
4482 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

SAR Object Detection Encounters Deformed
Complex Scenes and Aliased Scattered

Power Distribution
Yawei Zhang , Yu Cao , Xubin Feng , Meilin Xie, Xin Li , Yao Xue , and Xueming Qian , Member, IEEE

Abstract—Synthetic aperture radar (SAR) is widely used in
terrain classification, object detection, and other fields. Compared
with anchor-based detectors, anchor-free detectors remove the
anchor mechanism and implement detection box encoding in a
more elegant form. However, anchor-free detectors are limited
by complex scenes caused by geometric transformations, such as
overlaying, shadow, vertex displacement during SAR imaging. And
the scattered power distribution of noise is similar to the edge of
the object, making it difficult for the detector to locate the edge of
the SAR object accurately. In order to alleviate these problems, we
propose a high-speed and high-performance SAR image anchor-
free detector. First, we propose a shallow feature refinement (SFR)
module to effectively extract and retain the detailed information of
objects, while coping with deformed complex scenes. Second, we
analyze the optimization focus of the detector at different training
iterations and propose iteration-aware loss to guide the detector,
making the detector more accurately locate the edge of the object
disturbed by the noise scattered power distribution. Third, number
estimation helps to detect objects with more flexible criteria in
box selection without manual labor. Compared with mainstream
optical object detectors and SAR dedicated detectors, our method
achieves the best speed-accuracy tradeoff on the SAR-ship dataset,
with 96.4% average precision when the value of intersection over

Manuscript received December 9, 2021; revised January 30, 2022; accepted
February 18, 2022. Date of publication March 9, 2022; date of current version
June 10, 2022. This work was supported in part by NSFC under Grant 61772407,
Grant 61732008, and Grant 62103317, and Youth Innovation Promotion Associ-
ation CAS, and in part by the Science and Technology Program of Xi’an, China
under Grant 21RGZN0017. (Corresponding authors: Xubin Feng; Meilin Xie;
Xueming Qian.)

Yawei Zhang, Xin Li, and Yao Xue are with the School of Information and
Communication Engineering, Xi’an Jiaotong University, Xi’an 710049, China
(e-mail: zhangyawei26@stu.xjtu.edu.cn; lingfengyueguang@stu.xjtu.edu.cn;
xueyao@xjtu.edu.cn).

Yu Cao is with the Xi’an Institute of Optics and Precision Mechanics, Chinese
Academy of Sciences, Xi’an 710119, China, with the School of Electronic and
Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China, with
the University of Chinese Academy of Sciences, Beijing 100049, China, and also
with the Key Laboratory of Space Precision Measurement Technology, Chinese
Academy of Sciences, Xi’an 710119, China (e-mail: caoyu@opt.ac.cn).

Xubin Feng and Meilin Xie are with the Space Precision Measurement
Laboratory, Xi’an Institute of Optics and Precision Mechanics, Chinese
Academy of Sciences, Xi’an 710119, China (e-mail: fengxubin@opt.ac.cn;
xiemeilin@opt.ac.cn).

Xueming Qian is with the Ministry of Education Key Laboratory for Intel-
ligent Networks and Network Security, School of Information and Communi-
cation Engineering, SMILES LAB, Xi’an Jiaotong University, Xi’an 710049,
China (e-mail: qianxm@mail.xjtu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3157749

union is 50% (AP50) at 64.9 frames per second. The experimental
results prove the effectiveness of our method.

Index Terms—Iteration-aware loss, number estimation,
synthetic aperture radar (SAR) object detection, scattered
power distribution aliasing, shallow feature refinement (SFR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has the ground-
penetrating capability in all weather and all day. It has

unique advantages in many fields [1]–[6]. The availability of
large amounts of data and the increase in computing power
promote the rapid development of object detectors based on deep
learning [7]. However, due to the perspective contraction, top and
bottom stagnation, shadows, and other special characteristics
of SAR imaging, the interpretation of SAR images is difficult.
SAR object detection in deformed complex scenes with noise
interference is challenging.

There are some excellent works in SAR object interpreta-
tion [8]–[13]. In response to the deficiency of faster R-CNN [14]
using only a single-scale feature map to generate object can-
didate regions, Zhao et al. [12] proposed an SAR object de-
tection network by using multiscale features. For the problem
of detection in the large scene, Chen et al. [13] first uses a
lightweight object prescreening full convolutional network to
prescreen possible objects. To detect small objects in large-scale
SAR images, Kang et al. [15] proposed an SAR detector with
a high-resolution region proposal network and object detection
containing contextual information.

Even though these methods improve SAR detection perfor-
mance, most of these methods require a tight arrangement of
anchors. The performance has a lot to do with the size of the
anchors, aspect ratios, the division ratio of positive and nega-
tive samples, etc., that need to be carefully adjusted manually.
Furthermore, most of these methods rely on the nonmaximum
suppression operation, which requires complex intersection over
union (IoU) calculations and slows down the speed of the
detector.

The limitations motivate us to establish a concise and effective
anchor-free detector for SAR object detection in complex scenes
with noise interference. Existing anchor-free detectors [16],
[17] remove the anchor mechanism to improve the detection
speed and simplify the postprocessing process. However, unlike
natural images, SAR images have their own characteristics that
challenge the design of anchor-free SAR object detectors.
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First, SAR images often present object overlaps, shadows, top
and bottom stagnation, all of geometric deformation submerge
useful features and make feature extraction more tricky. In opti-
cal image detection, to effectively detect objects from complex
scenes, Liu et al. [18] added a bottom-up path enhancement
branch based on feature pyramid network (FPN) [19], which
effectively fuses feature and detect objects in complex scenes.
ASFF [20] proposed an adaptive spatial feature fusion method.
This method fuses the features of different layers by learning
the weight parameters. Generally, these FPN-based methods
process and merge the deep features extracted by the backbone
(feature maps with dimensions of 1/8, 1/16, and 1/32 of the
original image size). The shallow features (feature maps whose
size is 1/4 of the image size) containing object information,
complex background is directly discarded. The geometric de-
formation in the SAR imaging process makes detectors unable
to easily extract the feature information from the complex geo-
graphic background. We propose a shallow feature refinement
(SFR) module to extract and refine the shallow feature map that
contains object information and scene feature with geometric
deformation, and then merges it with the information extracted
by FPN. Through SFR, the detector can effectively extract and
retain the detailed information of objects, while coping with
geometric deformations, such as overlap, shadows, and top and
bottom stagnation.

