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ReGO: Reference-Guided Outpainting
for Scenery Image
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Abstract— We present ReGO (Reference-Guided Outpainting),
a new method for the task of sketch-guided image outpainting.
Despite the significant progress made in producing semantically
coherent content, existing outpainting methods often fail to
deliver visually appealing results due to blurry textures and
generative artifacts. To address these issues, ReGO leverages
neighboring reference images to synthesize texture-rich results by
transferring pixels from them. Specifically, an Adaptive Content
Selection (ACS) module is incorporated into ReGO to facilitate
pixel transfer for texture compensating of the target image. Addi-
tionally, a style ranking loss is introduced to maintain consistency
in terms of style while preventing the generated part from being
influenced by the reference images. ReGO is a model-agnostic
learning paradigm for outpainting tasks. In our experiments,
we integrate ReGO with three state-of-the-art outpainting models
to evaluate its effectiveness. The results obtained on three scenery
benchmarks, i.e. NS6K, NS8K and SUN Attribute, demonstrate
the superior performance of ReGO compared to prior art in
terms of texture richness and authenticity. Our code is available
at https://github.com/wangyxxjtu/ReGO-Pytorch.

Index Terms— Image outpainting, GAN, generation model,
adversarial learning.

I. INTRODUCTION

THE task of image outpainting involves generating plau-
sible visual content beyond the boundaries of the input

image. Traditional approaches such as [5], [6], [7], and [8] rely
on a simple pipeline that involves searching and stitching of
image patches to the original input image for extrapolation.
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Fig. 1. Comparisons of sketch-guided image outpainting. All methods except
ours suffer from the lack of the texture details and blurry boundaries of
different semantic regions. The dashed boxes indicate the blurry regions.

However, these solutions are inflexible and may not meet
practical requirements. In recent times, researchers have turned
to generative adversarial networks (GANs) [15], [18] for the
synthesis of unseen content outside the input image boundaries
through adversarial learning [1], [2], [4], [9], [39], [50]. For
instance, Zongxin et al. [4] propose a recurrent framework
that predicts new content for the given image patch, while
Teterwak et al. [2] translate the input image to a larger picture
with new content beyond the boundary. Wang et al. [10] take
image outpainting a step further by introducing sketch-based
clues to control the synthesis procedure.

In comparison with the random outpainting, sketch-guided
image outpainng is a challenging yet meaningful task. While
current methods are capable of producing coherent content
for a given image patch, the results are not always satis-
factory due to the lack of texture details. As illustrated in
Fig. 1(b)-1(d), the outpainting results generated by the state-of-
the-art methods [2], [4], [10] generally succeed in synthesizing
the desired images to match the guided sketches. However,
closer inspection reveals poor quality of the generated regions,
including pixels with fewer texture particulars and blurry
boundaries between different semantic regions. Consequently,
the overall outpainting results lack authenticity.
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Fig. 2. The outpainting examples with (w/) and without (w/o) the reference images. Although the model abandoning the reference images could predict
reasonable pixels for the inputs, but its outpainting results suffer from the lack of textural details. The neighboring images share many pixels with the image
to be extended, allowing models to borrow valuable pixels from the neighboring images and produce outpainting results with rich textures.

Intuitively, landscape photos typically exhibit similar lay-
outs and appearances to the photos in the same scene.
As shown in the top row of Fig. 2, both the input patch
and the reference image show the sunset-related scene, and
there are many valuable pixels in the reference image aiding
in the synthesis of high-quality content for the input patch.
Therefore, if we can successfully transfer the knowledge
from similar photos to complement the textural details of the
predicted content, the authenticity of the generated part can
be significantly improved. Straightforwardly, the input image
itself is a natural choice for serving as the reference, since
it often contains content-consistent pixels to the outpainting
part. However, simply adopting the input image for referring
often limits the diversity of sketch layout or content pattern
of the outpainting part, leading to poor generalization ability,
especially for the free-form outpainting.

Motivated by the aforementioned observations and con-
siderations, this work explores a principle for synthesizing
highly detailed outpainting results by utilizing pixels from the
neighboring images, also called reference images, as guidance.
We refer to this approach as Reference-Guided Outpainting
(ReGO). However, the reference images inevitably contain
some inconsistent content. Therefore, transferring these pixels
without adaptive filtering would introduce abrupt pixels and
subsequently degrade the quality of the generated content.
Consequently, the main challenge of ReGO lies in effectively
transferring pixels from neighbors while maintaining the style
consistency with the input image.

To this end, an Adaptive Content Selection (ACS) module
is first proposed to augment our ReGO. Concretely, an image-
guided convolution is first conducted on the reference image to
select the compensatory features, and two feature fusion blocks
are followed for guiding sketch fusing and boundary stitching,
respectively. With the ACS module, our ReGO can effectively
filter out the abrupt or profitless contents and only adopt the
beneficial features to synthesize texture-rich results. In this
context, “beneficial features” refers to the features derived
from parts of the reference images that resemble the synthe-
sized content, whereas “non-beneficial features” pertains to
the features extracted from sections of the reference images
that do not contribute to the synthesized content. Besides, the
introduced reference image is only responsible for contributing
contents to enrich the final outpainting results, while the style
of the synthesized part should keep consistent with the input,
instead of being affected by the reference. To achieve the
style consistency, we further utilize a hinge-based ranking

loss to pull the style of generated part close to the input
image and prevent the style of generated image from biasing
to the reference image. Particularly, the generated part and
the input patch are treated as the positive pair, while the
reference image is regarded as the negative sample, then, the
triplet loss is imposed to constrain their style representations.
The style ranking loss could make our system avoid abrupt
pixels and synthesize smoother outpainting results with a cohe-
sive visual style. We perform experiments on three popular
benchmarks, NS6K [4], NS8K [10], and SUN Attribute [24].
Extensive quantitative and qualitative comparisons can well
demonstrate the superiority of our ReGO over other state-of-
the-art approaches.

