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Abstract—Bi-directional image-text retrieval and matching 
attract much attention recently. This cross-domain task 
demands a fine understanding of both modalities for learning a 
measure of different modality data. In this paper, we propose a 
novel position focused attention network to investigate the 
relation between the visual and the textual views. This work 
integrates the prior object position to enhance the visual-text 
joint-embedding learning. The image is first split into blocks, 
which are treated as the basic position cells, and the position of 
an image region is inferred. Then, we propose a position 
attention to model the relations between the image region and 
position cells. Finally, we generate a valuable position feature to 
further enhance the region expression and model a more reliable 
relationship between the visual image and the textual sentence. 
Experiments on the popular datasets Flickr30K and MS-COCO 
show the effectiveness of the proposed method. Besides the 
public datasets, we also conduct experiments on our collected 
practical large-scale news dataset (Tencent-News) to validate 
the practical application value of the proposed method. As far 
as we know, this is the first attempt to test the performance on 
the practical application. Our method achieves the competitive 
performance on all of these three datasets. 

Index Terms—Image-Text Matching. Attention Mechanism. 
Cross-Domain. Position Embedding Learning.  

I. INTRODUCTION 
  With the constantly springing up of multimedia data like 
text, image, video on the Internet, cross-modal retrieval has 

attracted much attention in both computer vision and 
multimedia communities. Bidirectional image-text retrieval 
is one of the important branches for various multimedia 
related applications like image-text matching [5, 10], natural 
language object retrieval [3], image captioning [7, 9], and 
visual question answering (VQA) [11, 15]. Therefore, many 
researchers have dedicated extensive efforts to study the 
relationship between the visual and the textual contents [2, 4, 
6, 13, 16-19, 21-23, 40, 52-57].  

Image and text are two most commonly used multimedia 
data in daily life, they both contain rich information but reside 
in heterogeneous modalities. Comparing to information 
retrieval within the same modality, the designed model for 
cross-modal retrieval need not only learn the features for 
image and text to express their respective content but a 
measure for cross-modal similarity calculation. Therefore, 
cross-modal retrieval poses extra critical challenges. 
Relevance estimation based on subspace learning is a popular 
strategy, and a classic structure for image-text matching is the 
two-branch network. One branch projects the image and 
another models the text, the shared subspace is learned by the 
popular triplet loss [4, 13, 17, 19, 21]. For example, Faghri et 
al. [21] design a two-branch network trained by their hard 
triplet sampling strategy. To preserve the locality of each 
modality, Zhang et al. [40] propose to learn a matrix based 
measure for cross-modal retrieval. Besides the network 
structure studying, more and more scholars recently design 
their embedding networks based on attention mechanism, 
which attempts to capture the correspondences between the 
detected visual objects and the textual items (words or 
phrases). Many studies have validated that the attention is 
helpful to model a more reliable relationship between image 
and text. Lee et al. [2] first detect the image objects, then they 
calculate the attention weights based on object features and 
word vectors from the visual view and the textual view 
respectively. Huang et al. [22] think conventional attention 
only considers the local information. Therefore, they propose 
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an attention mechanism that takes the entire features of image 
and sentence into account. 

However, existing corresponding learning methods only 
focus on the visual feature of the image regions while ignore 
the relative position information in the images, which is an 
important and helpful prior knowledge. In general, if an 
object region is closer to the center, it may express the main 
semantics of the image with higher probability, while the 
marginal ones may not be that important. Just as shown in 
Fig. 1(a), the main semantic part corresponding to the word 
“men” locates at the center of the image, while the peddling 
objects lie on the brink. From this observation, an intuitive 
idea is to simply pay more attention to the regions closer to 
the center. However, not all regions near the center are 
important. As shown in Fig. 1(b) which exhibits that a woman 
(the most important object) lies in the lower left part. 
Furthermore, simply assigning attention to the region based 
on the fixed position (the center for example) cause a bad 
extendibility. From above observations and considerations, 
we design a position feature for the region to integrate 
position information and propose an attention mechanism to 
adaptively construct the position feature for each region.  