As the second character of SAR images, the edge of the object
is often aliased with the noise scattered power distribution.
Fig. 1(a) and (b) is the optical image and SAR image of a ship,
respectively. As shown in the orange circle in (b), the ship
edge’s power distribution and the noise are seriously aliased.
Scattered power distribution aliasing makes the anchor-free
detector with a single regression loss function unable to
accurately cover the intact object. How to guide the detector to
accurately locate the edge of the SAR object during the training
iterations is a challenging task. In anchor-based detector [21]
training, the approximate positions are first proposed by region
proposal network, and then they are finely adjusted. Although
the complicated anchor calculation slows down the detection
speed, the anchor-based detector can achieve high performance
by performing constraint refinement on the preset anchor. The
anchor-free detectors [16], [17] remove the anchor with a more
elegant detection box encoding to improve the speed of the
detector. However, the lack of preset anchors slows down the
convergence of the detector. We propose an iteration-aware loss
to guide the optimization focus in different training iterations. It
can help the detector to quickly locate the approximate position
of the SAR object in the early iterations so that the detector
can have more training iterations to more accurately locate
the edge of the SAR object. The SAR detector trained with
iteration-aware loss can obtain more accurate edge positioning,
while coping with aliased scattering power distribution.

Third, due to the changes in the elevation and azimuth angles
of the SAR during imaging, the same background has differences
under different imaging conditions. The confidence level of the
detection boxes varies widely, a fixed threshold is not reliable for
effective and robust detection. Fig. 1(c) and (d) are two examples
of the detector’s detection of objects in SAR images. The green
boxes are the ground-truths containing the objects, and the red

Fig. 1. Red boxes and the green ones are the prediction boxes and ground
truths, respectively. In many SAR images, power distributions between object
edges and noises, as shown in the orange regions of (b), are seriously aliased.
Such power distribution aliasing makes the detector unable to accurately cover
the object. In (c) and (d), the confidence of the detection results is high and
low, respectively. A fixed threshold that is too high (e.g., 0.7) or too low (e.g.,
0.4) cannot effectively obtain high-quality boxes. Number estimation works as
an adaptive method to assist accurate box selection. (a) Optical object with
clear edges. (b) SAR object with noise aliasing. (c) Boxes with high confidence.
(d) Boxes with low confidence.

ones are the predicted boxes. When the confidence threshold is
high (e.g., 0.7), the left image gets correct object boxes, while
the right image can not obtain a correct prediction at all. When
the confidence threshold is low (e.g., 0.4), there will be serious
false detection in the left image, and the detection result is good
in the right one. How to better filter the low-quality boxes with
high confidence in the detection result is a problem that needs to
be considered. We propose number estimation to filter the low-
quality detection boxes more effectively without manual labor.
Number estimation will filter the low-quality detection boxes
according to the prediction of object number in SAR image.
The number estimation can retain the detection boxes in SAR
images coping with imaging differences in similar backgrounds
adaptively.

The main contributions of this article are summarized as
follows.

1) We propose SFR for refining the shallow features extracted
by deformed complex scenes to cope with geometric deforma-
tions, such as overlap, shadows, and top and bottom stagnation.
After fusion with the feature map extracted by traditional FPN,
a more representative feature map containing detailed informa-
tion can be obtained, laying a better foundation for subsequent
regression and classification tasks.

2) We propose an iteration-aware loss that can guide the
detector to locate more accurate edges of the object from alias-
ing scattering power distributions, so as to realize the training
optimization focus to determine the position roughly in early
training iterations and then refine it in later training iterations.
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3) We propose a number estimation that can filter low-
quality detection boxes effectively in SAR images with imaging
differences. This method can avoid the troublesome manual
fixed threshold selection and retain the correct high-quality
detection boxes with low confidence.

II. RELATED WORKS

A. Optical Object Detection

Deep convolutional neural networks achieve great success in
crowd scene analysis [22], medical [23], and other fields in visual
task. Common object detectors can be divided into the two-stage
detector and one-stage ones according to the stage division.
Typical representatives of the two-stage detector are faster R-
CNN [14], cascade R-CNN [24], and Libra R-CNN [25]. Typ-
ical representatives of one-stage object detectors are SSD [26]
and YOLOv3 [27]. Normally, the one-stage object detector is
faster, and the two-stage object detector has higher performance.
Compared with the two-stage detectors represented by Faster R-
CNN [14], the one-stage detectors represented by CenterNet [16]
have advantages in speed.

The proposal of CenterNet [16] and FCOS [17] is a landmark
work based on anchor-free object detectors, compared to the
original anchor-based detector, the anchor-free object detec-
tors achieve faster detection speed and inferior performance.
Then anchor-free detector has gradually become a hot spot
in academic research [28]. The core idea of CenterNet [16]
and FCOS [17] is to predict the center point of the object to
be detected and use this as the basis to predict the distance
from the center point to the bounding box. The difference is
that CenterNet [16] uses heatmap to enhance the center point
regression, while FCOS [17] uses centerness to strengthen the
center point regression.

In natural scenes, massive amounts of data greatly promote the
development of object detection. In SAR image detection, most
of the existing methods are anchor-based [29], [30]. Inspired by
the idea of anchor-free, this article proposes a fast and effective
SAR object detector.