In summary, the primary contributions of this work include:
• A new Outpainting framework. We propose ReGO,

a new outpainting method that introduces a reference
image as guidance to transfer content-consistent pixels
and synthesize texture-rich outpainting results.

• Adaptive content selection (ACS) module. ACS module
is designed to pick up the beneficial features from the
reference image, making ReGO could filter out abrupt
pixels and generate semantic-consistent results.

• Style ranking loss (SRL). SRL is proposed to restrain
the style of the synthesized part and enables the system
to synthesize style-consistent results.

• Competitive performance on both random outpainitng
and sketch-guided outpainting tasks.

II. RELATED WORK

A. Image Inpainting

The image inpainting has been well explored recent years,
whose target is to restore the missing or corrupt regions in
images [11], [25], [27], [30], [31], [32], [36], [38], [41],
[46], [47], [48]. Benefit from the tremendous success of the
generation adversarial networks (GANs) [15] and diffusion
models [42], [43], [47], the image inpainting has made great
advances these years. In the early exploratory stage of this
task, the researchers target on the missing regions with formal
shapes [37], [40], the core idea is to collect information from
the surrounding context to restore the missing pixels. Liu et
al. develop a novel operation named partial convolution, itera-
tively predicting the missing pixels by collecting information
from the surrounding content [35]. With the technique devel-
oping, the community pays more attention to the free-form
inpainting problems [30], [32], [35], [40], [31], [49]. In [31],
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Fig. 3. The overview of the proposed ReGO. The ReGO system takes the left image & the sketch as inputs, and synthesizes the additional right half new
content for the input image. The overall architecture follows an encoder-decoder paradigm, where the encoder compresses the inputs and obtain the hidden
feature F , and the decoder is responsible to rebuild the complete image from F . Meanwhile, our Adaptive Content Selection (ACS) module could be equipped
in each decoder layer, a reference image is first selected from the training samples, whose right half is further cut and fed into the proposed ACS module
together with the guiding sketch to replenish the hidden features. As for the guiding sketch, we use the groundtruth from the right half image during training.
At the testing stage, the guiding sketch could be manually drawn or borrowed from other image, as shown in Fig.7.

Xie et al. propose a feature re-normalization to adapt to the
irregular holes. In [30], Guo et al. propose a full-resolution
residual network (FRRN) to restore the missing pixels with
irregular shape. Comparing to the inpainting, the missing
pixels of outpainting task are far from the valid content, posing
more challenges to restore.

B. Image Outpainting

Conventional image outpainting methods follow a search-
and-compose pipeline, where the potential patches are first
selected from an external library and then stitched with
the input image to conduct extrapolation [3], [6], [8], [12],
[7], [13]. Inspired by the success of the deep neural net-
work, researchers recently attempt to predict new content
beyond the boundaries using the generative adversarial net-
works (GANs) [2], [4], [15] and diffusion models [42], [45].
For example, Teterwak et al. [2] and Zongxin et al. [4] use
encoder-decoder based generator to predict the unseen pix-
els. In [39], Yao et al. study the potential of transformer
for outpainting and develop an transformer-based outpainting
framework. Recently, the outpainting has been promoted by
the powerful diffusion model [42], [43], [44], [45], Nuwa-
Infinity [45] builds a diffusion-based outpainting model that
is capable of extending images with very high resolutions over
long distances. However, these methods could only predict ran-
dom contents, to address this weakness, the conditional image
outpainting starts to be studied recently. Wang et al. [10]
develop a network that allows users to guide the final synthesis
by free-form sketches. In [9], the authors propose to utilize
the language and the position clues to control the outpainting
results. Despite existing methods, the synthesized results still
suffer from blurred texture, which motivates us to develop
a controllable outpainting framework capable of synthesizing
high-quality images with rich texture.

III. METHODOLOGY

The Overview. The primary objective of this study is
to enhance the quality of sketch-guided image outpainting

by enriching its texture. The pipeline of our outpainting
system can be seen in Fig. 3. The architecture operates on an
encoder-decoder paradigm where our proposed Adaptive Con-
tent Selection (ACS) module is integrated into each decoder
layer. The left half image and sketch comprise the inputs to
the encoder, and the output is the hidden feature map F ,
which is transmitted to downstream decoder layers to build
the complete image. To synthesize the texture-rich results, the
reference image is first chosen from the searching space. i.e.
, training samples and fed into the ACS module to distill its
content for compensating purpose. Besides, to allow the user to
harvest the freestyle outpainting, the guiding sketch clue is also
integrated to build a flexible system. Fig. 4 shows the details
of the ACS module. The image-guided convolution is first
employed to distill the beneficial features from the reference
image, then the selected features are integrated with the hidden
representations of the synthesized part to complement the
texture details. In addition, the style ranking loss is designed
to encourage the generator to produce style-consistent content.