In this paper, a novel position focused attention network is 
developed to study the fine-grained interplay between the 
image regions and the words. We first generate the basic 
position cells and select some valuable cells to infer the 
position of the regions. A position attention mechanism is 
further proposed to distinguish the different importance of the 
associated position cells. Then the final position feature and 
the visual feature are integrated to form the final feature 
representation for the region. Besides the local features, the 
whole features of image and sentence are also introduced to 
compensate the semantic order information. Finally, a visual-
text attention algorithm SCAN [2] is employed to calculate 
the local and global relevance between the image and the 
sentence, the overall network parameters are trained by the 
popular triplet loss. The contributions of this paper can be 
summarized as follows: 

a. We design a novel position feature for image region 
representation, by which we integrate the position prior 
information to form a more reliable and complete expression 
of the image region. 

b. A position focused attention mechanism is proposed to 
determine the fine-grained relationship between the image 
region and the position cells. Position attention can help us 
build a more valuable position feature for the image region. 

c. Apart from the local information, such as image regions, 
fragments of sentence, our developed network also fuses the 
global characteristics of the image and the text into our 
relevance estimation to capture the semantic order 
information in the image. 

d. Besides two public datasets, we make the first attempt 
to evaluate the application value on a practical news dataset 
and our method achieves the competitive performance on all 
of these three datasets. 

Comparing to our previous work [48], this paper integrates 
the global characteristics to enhance the sharing subspace 
learning and make the performance step further. In the 
experiment section, much more detailed results and 
systematic discussions are presented to clarify the 
contribution of each part in our framework. 

The remainder of this paper is organized as follows: In 
section II, we review the related works of the existing image-
text matching methods. Section III elaborates the details of 
each process in our system. Experiments and related 
discussions are shown in sections IV and V respectively. 
Finally, conclusions and future works are given in section VI. 

II. RELATED WORK 
The key of the image-text matching task is to learn the 

similarity function between two different modalities, deep 
learning based method classically model the function as a 
two-branch network. Researchers have designed various 
network structures to investigate the relationship between the 
image and the text. Directly global similarity learning and 
local correspondences learning based on attention are two 
popular strategies. Hereinafter, each aspect is presented. 

A. Global Similarity Learning 
Recently, a rich line of studies has explored mapping the 

visual information and the textual content into a common 
semantic subspace to investigate the relationship between 
image and text [4, 6, 13, 14, 16-20, 21-26, 28, 42, 43, 45, 46]. 
Kiros et al. [8] make the first attempt to learn cross-view 
representations with a hinge-based triplet ranking loss, where 
the image is encoded by Convolutional Neural Networks 
(CNN) and sentences are encoded by the Recurrent Neural 
Networks (RNN). Faghri et al. [21] think that the hard 
training samples can make the network converge faster and 
learn a more reliable embedding, therefore they pay much 
attention to the hard triplets to learn the joint embedding of 
image and text. Gu et al. [4] introduce the generative loss into 
the cross-modality task to learn the visual-semantic subspace, 
which yields a significant performance improvement. In [13], 
Wang et al. attempt to preserve the locality of the data within 
the same modality, and sample the triplets from each 
modality to learn the image-text sharing subspace. Niu et al. 
[23] take the part of speech into consideration, they think the 
noun for a sentence is the most important component and give 
the priority consideration to the noun, they develop a 
hierarchical multimodal LSTM to encode the sentence by the 
aid of tree LSTM. Similar to [23], Huang et al. [18] also take 
the part of speech into consideration, they think that noun, 
verb, adjective and numeral form the main force of a sentence, 
which motivates them to reconstruct the sentence for more 
accuracy semantics learning. Zheng et al. [19] treat each 
image-descriptions as a category, the triplet loss 
incorporating the cross-entropy loss is used to update the 
embedding network. Zhang et al. design a 2-way network [6], 
which attempts to approximate the correspondences between 
the image and the text by the distribution of cross-domain 
data within the mini-batch. Plummer et al. [1] propose a 
strategy to simplify the representation requirements for 
individual embedding, and the underrepresented concepts 
take advantage of the shared representations to learn the joint-
embedding. Different from the hinge-based triplet ranking 
loss that shows solicitude for the distance of the positive 
sample and the negative sample with respect to the anchor, 
CCA (Canonical Correlation Analysis) based methods aim at 
learning nonlinear transformations of cross-modality data by 
the deep networks such that the learned new representations 
are highly linearly correlated. Deep CCA is also a popular 
baseline in the cross-modality field [14, 20, 25, 26, 28]. Wang 
et al. [23] follow the classic CCA idea and extend a more 
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stable and accurate deep CCA model. Chang et al. [12] 
propose a soft CCA to search an efficient solution for deep 
CCA optimization. 