B. SAR Object Detection

At present, deep learning has made remarkable achievements
in optical image object detection and classification [6], [31]. But
SAR object detection is still a challenging and important task [7].
SAR object detection’s purpose is to extract the potential area
containing the object. SAR detection method can be divided
into two types: 1) Traditional object detection method repre-
sented by constant false alarm rate (CFAR) [32], [33]. 2) Deep
learning method migrated from optical image detection to SAR
image detection [6], [34]–[38]. And in Fig. 2(a) of miniSAR
dataset [39] and (b) of SAR-Ship dataset [40], the green boxes
are the ground-truths, and the red circles are the interference
after imaging in complex scenes. Due to geometric deformation,
SAR image objects in complex scenes are often confused with
the background. Fig. 2(c) and (d) are the images in MSTAR
dataset [41] and SSDD dataset [42]. The speckle noise brought
by SAR imaging and the noise power distribution close to the

Fig. 2. Examples of SAR datasets, the green boxes are the real objects. The
deformed complex background,as shown in the red circles in (a) and (b) can
easily be confused with the objects. The noise power distribution in (c) and
(d) make it difficult to locate the object edge. (a) Example of miniSAR dataset.
(b) Example of SAR-ship dataset. (c) Example of MSTAR dataset. (d) Example
of SSDD dataset.

object edge cause problems for the accurate edge positioning of
the detector.

CFAR-based SAR object detection mainly performs statisti-
cal modeling on clutter, and readily considers the characteristics
of the object. Inspired by human visual attention mechanisms,
some algorithms [43]–[45] are proposed to simulate human se-
lective visual attention mechanisms, construct saliency maps for
optical images, and extract regions in optical images. However,
high-resolution SAR images often have complex backgrounds,
and the object area occupies a small proportion of the image. The
CFAR-based algorithm needs to traverse the entire image cell
by cell, which is inefficient and the representation of manually
extracted features is weak.

As for the SAR object detection method based on deep learn-
ing, given the problem that convolutional neural networks have
too many parameters and require a large amount of training data,
Cozzolino et al. [30] proposed to use dense sliding windows
to obtain image blocks, and then quickly input these images
into a fully convolutional neural network to classify the object
and clutter. Aiming at the problem of the difficulty of applying
deep learning technology due to the lack of a publicly labeled
dataset for SAR images, Li et al. [42] constructed the first
public SAR image ship object dataset SSDD. It contains ship
SAR images under different resolutions, sizes, sea conditions,
sensor types, etc. There are a total of 2456 ship objects. The
author improved the performance of SAR ship detection us-
ing strategies including feature fusion, transfer learning, and
hard negative mining based on faster-RCNN [14]. To reduce
the amount of calculation, Wang et al. [46] added the spatial
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Fig. 3. Network architecture. It consists of feature extraction, feature fusion, and prediction heads. The proposed SFR can improve the information expression in
P2 coping with deformed complex scenes. The number estimation branch can provide adaptive guidance for filtering out low-quality detection boxes in different
imaging conditions. Iteration-aware loss designed for regression branch enables the detector to locate the edge of the object more accurately in the aliased noise.

groupwise enhance (SGE) attention module to CenterNet [16],
and enhanced the spatial features of each group. Based on the
SSDD dataset [42], Jiao et al. [29] improved faster-RCNN [14]
and proposed an end-to-end detection network for the ship
detection problem of multiscale and multiscene SAR images.
To obtain better feature maps, Fu et al. [47] proposed feature
balance and refinement network (FBR-Net). To achieve multi-
scale and multiscene SAR ship detection, DCMSNN [29] builds
a densely connected multiscale neural network.

CNN-based SAR object detectors are mostly adjusted from
classic anchor-based detectors, which are slow and contain many
manually adjusted hyperparameters. In this article, we combine
anchor-free ideas to build a detector dedicated to SAR objects,
which can detect SAR objects in complex backgrounds and noise
more accurately.

III. METHOD

A. System Overview

The detector constructed in this article is one-stage and
anchor-free. The overall architecture is shown in Fig. 3. It
includes three parts: Feature extraction, feature fusion, and
prediction heads. ResNet50 is used for feature extraction, and
the extracted features areC2, C3, C4, and C5. The scales of the
four feature maps C2, C3, C4, and C5 are 1/4, 1/8, 1/16, and
1/32, respectively, of the original image, corresponding to the
information from shallow to deep in the SAR image. Feature ex-
traction can extract the features of the objects hierarchically from
the image, while suppressing the interference of background and
noise. In feature fusion part, C3, C4, and C5 are features fused
by the classical FPN structure, and the shallow feature C2 are
feature refined by SFR. The results of the two parts are summed
as the output of the feature fusion part. Feature fusion can further
optimize and improve the existing features, and more powerfully
obtain the characteristics of the object in the SAR image. Based

on feature map from feature fusion part, three prediction heads,
number estimation, classification, and regression, are used to
predict the location of the object center point, the shape of the
detection box, and the number of objects in the SAR image.

In this section, we first introduce the feature extraction and
fusion structure. We present the flow of prediction and postpro-
cessing with number estimation in the second part. Iteration-
aware loss is given at the end of this section.

B. Feature Extraction and Fusion

ResNet50 [48] is used as the backbone. Suppose the SAR
image is expressed as I ∈ R3×W×H . When the resized image
is feature extracted through ResNet50 [48], we can obtain the
feature map of 1/4, 1/8, 1/16, and 1/32 down-sampled from the
original image level by level. These feature maps are calledCi ∈
R26+i×W/2i×H/2i , i ∈ [2, 3, 4, 5]. As the backbone deepens, the
size of the feature map gradually decreases, and the interference
information is gradually removed. The geometric deformation
of the object and background caused by SAR imaging has
a stronger influence on feature extraction. FPN and SFR are
responsible for fusing the extracted features.

1) Traditional FPN: FPN can fuse the feature map with strong
low-resolution semantic information. The structure of FPN is
shown as in Fig. 3. On the left part, C3, C4, and C5 are the
features extracted by the backbone. The size of them is gradually
reduced to half of the upper level, and the number of channels
is doubled. On the right part, FPN sequentially processes the
extracted features. C5 layer first is upsampled to change the size
and undergoes 3× 3 convolution to change channels to match
C4. Subsequently, the obtained feature map is directly added to
the C4 layer to obtain P4. Do this process again to get P3.