A. Data Preparation

In our system, an image I from the training set X requires
two auxiliary data inputs: the corresponding sketch and ref-
erence image. The sketch acts as a conditional clue to guide
the synthesis process, as demonstrated in Fig. 1. On the other
hand, the reference image is utilized to provide comprehensive
detailed features essential for generating texture-rich new
content.

To obtain the sketch, we utilize the HED edge detector [16]
to extract the edge map, which is then binarized with a
predetermined threshold (0.6 in our experiments) to produce
the binary sketch S ∈ RH×W×1. During training, the network
is trained to restore the ground-truth parts using original
sketches of missing parts drawn from the training data. During
testing, users can input manually drawn free-form sketches to
synthesize desired results.

To acquire reference images for input I , we begin by
extracting feature representations through a pre-trained model,
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Fig. 4. Our proposed ACS module architecture involves distilling profitable features from the reference image and using them to replenish predicted features.
Sketch fusing then follows to combine sketch clues, creating a controlled outpainting system. Lastly, a seaming block ensures a seamless transition between
left and right content.

Places365 [17], followed by the utilization of cosine similarity
to identify similar samples. Noting that only the left half
image is used for similarity calculation. We have observed that
visual neighbors typically share similar content with the target
image and tend to have more beneficial pixels, thereby making
them suitable candidates for reference images. In our practice,
we select multiple neighbors for each sample and randomly
pick up one in each training iteration as the reference image
G. Besides, since we only need to replenish the details of
synthesized part, the right half of the reference image is only
considered for further processing, as shown in Fig. 4.

B. ACS Module

Given the reference image and guiding sketch, our ACS
module has two primary duties: to enhance synthesized new
content texture details and combine conditional information
from the guiding sketch. To fulfill these duties, we design an
image-guided convolution to enrich the details, and a sketch
fusing block is utilized to integrate the sketch clue. Further-
more, we implement a seaming block to ensure a uniform
boundary between the original left feature and predicted new
contents. Subsequently, we elaborate on the details of each
block.

Image-Guided Convolution. The proposed Image-Guided
Convolution (IGConv) aims to help the network complement
texture details for the new content using the distilled the ben-
eficial features from the reference image. Intuitively, the left
part of the input could directly serve as the reference image.
However, based on our experience, such a strategy often
results in an insufficiently diverse training set. Consequently,
the trained model becomes overly reliant on the original
sketch layout and content pattern, rendering it incapable of
well generalizing to freestyle outpainting scenarios. Therefore,
in our Image-Guided Convolution,we opt to search for multiple
reference image neighbors and select one randomly in each
iteration. Such a training fashion allows the model to see

diverse input-reference pairs, thus, the generality of the final
model could be boosted accordingly.

Formally, let FL ∈ Rh×w×c be the features encoded from
the image to be extended, FR represents the hidden features
for the predicted new content. FL and FR form the com-
plete hidden features of the overall image F ∈ Rh×2w×c.
And the features of G, which are encoded from a reference
image encoder, are denoted as FG

∈ Rh×w×c. The designed
image-guided convolution aims to complement FR by extract-
ing helpful information from reference features FG . A group
of dynamic filters are conditionally produced based on the
features of input and reference images, making the network
adaptively collect the beneficial content from the reference
image. To be specific, a dynamic kernel is produced based on
the concatenation of FG and FL via a simple feed-forward
procedure:

k = 9(FG , FL), (1)

where k ∈ R3×3×c, 3 and c indicates the kernel size and
channel number, respectively. The 9 can be modeled as the
neural network, which takes the features of the reference and
the input and recurrently use the convolution with stride=2,
batch normalization and ReLU1 to get the features.

The dynamic kernel in Eq. 1 targets on providing guidance
to distill the content of the reference image. To adaptively pick
up the beneficial pixels and restrain the unhelpful content,
we conduct the channel-wise normalization to update the
dynamic kernels:

kn
i jk =

exp (ki jk)∑
h exp (ki jh)

. (2)

Thus, the distilled i-th channel map can be obtained as follow:

F̃G
:,:,i = FG

∗ P(kn
:,:,i ), i = 1, 2, . . . , c, (3)

1ReLU is not applied in the last layer.
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where the ∗ denotes the convolution operation, P(·) is an
operation to repeat kn

:,:,i c times along the channel dimension.
All of the F̃G

:,:,i |
c
i=1 are channel-wise stacked to get the distilled

feature map F̃G
∈ Rh×w×c.