B. Local Correspondences Learning 
Apart from the efforts to study the global similarity 

between image and text, many of the recent research works 
attempt to maximize the alignments between detected objects 
in the image and the items in sentence [2, 17, 22, 27, 29, 31-
35]. As a consequence, the attention mechanism is proposed, 
which aims at focusing on the most valuable part of data with 
respect to a task-specific context. In computer vision, 
attention mechanism is usually designed for more accuracy 
correspondences between the image regions and the 
fragments of sentence. Lee et al. [2] design an attention 
mechanism from visual and textual views. It first attends to 
words in the sentence with respect to each image region, an 
attention weight is calculated for each word to indicate the 
importance of the current image region. Attention from text 
to image is designed analogously. Karpathy et al. [27] encode 
the image at object level with R-CNN [29], and the image-
text similarity is inferred by accumulating the similarity 
scores of all possible region-word pairs. Instead of 
investigating the correspondences between the image regions 
and the sentence fragments, Nam et al. [17] think that the 
different regions of image can make responses for different 
convolutional kernels, and design attention based on feature 
maps rather than the detected image regions. In [29], 
Anderson et al. design a combined bottom-up and top-down 
attention, the bottom-up part extracts the image regions, 
while the top-down mechanism determines the weights for 
detected image objects. Li et al. [56] attempt to learn a robust 
feature capturing the key semantics for the image to enhance 
the image-text matching. Huang et al. [22] think that only 
considering the image regions and sentence is unilateral and 
introduce the whole image and the whole sentence feature 
into the alignment procedure to fuse the global and local 
information. Andreas et al. [31] employ a series of net module 

together with a language parser to indicate which neural net 
module to use. In [57], Huang et al. pay attention to the few-
shot image-sentence matching and propose a gate visual-
semantic embedding model. Yang et al. [34] propose a 
multiple-layer Stacked Attention Networks (SAN) to infer the 
answer for the query image. However, existing works all 
ignore the position clues of image regions 

III. OUR APPROACH 
This section will elaborate the details of our proposed 

framework. Fig. 2 shows the flowchart of this paper, We first 
extract the image and word features. Then, the designed 
position cells together with the position attention construct a 
position feature for each image region. And the visual feature 
together with the generated position feature form the final 
region’s representation. Finally, the alignments between the 
regions and the words are studied by a visual-textual attention 
[2]. The similarity of the image and the sentence is estimated 
by the local and global similarities. We employ the triplet 
ranking loss to train the overall network. 

Next, we describe the input representation in subsection A. 
In subsection B, the position information integration is 
presented, subsection C and D elaborate the image-sentence 
relevance calculation and global-local joint embedding 
learning respectively. 