2) Shallow Feature Refinement: As shown in the left part of
Fig. 4, the natural scene will undergo geometric deformation
after SAR imaging, which will cause serious interference to the
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Fig. 4. SFR architecture. The deformed complex background in SAR
imaging (as shown in left part) challenges the feature extraction and fu-
sion. SFR merges the refined shallow features C2 ∈ RW/4×H/4×256: I ∈
RW/4×H/4×256, the upsampled and downchanneled P3 ∈ RW/8×H/8×256:
II ∈ RW/4×H/4×256 and C2 itself: III ∈ RW/4×H/4×256 to generate the
final feature P2 ∈ RW/4×H/4×256 to overcome the deformed complex back-
ground.

extraction of shallow features. We can fuse the deep features
C5, C4, and and C3 to obtain a more representative feature
mapP3 through FPN. However, we cannot use the same method
to process and merge the shallow feature C2 [17], [20], [49]. It
contains more scenes interference information that is not filtered
by the convolution layers.

Therefore, we design the SFR to cope with the geometric
deformation of the complex background in the SAR imaging and
refine the object feature, while suppressing the interference of
the complex background in shallow C2 ∈ RW/4×H/4×256. The
structure of the SFR is shown in Fig. 4. P2 ∈ RW/4×H/4×256 is
derived from the addition of three features. In the first part, we
predict the offset of each pixel (Δx,Δy) in C2 when it is con-
volved to obtain offset map ∈ RW/4×H/4×2. When performing
3× 3 convolution, the convolved pixels in C2 will be shifted
accordingly according to Offset map (as shown in the enlarged
part of Fig. 4). Repeat twice to get the first part of the feature
map of I ∈ RW/4×H/4×256. The refined I feature can effectively
remove interference, while retaining detailed features.

The second part is the upsampled P3 ∈ RW/8×H/8×512.
The dimensionality of P3 is changed to RW/4×H/4×512 af-
ter upsampling, and then the channels are reduced from 512
to 256 by 3× 3 convolution to match the dimensionality of
P2 ∈ RW/4×H/4×256. The II ∈ RW/4×H/4×256 obtained after
upsampling and downchanneling of P3 can enable P2 to obtain
high-level semantic information, which is conducive to the
detection of medium and large objects. The third part III is
C2 ∈ RW/4×H/4×256 itself to help P2 ∈ RW/4×H/4×256 main-
tain the original feature of the SAR image.

Through the refinement of shallow features and the fusion
of upper-level semantic features, SFR can effectively deal with
the complex imaging background and geometric features of
deformation in SAR images, and improve the feature extraction
and fusion capabilities of detectors.

C. Prediction Heads

The features fused by FPN and SFR are processed through
three detection heads to obtain the output of the network.

1) Classification and Regression Heads: Classification head
makes a probability prediction of whether each pixel of P2 ∈

Fig. 5. Prediction box decoding. The outputs of classification head and re-
gression head are cls ∈ RW/4×H/4×1 and reg ∈ RW/4×H/4×4, respectively.
Classification head predicts the probability cls(xc,yc) (for example, 0.92) that
each pixel is an object center pixel by pixel. Regression head correspondingly
predicts the distance reg(xc,yc) from this point to the four sides of the detection
boxes. Enlarge the decoded detection boxes four times to get the final prediction
results.

RW/4×H/4×256 contains the object and sets its output as cls ∈
RW/4×H/4×n, where W/4×H/4 is the size of the feature map,
and n is the number of categories in the dataset. The classifica-
tion score of each pixel is between [0, 1]. Regression head as-
sumes that each pixel in P2 is the center of the box, and predicts
a 4-D vector reg = (l, r, t, b) for each pixel, where l, r, t, and b
represent the distance from the object center to the left, right,
top, and bottom of the detection box, respectively. Remember
that the output of regression head is reg ∈ RW/4×H/4×4. Then,
we can obtain the category and location of the predicted object,
as shown in Fig. 5.

For each pixel, we predict the probability that it is an object
center point cls(xc,yc), and the distance between the point and the
four sides of the detection box reg(xc,yc)

= (l, r, t, b). Combine
it into a detection box for each pixel, where (x0, y0) are the
coordinates of the upper-left corner of the prediction box, and
(x1, y1) are the coordinates of the lower-right corner. Then
enlarge its coordinates four times as the final detection result.

2) Number Estimation: Due to the changes in the elevation and
azimuth angles of the SAR during imaging, the same background
has differences under different imaging conditions. The confi-
dence level of the detection boxes varies widely. As shown in
Fig. 1(d), the confidence level of prediction boxes is from 0.6 to
0.8, and even the low-quality detection box C has a confidence of
0.65. Despite the similar background in Fig. 1(d), due to imaging
differences, the confidence level of the boxes is 0.2 to 0.5, and
the confidence for high-quality detection box E is only 0.45.

On the one hand, the selection of a fixed threshold is often
based on manual experience. On the other hand, a fixed threshold
is difficult to effectively filter out low-quality detection boxes in
SAR images with imaging differences.

To alleviate the abovementioned problems, we use the number
estimation head to predict the number of objects in each SAR
image. The output of the number estimation head is num. We
decode cls, reg, and num into the commonly used boxes and
labels for object detection. The entire decoding process is shown
in Algorithm 1.

We combine cls and reg to obtain all boxes and labels. The
number estimation head predicts the number of objects num.
cls passes through 3× 3 max-pooling first. Then select the
corresponding number of center points in clsmax according to
num by topk(cls, num). Perform the same operation on reg to
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Fig. 6. Red boxes are the detection results of L1 Loss, and the blue boxes are
the detection results of RIoU Loss. As shown in the orange regions, RIoU Loss
can determine more objects in the early iterations (a) of training, while L1 Loss
can obtain higher quality boxes in the later iterations (b). Iteration-Aware Loss
adaptively combines L1 Loss and RIoU Loss according to their characteristics
to locate the edge of the object accurately. (a) The result of the 5th epoch.
(b) The result of the 65th epoch.