The dynamic kernel in Eq. 2 aims to selectively emphasize
useful features and downplay unprofitable content through the
softmax operation, resulting in the network assigning lower
weights to unhelpful features and higher weights to helpful
ones. The distilled convolution in Eq. 3 then endeavors to suc-
cinctly summarize the advantageous semantic regions across
feature channels, based on each dynamic kernel’s viewpoint.
Such a procedure effectively gathers the beneficial features
from the reference image and combines them into the map
F̃G , which are further added to the feature FR to achieve the
compensatory purpose: F∗

R = FR + F̃G .
In addition to the reference image, the input image itself

also has the potential to contribute useful pixels. This is due
to the synthesized portion highly likely containing the same
objects as those present in the input image. Therefore, the
features from the input image are also integrated and the F∗

R
is updated as follow:

F∗

R = FR + F̃G
+ FL × σ(ρ(FL) × FR), (4)

where ρ(·) is the horizontally flip operation, σ(·) denotes
the sigmoid function, which is introduced to learn a dynamic
feature selection mechanism.

Sketch Fusing Block. Besides synthesizing the unseen part
with thriving and realistic details, our ReGO should also be
equipped with a practical mechanism, i.e. , allowing users
to acquire personal custom outpainting results using their
preferred sketches as the guidance. To this end, we intro-
duce a controllable sketch fusion block to achieve the target.
To make the final results exactly match the guiding sketch, the
sketch fusion block additionally integrates the sketch feature
to emphasize the desired shape in the restoring procedure,
as shown in Fig. 4.

Concretely, only the right half sketch Sr
∈ RH×W/2×3

serves as the guiding clues, and its feature maps F s are first
encoded by a sketch encoder E S . Then, the compressed sketch
features are channel-wise concatenated with the complemented
feature F∗

R , and fed forward a residual block [20] style
structure to get the fused output F s

R .
Seaming Block. Our seaming block is responsible to fuse

the raw left half features FL and the complemented features
F s

R , which in fact attempts to smooth the boundary between
the raw features from the input image and the complemented
right half features. As shown in Fig. 4, the seaming block
consists of two global residual blocks (GRB) [4] and a residual
block [20]. We alternately utilize the 1×3 and 7×1 convolution
in GRB to strengthen the connection between the original
and the predicted regions, especially the boundary between
the map from the input image and the complemented map of
the predicted new content. Particularly, the FL and F s

R are first
concatenated along the width dimension, and then sequentially
fed through two GRBs and a residual block to get the output
F ′, which is also the final output of our ACS module.

C. Style Ranking Loss

The reference image utilized by ReGO is intended solely
to provide texture details, and its style should not be reflected
in the synthesized content. To reduce the artifacts, the model
should 1) only transfer the texture details from the reference
image, 2) keep a consistent style between the given part and
the generated part. Given the above considerations, we con-
clude that hinge-based ranking is well-suited to our needs.
We treat the synthesized part and the input image as the
positive pair, while treating the reference image as the negative
sample. The hinge ranking loss is then applied to their style
representations to enforce the style of the input and the new
content to be more similar to each other than to that of the
reference image.

Following previous practices [21], [22], [23], we utilize
the second-order statistics of convolutional feature as style
representation. Particularly, the style features of generated part
Î r

∈ RH×W/2×3, which is only the right half of the image
reconstruction Î ∈ RH×W×3, is given by the Gram matrix
Rd

∈ RNd×Nd :

Rd
i j =

∑
k

Md
ik Md

jk, (5)

where Md
i is the vectorised i-th feature map in layer d from a

convolutional neural network like VGG19 [26], Nd indicates
the channel number of layer d .

Analogously, the style representations of the reference
image and the input image can be extracted, and our style
ranking loss is defined as:

Ld
s = [α − SM(Rd , Ld) + SM(Rd , Gd)]+, (6)

where Ld and Gd represent the Gram matrixs of the left input
and the reference image, respectively, SM(·, ·) is the cosine
similarity, α ∈ R is the scalar margin, and [·]+ = max(·, 0).

By including the feature correlations of multiple layers, the
multi-scale style representations are obtained, and the total
style loss can be calculated accordingly:

Ls =

∑
d∈D

wdLd
s , (7)

where D is the index collection of selected activation layers,
and wd is the trade-off weight. In our experiments, the
activated output of layer relu_Y_1(Y=1,2,3,4,5) of VGG19
network [26] are taken for style representation, i.e. , |D| = 5.
The designed style ranking loss is equipped to the generator
loss to train the network.

IV. EXPERIMENT

A. Experiment Setup

Dataset. The focus of this research is image outpainting for
scenery images, for two main reasons: firstly, the sketches for
scenery images are relatively easy to create, and secondly, the
pioneering sketch-guided image outpainting work SGIO [10]
evaluates its performance on this type of images, which we
follow in our experimentation. We conduct extensive exper-
iments on three benchmarks, i.e. , NS6K [4], NS8K [10],
and SUN Attribute [24], to validate the effectiveness of our
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ReGO. The NS6K dataset comprises a total of 6,040 scenery
images, of which 5,040 are utilized as training data, and
the remaining 1,000 are reserved for testing [4]. The NS8K,
which consists of 8,115 images, contains more diverse scenery
images comparing to NS6K. Of these, 6115 images are taken
as training data, the rest is used for testing. The SUN Attribute
dataset has 14,340 diverse enough images from 707 scene
categories, we randomly select 80% and 20% for training and
testing, respectively.

