dropped to 1e-4 and 1e-5
at the 90th and 125th epochs. Besides, we use the provided
person bounding boxes rather than detecting them. When
testing, we compute the average of the heatmaps of the original
and flipped images as the final heatmap.

3) Results Analysis: From Table VIII, as a backbone of
human body pose estimation, SCGNet-L once again surpasses
the state-of-the-art networks on both accuracy and speed.
SCGNet-L gets 1.7 points gain in terms of PCKh@0.5,
2.3 points gain on PCKh@0.1 and 61% faster speed compared
with MobileNext when they replace the backbone of [32].
SCGNet-L even outperforms RegNetX-600MF by 0.4 points
and 0.6 points respectively in terms of PCKh@0.5 and
PCKh@0.1 with 21% faster speed. Specifically, we also show
some visualization of results on MPII dataset in Fig. 5.
As we can see, compared with results of RegNetX-600MF,
SCGNet-L can get better pose estimation performance in some
challenging cases such as occlusion, fuzzy, confusing actions,
and so on.

E. Person Re-Identification

In this subsection, we employ SCGNet as the backbone
of MGN [33] with some tricks from BagOfTricks [41] for
the vision task of person Re-identification [55]. We com-
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TABLE IX
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE MARKET-1501 AND THE DUKEMTMC-REID. WE COMPARE THE MAPAND RANK-1

ACCURACY WITH OTHER STATE-OF-THE-ART METHODS

Fig. 5. Comparisons of the visualization of results on MPII. RegNetX-600MF [14] (left side) and our SCGNet-L (right side) are as the backbone of
SimpleBaseline [32].

pare the mAP and Rank-1 accuracy with other state-of-
the-art methods to show the accuracy and effectiveness of
SCGNet.

1) Datasets: The Market-1501 [56] is a large-scale public
dataset, which contains 1501 identities captured by six differ-
ent cameras. The dataset is split into two parts: 751 identities
with 12,936 images are utilized for training and the remaining
750 identities with 19,732 images are used for testing, in which
there are 3,368 query images.

The DukeMTMC-ReID [57] dataset is created from
high-resolution videos from 8 different cameras, which is also
spilt into two parts: 702 identities with 16,522 images for
training and the other 702 identities with 17,661 images for
testing, in which there are 2,228 query images.

The CUHK03 [58] dataset consists of 1,467 different iden-
tities deployed by 6 campus cameras, which contains 13,164
images of 1,467 identities. We evaluate this dataset both using
hand-labeled and DPM-detected bounding boxes. We adopt the
training/testing protocol in [59].

2) Experimental Setup: We first resize the input images to
384×128. Then we use zero-pad operation with 10 pixels and
randomly crop them in the size of 384×128. Besides, the data
augmentation includes random erasing, horizontal flipping,
and normalization are applied. All networks are trained with
SGD algorithm with 4 GPUs. We set the total number of the
epoch as 90 and set the batch size as 64. We set the weight
decay as 0.0001 and momentum as 0.9. We adopt the linear
warm-up strategy for the first 5 epochs with the learning rate
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Fig. 6. Comparisons of the visualization of results on Cityscapes. MobileNetV2 and SCGNet replace the backbone of Deeplabv3plus [34] separately.

TABLE X
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE CUHK03-NP. WE COMPARE THE MAP AND RANK-1 ACCURACY

WITH OTHER STATE-OF-THE-ART METHODS

ranging from 0.001 to 0.1. Then we train the network with the
cosine learning rate decay.

3) Results Analysis: As shown in Table IX and Table X,
our method gets better results than the state-of-the-art meth-
ods. Compared to the MGN with MobileNetV2, MGN with
SCGNet-L achieves 0.6 points gain in terms of Rank-1
accuracy, 1.1 points gain in terms of mAP on Market-1501
dataset, and 0.9 points gain in terms of Rank-1 accuracy,
1.7 points gain in terms of mAP on DukeMTMC-ReID dataset
compared with MobileNetV2. SCGNet also gets better results
on the CUHK03-NP dataset. Not only does our model out-
perform light-weight backbones, such as MobileNetV2 and
ShuffleNetV2, but it also outperforms some methods that use
ResNet-50 as the backbone, which is nearly 7 times bigger
than SCGNet.

F. Semantic Segmentation

In this subsection, we use SCGNet and MobileNetV2
as drop-in replacements for the backbone of the
Deeplabv3plus [34] to evaluate the performance of SCGNet
on semantic segmentation tasks. We compare the performance
with metric mean IoU and pixel accuracy.

TABLE XI
THE RESULTS OF SEMANTIC SEGMENTATION ON CITYSCAPES TESTED ON

THE VALIDATION SUBSET

1) Dataset: The Cityscapes [60] is a large-scale dataset
that focuses on semantic understanding of urban street scenes,
which contains around 5000 fine annotated images labeled in
19 semantic classes and are divided respectively into 2,975
images for training, 500 images for testing.

2) Experimental Setup: The data augmentation strategy and
training strategy are consistent with [34]. In addition, the
output stride of the training and testing procedure is set as 16.

3) Results Analysis: As shown in Table XI, SCGNet-L
attains a performance of 71.5% (1.2 points improvement)
mIOU and 95.1% (0.25 point improvement) compared with
MobileNetV2. And some visualization of results on Cityscapes
is shown in Fig. 6, which shows that SCGNet gets more
accurate segmentation.
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V. CONCLUSION

In this work, we present a much more effective and efficient
lightweight network for mobile applications. Our proposed
shifting group convolution makes the channel information
exchange between groups feasible and effective. And we
cascade shifting group convolution and group convolution with
larger kernels in the SCG block to capture multi-scale spacial
information and improve the network performance. Finally,
our SCGNet could achieve a better trade-off between accuracy
and efficiency on NPU chips at the same time. To validate the
superiority of our method, we perform extensive experiments
on a wide variety of vision tasks including image classifi-
cation, object detection, human pose estimation, person re-
identification, and semantic segmentation. The results reveal
that our proposed SCGNet is not only an effective and efficient
network for NPU-focused mobile application but a better back-
bone for many vision tasks. We hope this work could serve
as a solid baseline for future lightweight and NPU-focused
network designs.
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