Algorithm 1: Bounding Boxes Decoding Algorithm.
Input:cls, reg, num.
Output:boxes, labels
1: Get clsmax by performing a 3-by-3 maxpool on cls
2: cls = cls ∗ (clsmax == cls)
3: Get scores,cat, ys, xs by performing topk(cls, num)
4: labels = (scores,cat)
5: Get regmax by performing topk(reg, num)
6: boxes =

(xs− reg[0], ys− reg[1], xs+ reg[2], ys+ reg[3])
7: returnboxes,labels

obtain regmax. Finally, clsmax and regmax are decoded to obtain
the final detection result (boxes, labels).

D. Loss Function

1) Iteration-Aware Loss: The noise scattered power distribu-
tion in the SAR image is often close to the distribution of the
object edge, which causes interference to the fine positioning
of the SAR object. For this reason, we design iteration-aware
loss to adaptively guide the anchor-free detector to focus on the
approximate position of the object in the early training iterations
and use more attention to locate the fine edge of the object in
the later training iterations.

Fig. 6(a) and (b) shows the detection results of the detector
using L1 loss and CIoU loss [50] at the 5 th and 65 th epoch. The
red boxes are the prediction using L1 Loss, and the blue ones are
the prediction using CIoU Loss [50]. It can be seen that in the
early iterations of training, CIoU loss [50] can realize the quick
determination of the approximate positions, and can focus the
two objects missed by L1 loss [yellow circle in the upper right
corner in (a)]. In the later iterations of training, as shown in
Fig. 6(b), L1 loss can achieve more accurate detection. Detector
tends to quickly locate the approximate positions of the objects in
the early training iterations and then refine the existing detection
boxes in the later iterations. A single loss function throughout
the training iterations cannot adapt to the different optimization
focuses of the network in the learning process.

Fig. 7. Illustration of θgt and θ. The green box and the red one are ground-truth
and prediction box, respectively.

To adapt the loss function to the different emphasis of the
detector in different training iterations, we propose iteration-
aware loss. In the initial stage of training, we design ratio IoU
loss (RIoU Loss) to guide the detector to focus the object rough
position

LRIoU = 1− IoU +
v2

1− IoU + v
(1)

v = (θgt − θ)2 (2)

where LRIoU guides the anchor-free detector to quickly deter-
mine the rough position of the SAR object in the early stage
of training by constraining the degree of overlap between the
prediction box and the ground-truth and the aspect ratio. And v
measures the consistency of the aspect ratio. As shown in Fig. 7,
θgt and θ are used to measure the aspect ratio of ground-truth and
prediction box. wgthgt, w, h are their width and height. As the
later training progresses, L1 loss takes over the position to guide
the detector to focus on the refinement of boxes. The definition
of iteration-aware loss is as follows:

LIteration−Aware = (1− n/t) ∗ Lr + n/t ∗ L1 (3)

where n and t are the number of currently executed epoch and
the total number of training epoch, respectively. l1 and lr are,
respectively, L1 loss and RIoU loss. The optimization focus
transition of the two loss functions in the training iterations can
effectively adapt to the optimization focus of the detector in
different iterations of learning to locate the edges of boxes.

Then we analyze why iteration-aware loss is effective. RIoU
loss directly guides the detector to optimize IoU and aspect ratio.
It is a measure of the relative error of the coincidence degree and
shape similarity between the prediction box and ground-truth.
In the early iterations of training, using RIoU loss as the loss
function of the detector regression task can effectively guide
the detector to predict the rough position of the object. In the
later iterations of training, the optimization focus is to refine the
predicted existing detection boxes in aliased scattered power
distribution. The formula of L1 Loss is

L1 = |l − l0|+ |r − r0|+ |t− t0|+ |b− b0| (4)

where (l, r, t, b) is the detector’s prediction of the distance from
the center point to the four sides of the box, and (l0, r0, t0, b0) is
its corresponding target value. L1 Loss measures the prediction
level by the absolute error between the box prediction value
and the target value. As shown in Fig. 8, the large object has a
larger L1 Loss than the small one, which is not conducive to the
convergence of the model in the early training iterations when
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Fig. 8. Statistical analysis of box scale in SAR-ship dataset.

the prediction box accuracy is not high. In the later iterations of
training, the L1 Loss can effectively measure the absolute loss
of the predicted value and the target value, which is beneficial
for the detector to strengthen the localization of the object edge
while overcoming the aliased scattered power distribution.

Iteration-aware loss enables the detector to determine the
approximate position of the object more quickly in the early
iterations of training so that more attention can be used to refine
the position of the box in the aliased power distribution in the
later iterations of training.

2) Total Loss Function: We define total loss function L as
follows:

L = wc ∗ Lcls + wr ∗ Lreg + wn ∗ Lnum (5)

where Lcls is focal loss [51], which is used to ease the imbal-
ance of positive and negative samples of the dataset. Lreg uses
iteration-aware loss, which is used to guide the detector’s opti-
mization focus in different iterations. For the number estimation
function Lnum, we use mean square error loss to measure the
error in number estimation. For the above three tasks, the weight
combination [wc, wr, wn] is [1, 1, 0.1].

IV. EXPERIMENT

To show the effectiveness of the proposed SAR object detec-
tor, we make comprehensive comparisons between our approach
with mainstream optical image detection methods. Then we
conduct ablation experiments to explore the effectiveness of SFR
and iteration-aware loss for the detector in SAR image object
detection. The visual analysis of number estimation is given at
the end of this section.