Implement Details. Our proposed ReGO offers a
model-agnostic solution that can be easily incorporated
into various off-the-shelf outpainting models. In this work,
we apply our ReGO to three state-of-the-art outpainting meth-
ods, including NSIO [4], BDIE [2], and SGIO [10], to validate
its superiority:

NSIO [4] is originally designed for random content pre-
diction. To achieve the sketch-guided outpainting, we make
some modifications for NSIO as follow: the left half sketch is
channel-wise concatenated with the input, while the right half
sketch is encoded and fed as the initial state of LSTM [14]
decoder to predict the hidden feature of the full images. Our
ACS module is plugged after each decoding layer except the
last one, and the style ranking loss is weighted by 0.5 and
added into the generator loss to train the network.

BDIE [2] is a random-outpainting model as well, and the
sketch is concatenated with the input to perform the sketch-
guided outpainting. Besides, the conditional skip connection
and the position channels in SGIO [10] are also equipped to
BDIE [2], to build a stronger baseline. The ACS module and
the style ranking loss are equipped in an analogous way with
NSIO [4].

SGIO [10] is the first attempt for the sketch-guided
outpainting. The ACS module is also employed after each
decoding layer to enable texture compensation, and the style
ranking loss is added to the generator loss with weight 0.5 to
ensure the style consistency.

For our study, the style ranking loss is equipped to the gener-
ator loss, and the weights of style ranking loss in multiple lay-
ers are all set as 0.2, i.e. , wd = 0.2. During the training stage,
five neighbors are employed in our baseline methods, and the
impact of neighbor number will be discussed in the following
experiment. At the testing stage, only the most similar neigh-
bor is used to synthesize the outpainting. Besides outpainting
models, we also include three state-of-the-art inpainting mod-
els for comparison, i.e. DeepFillv2 [32], CoModGAN [34],
and LaMa [33]. For LaMa and CoModGAN, we mask
the right half images and introduce the sketch as an addi-
tional channel to train the network, while DeepFillV2 is
a sketch-guided inpainting model, and it’s trained by only
restoring the right half image. To make a fair comparison, the
loss functions, the hyperparameters and the training details all
follow the same settings of their original papers. The sketch
augmentation strategy [10] is also employed for all methods
to enhance the free-form outpainting.

B. Evaluation Metric

Following Wang et al.’s [10] setting, three metrics, i.e. ,
Fréchet Inception Distance (FID) [28], the Inception Score

(IS) [29] and Mean Satisfactory Degree (MSD) [10], are
employed for evaluation. To evaluate the free-form outpainting
results, we randomly select 555 images from test data and
replace the original sketches with manually drawn free-form
ones. Finally, a collection of 89 distinct sketches is assembled,
and can be broadly categorized into two groups. The first group
contains sketches that are similar to the training samples, but
are highly simplified. The second group consists of entirely
new sketch patterns, such as circles, hearts, checkmarks, etc,
which are diverse enough to assess the capability of free-form
outpainting. We invited 20 volunteers to label the free-form
outpainting results as one of three levels: 0-poor, 1-ordinary,
and 2-good. The mean satisfaction degree (MSD) was com-
puted as the average of all the assigned labels for the selected
images, which is taken for subjective comparison since there
is no groundtruth available. Comparing to the FID and the IS,
MSD directly reflects the performance in practical situations,
therefore, it is a critical metric to evaluate the generalization
ability on free-form sketches.

C. Quantitative Comparison

Table I presents the performance of both sketch-guided
outpainting and random outpainting on the NS6K and NS8K
datasets. The notation ReGONSIO corresponds to the NSIO
model equipped with our proposed ReGO module. The results
demonstrate that our proposed ReGO module can effectively
improve both sketch-guided outpainting and random outpaint-
ing performance.

Sketch-Guided Outpainting. Our proposed ReGO module
could boost the performance of three state-of-the-art outpaint-
ing methods on both NS6K and NS8K. For example, when
applied to BDIE [2] on NS6K, our ReGO module results in
a reduction of FID from 11.021 to 10.052. In addition to
improving image restoration based on original sketches, our
ReGO module also enhances free-form outpainting results.
The MSD of ReGOSGIO can reach 1.201 on NS6K, while the
original SGIO’s is only 1.01. Our best performance is achieved
based on the BDIE [2], which could reach 10.052 FID and
1.357 MSD on NS6K. Table I clearly demonstrates that our
proposed ReGO enhances image restoration and free-form
outpainting capabilities across all three backbones. These
observations provide compelling validation of the effectiveness
of our approach.

To well explore the effectiveness of our reference image,
we further study three alternatives of reference types, i.e. ,
non-reference, self-reference (employ the input image itself
as reference image), and the searched neighbors as reference.
The ReGOBDIE without reference will degrade to BDIE*.
To validate the pure benefits of reference image, we further
remove the style ranking loss from ReGOBDIE, name the
resulted method as ReGOBDIE-R. To investigate the perfor-
mance differences resulting from utilizing three different types
of references, we conducted experiments on the NS6K dataset
using the BDIE backbone. Let ReGOBDIE-SR (Self-Reference)
denotes the ReGOBDIE with the input as reference. From
the comparison of Table I, we can find the methods with
reference all outperform the non-guidance method “BDIE*”.
For example, the FID of BDIE* on NS6K is 11.02, while

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on May 24,2024 at 05:46:15 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ReGO: REFERENCE-GUIDED OUTPAINTING FOR SCENERY IMAGE 1381

TABLE I
PERFORMANCE COMPARISONS ON THREE DATASETS UNDER CRITERIA IS, FID AND MDS, FOR SKETCH-GUIDED AND RANDOM OUTPAINTING TASKS.