A. Experiment Setup

1) Datasets: The SAR-ship dataset [52] contains more than
40 000 ship slices from the Gaofen No. 3 SAR. The image size
is 256× 256. Some examples are shown in Fig. 11. The green
boxes are ground-truths of the objects, and the red ones are
the prediction of the positions and categories of the objects,
and the corresponding confidence scores are given. The initial

Fig. 9. Large box (left) has a larger L1 loss than the small box (right) when
it is the same as the IoU of ground truths. It is not conducive for the detector
to locate most of the objects on the SAR-ship dataset in the early iterations of
training.

data contain 102 Gaofen-3 pictures and 108 Sentinel-1 pictures.
For Gaofen-3, the images have resolutions of 3, 5, 8, and 10 m
with Ultrafine Strip-Map, Fine Strip-Map 1, Full Polarization 1,
Full Polarization 2, and Fine Strip-Map 2 imaging modes, re-
spectively. The data enhancement methods used include random
center cropping, mirror inversion, and optical transformation.
According to the definition of small object, medium object, and
large object in the COCO dataset [53], we conduct statistical
analysis on the three scale objects in the SAR-ship dataset [52],
and the analysis results are shown in Fig. 9. It can be seen that
small and medium objects dominate the SAR-Ship dataset [52],
while large objects are rare.

a) MSTAR-D dataset: The multiclass detection datasets of
SAR objects are very scarce, in order to verify the performance
of our method in multiclass SAR image object detection in
more complex scenes, we construct the MSTAR-D dataset by
performing manual instance-level annotation on the MSTAR im-
age classification dataset [54]. The MSTAR-D dataset contains
5172 image slices of ten categories of SAR objects: BTR70
(armored transport vehicle), BMP2 (infantry fighting vehicle),
T72 (tank), 2S1 (self-propelled howitzer), BRDM2 (armored
reconnaissance vehicle), BTR60 (armored transport vehicle),
D7 (bulldozer), T62 (tank), ZIL131 (cargo truck), and ZSU234
(self-propelled antiaircraft gun). As shown in Fig. 10, the objects
of each category are very similar, and it is very challenging to
accurately identify the class of objects and locate them.

2) Training and Evaluation Metrics: The ratio of training
set: validation set:test set is 7:2:1 in SAR-Ship dataset [52]
and MSTAR-D dataset. We use ResNet50 [48] pretrained on
ImageNet as the backbone of the detector for feature extraction.
The model uses the Adam optimizer to train with 48 images per
batch. The initial learning rate is 1.25× 10−4, and a total of 70
epochs are trained. At the 45th, and 60th epoch, the learning rate
is attenuated to the original 0.1. All experiments were performed
on a device containing two 2080TI and CPU E5-2620 v4 @
2.10 GHz. Similar to most publications, we use the average
precision (AP) to evaluate the performance of our method. AP
is the area of the precision/recall curve.

B. Comparison With Mainstream Detectors

We compare the proposed method with mainstream opti-
cal image object detectors: 1) Anchor-based one-stage object
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TABLE I
PERFORMANCE COMPARISON WITH MAINSTREAM OPTICAL IMAGE DETECTORS AND SAR IMAGE DEDICATED OBJECT DETECTORS

01 RED/BLUE indicate the best/the second best.
The bold entities represent the maximum value of each column, that is, the best results obtained by each method on the index corresponding to that column.

Fig. 10. Samples of MSTAR-D Datset. They are T62 (tank), 2S1 (self-
propelled howitzer), BRDM2 (armored reconnaissance vehicle), BTR70
(armored transport vehicle), respectively.

detectors: YOLOv3 [27], FASF [55], SSD [26], and Reti-
naNet [51]. 2) Anchor-based two-stage object detectors: Faster
R-CNN [14]. 3) Anchor-free object detectors: FCOS [17]
and CenterNet [16]. The feature extraction network adopts
ResNet50 [48] (the feature extraction network of YOLOv3 [27]
is darknet53). Also, we compare with some SAR image ded-
icated object detectors: CenterNet++ [56], MdrlEcf [57], 2S-
Retinanet [58], ISASDNet [59], and Quad-FPN [60].

As shown in Table I, anchor-based object detectors like faster
R-CNN [14], RetinaNet [51], YOLO v3 [27], and SSD [26]
achieveAP50 of 91.9%, 90.5%, 93.9%, and 93.4%, respectively.
Anchor-free object detectors like FCOS [17] and CenterNet
achieve AP50 of 92.0% and 95.4%, respectively. Our method
can reach 62.0%AP and 96.4%AP50 at 64.9 frames per second
(FPS). In the small, medium, and large scales, the performance
of APS , APM , and APL exceeds CenterNet [16] 2.3%, 4.4%,
and 5.2%, respectively. It can achieve the best speed-accuracy
tradeoff in object detection tasks with SAR images with complex

TABLE II
PERFORMANCE ON SINGLE-CLASS AND MULTICLASS SAR DATASETS

backgrounds. Compared with a SAR image dedicated object
detector, our proposed method also has advantages. Among
them, the AP50 of CenterNet++ [56], MdrlEcf [57], 2S-
Retinanet [58], ISASDNet [59], and Quad-FPN [60] are 95.4%,
91.7%, 92.59%, 95.3%, and 94.39%, respectively. The AP50

of our proposed method is 96.5%, which exceeds 1.1%, 4.8%,
3.91%, 1.2%, and 1.11%, respectively.

In terms of speed, our detector also has a significant advan-
tage. Compared to optical detectors, such as faster R-CNN [14],
RetinaNet [51], FCOS [17], SSD [26], YOLO v3 [27], and
FASF [55]’s 5.19, 35.63, 12.81, 60.4, 43.9, and 24.2 FPS,
respectively, our method leads at 64.9 FPS. The SFR structure
and number estimation slightly increase the amount of network
parameters. Compared with CenterNet [16], our method sac-
rifices 8.2FPS speed in exchange for 3.5% AP improvement.
Compared with SAR dedicated detectors, our method has an
advantage over MdrlEcf [57], and Quad-FPN [60]’s 5.05 and
11.37 FPS at 64.9 FPS. Our method uses Resnet50, which
is lighter than DLA [61], and has no offset heads, which is
34.6-FPS faster than CenterNet++ [56]’s 30.30 FPS. The re-
moval of the anchor mechanism makes our method 45.86-FPS
faster than anchor-based SAR dedicated detectors 2S-Retinanet
[58]’s 19.04 FPS.

The final result is shown in Fig. 11; the green boxes are
the ground-truths, and the red ones are the predicted boxes
filtered by the number estimation method. In Fig. 11(a), we
focus on comparing the results of the proposed method and
CenterNet [16] on SAR images containing deformed complex
scenes. In Fig. 11(b), we focus on comparing the performance
of the proposed method and CenterNet [16] on objects when the
edges of objects are aliased with the noise power distribution.
Compared with CenterNet [16], our method can effectively
detect SAR objects and locate accurate edges.

In order to further verify the advantages of our method in
SAR object detection task, we conduct experiments on the con-
structed MSTAR-D dataset. As shown in Table II, our method
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Fig. 11. Comparison between the proposed method and the most competitive CenterNet. As shown in (a), SFR can effectively deal with the deformed complex
scenes in SAR imaging, identify difficult objects, and suppress false detections. Iteration-aware loss enables the detector to gradually pay attention to the edge
information of the object during the training process, suppress the influence of the scattered power of the noise, to achieve more accurate box positioning. (a) The
first row is the result of CenterNet, and the second row is the result of the proposed method with SFR. The red boxes and green ones are prediction boxes and
ground-truths. SFR can effectively improve the detector’s ability to cope with geometric deformations in SAR Imaging. (b) The first row is the result of L1 loss,
and the second row is the result of iteration-aware loss. The red boxes and green ones are prediction boxes and ground-truths. Iteration-aware loss can effectively
guide the detector to focus on the edges refinement of existing boxes.

achieves 62.9% at AP , 96.4% at AP50, and 72.0% at AP75 on
SAR-ship dataset. On the MSTAR-D dataset with ten classes of
SAR objects, we achieve high performance with 67.7% at AP ,
93.4% at AP50, and 80.1% at AP75.

The performance of various objects in the MSTAR-D dataset
is shown in Table III. It can be seen that the performance of most
classes, such as T62, BTR60, and ZSU234 can reach more than

70%. Some harder-to-identify classes, such as BRDM2, BTR70,
and 2S1 achieve 45.7%, 52.7%, and 66.4% performance, re-
spectively. Our method achieves good performance on various
objects on the MSTAR-D dataset.

The visualization results are shown in Fig. 12. The green boxes
are the ground-truths, and the red ones are the predicted boxes
filtered by the number estimation method. It can be seen that the
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Fig. 12. Visualization results of our method in MSTAR-D. In the difficult case, where the features of different classes are similar, our method achieves accurate
location localization and object classification.

TABLE III
PERFORMANCE OF PER-CLASS SAR OBJECTS ON MSTAR-D DATASET

TABLE IV
ABLATION EXPERIMENTS UNDER DIFFERENT CONFIGURATIONS

The bold entities represent the maximum value of each column.

features of BTR70, BTR60, and other objects in MSTAR-D are
very close, and our method can accurately classify the positions
of the objects, while recognizing them.

C. Ablation Experiments

SFR structure and iteration-aware loss make the anchor-free
detector more suitable for object detection in complex scenes.
To analyze their influence on the detector, we conduct a series
of ablation experiments under the same experimental settings.
All ablation experiments are briefly reported in Table IV. SFR
and iteration-aware loss can increase AP by 0.33% and 3.40%,
respectively, based on the baseline. On small objects, the two can
increase APS by 0.5% and 2.55%, respectively. The improve-
ment of the detector on SAR-ship [52] is mainly due to that SFR
refines the shallow features and iteration-aware loss adapts to the
optimization focus of the detector in different training iterations.
When both SFR and iteration-aware loss are used, the detector
achieves the best performance with a AP of 62.01%.

Fig. 13. Comparison of four structures for refining feature. (a) Is the original
FPN. (b) Is the direct introduction of C2, unsuppressed noise corrupts feature.
(c) Is the use of SFR to C2, it suppresses noise interference while retaining
detailed information in C2. (d) Is the use of SFR to C2 ∼ C5, multiple
SFR structures can further improve the performance but with an inappropriate
computation.

1) Influence of SFR: As shown in Fig. 13, we compare the
detection performances of P2 feature maps generated in four
ways as follows.

a) P2 ∈ RW/4×H/4×256 generated by the basic FPN. P3 ∈
RW/8×H/8×512 is obtained through the classic FPN struc-
ture, followed by upsampling to double the size of the
feature map and 3× 3 convolution to reduce the number
of channels to obtain P2.

b) P3 is performed upsampling and 3× 3 convolution
as a), and then directly added with original C2 ∈
RW/4×H/4×256 to get P2.

c) P3 is performed operations as a). Then use the SFR
module to refine shallow feature C2 and then merge them
to generate P2.

d) The features C2∈RW/4×H/4×256, C3∈RW/8×H/8×512,
C4 ∈ RW/16×H/16×1024, and C5 ∈ RW/32×H/32×2048

output by the backbone are all refined using SFR, and
then the refined features are fused using the classic FPN
structure to obtain the final P2.
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TABLE V
ABLATION EXPERIMENT OF SFR. DETAILS ABOUT THE FOUR STRUCTURE

(A)–(D) ARE GIVEN IN FIG. 13

The bold entities represent the maximum value of each column.

Ablation experiments show that SFR can effectively remove
the interference information in the shallow feature map C2, and
refine the features about small objects. The performance compar-
ison of the four methods is shown in Table V. The direct introduc-
tion ofC2will damage the final performance of the detector. The
performance of APS and APM are reduced by 0.4% and 0.9%,
respectively, and the performance of APL is increased by 1.5%.
As shown in Fig. 9, the SAR-Ship dataset [52] is mainly based on
small and medium objects, so the performance improvement of
large objects has little effect on the final performance AP . After
using SFR to refine the shallow feature mapC2, the detector can
achieve better performance. Compared with the FPN method, the
SFR method exceeds 0.50% on both small and medium objects,
and the weakening of the performance on large objects has little
effect on the overall performance of the detector. Comparing
method (c) and method (d), it can be found that when the deep
features C3, C4, and and C5 are refined, the performance is
only improved by 0.07% as the calculation increases. Finally,
compared to the other three methods, (c) achieves competitive
performance with an AP of 58.80%.