∗ MEANS THE METHOD IS MODIFIED TO PERFORM SKETCH-GUIDED OUTPAINTING AS DESCRIPTED IN SUBSECTION IV-A. WE ADOPTED THE
SAME BACKGROUND FOR METHODS WITH THE SAME BACKBONE TO MAKE THE COMPARISON CLEARER

ReGOBDIE-SR’s, ReGOBDIE-R’s, and ReGOBDIE can attain
10.561 10.269, 10.052 respectively. This reveals that the
reference image is a reliable and effective clue to boost
the performance. ReGOBDIE-SR can also achieve acceptable
performance on image rebuilding according to the original
sketches, however, it shows poor generality when encountering
the free-style sketches. For example, the FID of ReGOBDIE-SR
could reach 10.561 on NS6K and surpasses the method BDIE,
however, its MDS for free-form outpainting is only 1.012,
which is much worse than ReGOBDIE. We think the barren
sketch layout and content pattern cause somewhat overfitting,
consequently, the model trained with self-reference could not
well generalize to the free-style outpainting. In contrast, When
the neighbors serves as the reference, the model could see
diverse training pairs, as a result, the trained model could
perform well on both the image rebuilding and free-form
outpainting.

Pair-wise Study for Free-form Outpainting. To con-
duct a comprehensive study of focused free-form outpainting,
we further conduct a pair-wise comparison to evaluate the
effectiveness of our ReGO. For two methods, A and B, their
corresponding result pair (IA, IB) is first displayed. Method
A is assigned a score of 1 if IA is better than IB , -1 if
IA is worse, and 0 if they are comparable. The final score
is calculated by averaging across all 555 test samples. The
comparison results are presented in Table II, where the column
denotes method A. It can be observed that the methods
incorporating ReGO outperform their corresponding baseline
methods. For instance, ReGOBDIE surpasses BDIE* by 0.247,

TABLE II
PAIR-WISE COMPARISON FOR FREE-FORM OUTPAINTING

and all methods with ReGO demonstrate better performance,
well validating the effectiveness of our proposed ReGO.

Random Outpainting. Besides providing the sketches to
harvest the desired outpainting, another possible scenario is
that the users may not wish to drawn any guiding sketches
and only attempt to obtain the random results. How would our
system perform if no guiding sketches are fed? To validate the
effectiveness of our method under such a scenario, we conduct
experiments to predict random results and report the perfor-
mance on both datasets. Since the NSIO [4] and BDIE [2]
are originally designed for random outpainting, we follow the
same pipelines as their original papers [2], [4] to train the
networks. As for the inpainting methods, CoModGAN [34],
and LaMa [33], we directly mask the right half of the image for
training. For sketch-guided systems, we simply set the right
half sketch as zeros to conduct random outpainting without
retraining, i.e. , zero-shot.

The results are also reported in Table I, we can observe
that abandoning the original guiding sketches significantly
damnify the performance of the sketch-guided outpainting
systems. For example, the ReGOSGIO with guiding sketches
could reach 10.104 FID on NS6K, while its FID w/o the
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Fig. 5. The visual ablation of each component in our method on image rebuilding and free-form outpainting, where RI, SRL, and ACS indicate the reference
image, style ranking loss, and adaptive content selection module, respectively.

guiding sketches deteriorates to 15.396, this is because the
systems are trained with the original sketches. The SGIO
heavily relys on the guiding sketch, the ReGOSGIO inherits
this weakness and even more severe, we think this is the
reason that ReGOSGIO performs worse than the SGIO. For
the random prediction methods, ReGONSIO performs slightly
worse than the NSIO [4], since the NSIO is retrained with ran-
dom prediction setting. While ReGOBDIE is more outstanding
comparing to BDIE [2] and inpainting methods (LaMa [33]).
From Table I, we can see that even though no guiding sketches
are provided, the methods with our ReGO module could
also produce comparable results with the original methods.
With the designed ACS module, we can develop an unified
framework that could simultaneously deal with the random
prediction and the sketch-guided outpainting. what’s more, the
BDIE with ReGO module could achieve the SOTA perfor-
mance on both tasks.

D. Ablation Study

Validate the Components of ReGO. To assess the individ-
ual contributions of each component in our proposed ReGO
model, we utilize BDIE as the backbone and perform ablations
on the NS6K dataset. Quantitative results are reported in

Table III (a). As shown in Table III (a), when the reference
image is introduced, the FID of BDIE could be improved
from 11.02 to 10.99 and the MSD is boosted as well, which
reveals compensating the texture details from the neighbors is
a promising idea. However, only the reference image does not
make the performance outstanding enough. The incorporation
of the proposed ACS module allows for the network to effec-
tively filter out unnecessary content and emphasize beneficial
pixels. As a result, a significant improvement in performance
is observed, with the MSD reaching 1.221 and FID reaching
10.269. Incorporating the style ranking loss to ensure style
consistency further improves the performance. The model,
which utilizes all three parts simultaneously, achieves the best
performance. The addition of a new mechanism results in
further improvement, which confirms the contributions of each
component. Figure 5 displays the visual results of the ablation
comparison on image rebuilding and free-form outpainting.
The contribution of each component can be clearly observed
from the figure.