Through SFR, the proposed detector can perform better fea-
ture extraction and fusion of deformed complex scenes in SAR
images. CenterNet [16] has misdetected small objects in the first
row in Fig. 11(a). Especially in the first and second columns in
Fig. 11(a), after the shallow features are refined by SFR, it can
effectively suppress false detection. In addition, as shown in
the third and fourth columns, the information of objects is sub-
merged in the deformed scenes, and SFR can effectively identify
and retain its characteristics. The SFR module can effectively
remove the deformed scenes features in C2, while retaining
the detailed information of small objects, thereby effectively
improving the performance of the detector on SAR objects in
complex scenes.

2) Influence of Iteration-Aware Loss: To locate the edge of
SAR object with aliased scattered power distribution, we design
iteration-aware loss to adapt to optimization focus in different it-
erations. In the ablation experiment, we compare iteration-aware
loss with CIoU loss [50], L1 loss, and the weighted combination
of the two (both weight 0.5). The experimental results are shown
in Table VI.

It can be seen that L1 loss is significantly better than CIoU
loss [50]. The performance of small objects, medium ob-
jects, and large objects are, respectively, 1.30%, 3.81%, and
0.91% higher. Using L1 loss as the loss function of regression can
build a powerful SAR object detection performance benchmark.
The performance of the weighted combination of L1 loss and
CIoU loss [50] is between using the two loss functions alone,

TABLE VI
ABLATION EXPERIMENT OF ITERATION-AWARE LOSS

01 IAL refer to iteration-aware loss.
02 CL refer to the combination of CIoU Loss [50] and L1 Loss.
The bold entities represent the maximum value of each column.

TABLE VII
ABLATION EXPERIMENT OF NUMBER ESTIMATION

The bold entities represent the maximum value of each column.

and what is surprising is that iteration-aware loss is obtained by
combining CIoU loss [50] and L1 loss according to the dynamic
weight, and has the best performance. iteration-aware loss ex-
ceeds L1 Loss by 1.27%, 0.56%, 1.63% in the performance of
small objects, medium objects, and large objects, respectively.

Comparing the first row and the second in Fig. 11(b), the
method proposed in this article can achieve more accurate boxes
positioning on objects. Iteration-aware loss can effectively guide
the detector to focus on the refinement of the detection boxes in
the later stage of training. Especially on the right side of the first
column, the bottom side of the second column, the left side of the
third column, and the top side of the last column, the proposed
method achieves more accurate box positioning.

D. Visual Analysis for Number Estimation

In practical applications, it is often necessary to select boxes
generated by the detector according to a certain standard. But for
scenes with similar backgrounds, SAR images sometimes will
be different due to different conditions, such as the elevation
angle of SAR imaging. We propose the number estimation
method to deal with the resulting difference in the confidence
level of the prediction boxes in different SAR images.

In practical applications, the confidence threshold is usually
not too high or too low. In this part, AP50 of boxes selected by
the confidence threshold method (T = t, t = 0.1, 0.2, . . ., 0.9)
and the method based on number estimation (K = num) is
compared. The experimental results are shown in Table VII. In
practical applications, the confidence threshold is usually 0.5.
The AP50 based on number estimation (K = num) is 2.4%
higher than that based on confidence threshold (T = 0.5). As the
threshold decreases, more boxes are involved in the calculation
of the AP50. When the threshold is 0.7, 0.6, 0.5, 0.4, and AP50
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Fig. 14. Comparison of visualization effects whenAP50 is 96.1% and 92.1%.
The red boxes and the green ones are the prediction boxes and ground-truths,
respectively. (a) AP50 is 95.6% when the threshold is 0.01. (b) AP50 is 92.1%
when the threshold is 0.50.

is 88.3%, 91.1%, 92.1%, and 93.0% in turn. However, the higher
theAP50 does not mean the better the effect in actual application.

As shown in the first row of Fig. 14(a), when the threshold is
0.01, many low-confidence prediction boxes fill the entire image,
but the AP50 is as high as 95.6%. Fig. 14(b) is the result when
threshold is 0.5. It can be seen that the low-confidence boxes are
filtered out. However, the AP50 dropped from 95.6% to 92.1%.

We compare the difference between the two methods based
on the confidence threshold method and the number estimation
method in the detection of objects in SAR images. In Fig. 15,
the green boxes are the ground-truths of the ship objects in the
SAR image, and the red ones are the prediction boxes of the
detector. It can be seen that in SAR images, using threshold
cannot effectively detect the ships and objects in the first column
of Fig. 15. In contrast, the number of ships in the second column
is 2, 3, 1, and 1. The corresponding number of detection boxes
is selected as the final detection result. Thus, low-confidence
boxes with confidence of 0.21, 0.48, 0.57, and 0.67 are detected,
respectively.

Based on the above analysis, number estimation has a stronger
adaptive ability than using a fixed threshold. It does not need
to be tried one by one or based on manual experience and
can complete the process of the model from training to actual
application end to end. In SAR images with different imaging
conditions, more difficult and low-confidence objects can be
effectively detected.

V. CONCLUSION

In this article, we develop the anchor-free method for object
detection in SAR images under deformed complex background

Fig. 15. Comparison of the filtered results based on threshold (column 1) and
on number estimation (column 2). The red boxes and the green ones are the
prediction boxes and ground-truths, respectively.

and aliased noise power distribution. A wide range of exper-
iments show the effectiveness of our proposed method, which
achieves 96.4% AP50 at 64.9 FPS. The proposed SFR can effec-
tively enhance the detector’s ability to extract and fusion shallow
features in deformed complex scenes. The iteration-aware loss
can effectively adapt to changes in the detector’s optimization
focus at different training iterations to locate the edge of SAR
object more accurately. And number estimation provides a more
effective method to filter out low-quality detection boxes in
different imaging conditions. We hope that these insights may be
useful for other SAR image detection tasks in deformed complex
scenes and noise power distribution.
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