Validate the Style Ranking Loss. To produce the style-
consistent results, a style ranking loss is proposed to prevent
the reference image from affecting its style. Alternatively,
a regression procedure can also be used to directly achieve
a close style between the synthesized content and input.
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TABLE III
ABLATION STUDY AND DISCUSSION ON NS6K DATASET WITH REGOBDIE AS THE BASELINE METHOD

In this subsection, we analyze the effects of both solutions.
Table III (b) shows the performance under IS, FID, and MSD,
where ReGOBDIE-Reg indicates ReGOBDIE using the l2 style
reconstruction loss instead of the style ranking loss. From
Table III (b), the ReGOBDIE with the proposed style ranking
loss performs much better on both image restoring and free-
form outpainting. The observed results may be attributed to
overfitting. Despite being from the same image, the style
representations captured by the Gram matrices in the left
half and right half parts are different. Thus, performing a
rigid regression procedure can easily result in overfitting.
Furthermore, the primary objective of the style ranking loss
is to prevent the reference image’s style from being reflected
in the extended content. It is not necessary to enhance the
style consistency between the input and the synthesized part,
as it can be achieved through pixel-wise reconstruction and
adversarial training [2], [4], [10].

Robustness about the Reference Image. The reference
image serves as a basis for enriching the outpainting details
and plays a crucial role in our system. However, the ideal
reference image is not always available for the current test
image. Hence, an intuitive question arises: What happens if
the model utilizes a “bad” reference image? To thoroughly
study this question, we train and evaluate our models with
searched and random references, respectively. Table III (c)
compares the results, where ‘Search’ indicates the model using
the picked similar neighbor as reference, while ‘Random’
means the reference image is randomly selected. If the models
are trained with similar references, the performance of random
reference during inference is worse than those of picked
references. For examples, the FID of ReGOBDIE is dropped
from 10.052 to 10.289. In contrast, the models trained with

TABLE IV
THE PERFORMANCE COMPARISON OF REGOBDIE WITH

TOP 1-5 SIMILAR REFERENCES

randomly references harvest incremental performance gains
comparing with the original methods. For example, the FID
of BDIE is 11.021, while the FID of ReGOBDIE with the
searched reference during inference is 10.889, while if the
model is trained with similar samples, its FID can be boosted
to 10.052. Given the above, we can conclude the following: 1)
Our methods can work well even without a similar reference
image being provided; and 2) using similar reference images
for both training and testing can lead to better performance,
which validates our motivation.

Table IV provides additional insights into the robustness of
the reference image during inference. In our default setting,
we utilize the most similar image identified through search as
the reference. To investigate the impact of various reference
images, this section examines the performance of the Top
1-5 similar images. The performance comparison based on
ReGOBDIE on the NS6K dataset is presented in Table IV, the
results reveal that using the Top 1-5 similar images yields
comparable performance. Additionally, using the most similar
reference image achieves the best results.

Discuss the Number of Reference Image. In our base-
line methods, five neighbors for each training sample are
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Fig. 6. The results for the image rebuilding and the random outpainting, where the dotted red line indicates the imperfect region. Part I shows the results
on image rebuilding according to the original sketches. The comparison methods could predict reasonable pixels for the input, however, they all suffer from
the blurry synthesized content. While our methods could synthesize texture-rich content. The part II exhibits the random outpainting. Even though no sketch
is provided for guidance, ReGOBDIE could also synthesise texture-rich results and performs much better than the methods originally designed for random
outpainting, i.e. , NSIO [4] and BDIE [2].

selected, and we randomly pick up one in each iteration to
serve as the reference image. This subsection investigates
the impacts of the number of the reference image. The
performance tendencies with five different reference numbers
are shown in Table. III (d), where the FID is scaled by the
logarithmic function. Two important observations can be made
from Table. III (d). First, Comparing to employing only one
reference image, using multiple references could enhance the
model generality and train a more robust generation model.
The FID of ReGOBDIE with only one reference image is
10.728, when the reference number increases to 5, the FID
could be improved to 10.052. Secondly, it is observed that
increasing the number of reference images beyond five does
not further improve the performance, which is evident from
the performance tendencies when the number of references
ranges from 5 to 20. The situation with five reference images
achieves the best performance on average.

E. Qualitative Results

Image Rebuilding. Fig. 6 provides the visualizations of the
rebuilding results according to the original sketches and ran-
dom outpainting for SOTA inpainting and outpainting models.

To ease the visual exhibition as well as saving some space,
we only exhibit the outpainting results of our best model
ReGOBDIE. It can be observed that the results of ReGOBDIE
are more authentic and natural due to the richer textural details.

From Fig. 6 I, the comparison methods, LaMa [33],
SGIO [10] and BDIE [2], could extend reasonable pixels
for the input image, but the predicted content is blurry and
lacks textural details, which makes the overall image not
authentic enough. While ReGOBDIE could produce texture-rich
outpainting results. The results of random prediction are
exhibited in Fig. 6 II, comparing to the competing methods,
ReGOBDIE could also successfully synthesize the results with
more textural details when no sketches are fed, and the
synthetic images are even more satisfactory than the method
original designed for the random prediction, i.e. , BDIE [2].
From Fig. 6, we could find that the guiding sketch is not one of
requisite inputs for our system, when the users do not provide
the guiding sketch, ours system could also produce satisfactory
random outpainitng results.

Free-form Outpainting. The comparison for free-form
outpainting is exhibited in Fig. 7 I, ReGOBDIE could not only
synthesize the expected content matching the guiding sketch
but achieve authentic and natural enough results. Especially
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Fig. 7. Outpainting results according to the manually drawn free-form sketches and the sketch from other images, where the dotted red line indicates the
imperfect region. Part (I) shows the results for free-form outpainting. While the part (II) exhibits the outpainting using sketches from the other images as
guidance. The inputs in (a) and (c) use the same reference images (lower left in (a)) but different sketches. The sketches in (a) are directly from the reference
images, while the sketches in (c) are extracted from a randomly selected image (shown in lower left). The corresponding predictions are shown in (b) and
(d), respectively. The results are produced by ReGOBDIE.

the boundaries of different semantic regions are much clearer
than the competing methods. Additionally, we surprisingly find
that the reference image could also help fill reasonable pixels
for the free-form outpainting, as shown in the bottom row in
Fig. 7 I. Besides the manually drawn sketches, we could also
use the sketch from another image to guide the outpainting,
as shown in Fig. 7 II. The inputs in Fig. 7 II(a) directly use
the sketches of the reference images to control the outpainting,
while the ones in Fig. 7 II(c) use the sketches from randomly
selected images, two types serve as the simple and the difficult
cases, respectively. From Fig. 7 II, our method could not
only predict new content matching the guiding sketches but
achieve satisfactory style-consistency for both simple and
difficult cases. It’s worth noting that this paper mainly focuses
on synthesizing new content along left to right, however,
the prediction of other directions could also be performed
based on BDIE backbone, just as shown in Fig. 9, we leave
everything unchanged except for using the mask to indicate the
missing regions. In this task, our ReGOBDIE could also achieve
more outstanding performance comparing to the BDIE model,
10.817 (FID) 3.004 (IS)-ReGOBDIE VS 12.132 (FID), 2.893
(IS)-BDIE.

Visualization of Feature Maps. To make it clear that
where the beneficial contents come from, we visualize the
feature map surrounding the image-guided convolution. The
results are shown in Figure 8, where the first row represents
the image for outpainting, and the second to fourth rows
depict the features before the IGConv, the features extracted
from the reference image, and the feature maps after the
IGConv, respectively. As shown in the second row, the features
corresponding to the predicted part are sparse. In the third row,
some contents are extracted from the reference image, which
are used to compensate for the features in the second row,
resulting in denser and more activated features.

Results on High-Resolution Images. Besides the low
resolution dataset, we also collect 558 high-resolution scenery
images from Internet using the key word “scenery images” to
further evaluate our model. We resize the images as 512×768
and directly evaluate the performance on this dataset, the
performance of our method could also outperform the most
competitive method BDIE, 34.012(FID) 4.078(IS)-ReGOBDIE
VS 37.841(FID) 3.917(IS)-BDIE. Fig. 10 shows the high
resolution results of three state-of-the-art methods. From the
above, the proposed framework allows users to harvest three
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Fig. 8. Visualization of feature maps around the last IGConv of ReGOBDIE. The images for outpainting, maps before IGConv, maps picked from the
reference image, and the groundturth image are subsequently shown from top to bottom rows.

Fig. 9. The results for multi-direction prediction. Based on the BDIE backbone, our method ReGOBDIE could predict the content for multiple directions.

Fig. 10. The high resolution results of all methods, we input the images with 512 × 384 to rebuild 512 × 768 images.

types of results: random outpainting, free-form outpainting
from manually drawn sketches and controllable outpainting
using sketch from another image. Therefore, our proposed
method is with higher practical value.

Weaknesses and Limitations. Our ReGO promotes the
outpainting perforamnce at the cost of following aspects. (1)
More complex pipeline. The reference is helpful to enrich
the texture but also introduce an additional step to search.
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(2) More parameters and lower efficiency. To select the
beneficial contents from the reference, we introduce more
parameters to process the reference, which will inevitably
complex the model and increase the inference time. Besides,
this paper mainly focuses on the scenery images and didn’t
investigate the performance under more complex scenes like
indoor, street-view, portrait, etc, which will be studied in our
future works.

V. CONCLUSION AND FUTURE WORK

In summary, this work introduces a novel ReGO module
that enhances outpainting quality by incorporating neigh-
boring pixels. The proposed method effectively improves
the results of sketch-guided image outpainting by enriching
textural details. An ACS module is developed to filter out
non-beneficial pixels and emphasize useful ones. This helps
the generator use helpful pixels to enhance its output. A style
ranking loss is used to prevent the synthesized content from
being affected by the reference image’s style. Experiments
conducted on three benchmarks using three backbones demon-
strate the effectiveness of the proposed method. The idea of
enhancing details from neighbors may also be applicable to
other generation tasks. In the future, we plan to explore the
effectiveness of the proposed method under more complex
scenes.
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