A. Input Feature Representation 
Image Feature. In this paper, an image 𝐼 is represented by 
a set of local features {𝑣$, 𝑣&, … , 𝑣(} and a global feature	𝑔, 
where	𝑛 is the number of image regions and 𝑔, 𝑣1 are both 
D-dimensional feature. Since our attention mechanism is 
focused on the image regions, especially the objects in image. 
Therefore, we detect the objects in image utilizing the Faster 
R-CNN model [37]. In order to get a better feature 
representation, we feed the detected object into the ResNet-
101 [36] pre-trained on Visual Genomes [38] by Anderson et 
al. [29] to extract the visual feature. Finally, the input image 
is represented by 𝑛  D-dimensional feature vectors, which 
are the local features. The global representation is also 
extracted by the pre-trained model [29], i.e. 𝑔 is a feature 
with D-dimensional as well. D is 2048 in our experiment. 
Text Feature: On the subject of corresponding image 
description, the basic item is the word in the sentence. Each 
word is represented with a one-hot vector, which indicates the 
index in the vocabulary. Then the one-hot representation is 
embedded into d-dimensional vector by a linear mapping 
layer, 𝑥3 = 𝑊×𝑤3 , where 𝑤3  is a one-hot of word in a 
sentence with T words {𝑤$, 𝑤&, … , 𝑤8}, 𝑊 ∈ 𝑅;×<  is the 
embedding matrix, 𝑁 is the vocabulary size.  

B. Position Information Integration 
  The relative position of the object in the whole image is an 
important and useful clue, which is helpful to infer the 
significance of the object region, just as shown in Fig. 1. 
Motivated by this observation, we fuse the position 
information into the learning procedure to capture more 
reliable and credible fine-grained interplay between the 
image and text elements. In order to generate a valuable 
position feature for the region, a position attention is 
proposed. In this subsection, we present our position attention 
mechanism. We first introduce the initial positional 
representation in part 1) and elaborate the block embedding 
in part 2), part 3) presents our position focused attention. 

Position Focused 
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Word 
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Fig.2: The flowchart of proposed PFAN++ model 

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 11,2020 at 02:12:25 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3024822, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) 
< 
 

4 

Resnet
.  

.  
.

Attending

Position Focused Attention

.  
.  

.

 
Fig.3: The proposed position focused attention mechanism 

1) Initial Position Representation  
  Given an image 𝐼 = {𝑣$, 𝑣&, … , 𝑣(}, in order to reveal the 
relative position for a region 𝑣1 in the whole image 𝐼, we 
first equally split the image 𝐼  into 𝐾×𝐾  blocks 𝐵  and 
treat each block as a basic position cell. The position of each 
block is initially represented by an index 𝑘 ∈ [1, 𝐾&], we 
locate the region 𝑣1 according to its overlap with the fixed 
blocks. Let 𝑝1 ∈ 𝑅E	 denote the position index vector of 
region 𝑣1 , which is defined as the indexes of the top 	𝐿 
overlapping blocks with the region 𝑣1, i.e. the indexes in 𝑝1 
meet: 

𝑂𝑉 𝑣1, 𝑏JKL ≥ 𝑂𝑉 𝑣1, 𝑏N , 𝑗 = 1,2, … , 𝐿     (1) 
where 𝑝1Q ∈ 1, 𝐾&  is the block index of the j-th 
maximum overlapping with the region 𝑣1, 𝑞 ∈ [1, 𝐾&]\𝑝1, 
the operator "\" means removing, and 𝑂𝑉 𝑣1, 𝑏N  is the 
intersecting pixel number between region 𝑣1 with the 𝑞-
th block:  

𝑂𝑉 𝑣1, 𝑏N =|𝑣1 ∩ 𝑏N |                (2) 
where 𝑏N ∈ 𝐵 is the q-th block. We also define an additional 
vector 𝑎1 ∈ 𝑅E  for region 𝑣1	 to record the corresponding 
overlapping to distinguish the importance of different 
positions: 

𝑎1Q = 𝑂𝑉(𝑣1, 𝑏JKL) ∈ 𝑅               (3) 
and 𝑎1Q is normalized for further processing. 

2) Block Embedding 
  L indexes of blocks are introduced to indicate the relative 
position of the region. To get a more accurate description for 
the position, we embed the block index into a dense 
representation. The split blocks 𝐵  are regarded as the 
position vocabulary, and each block 𝑏1 ∈ 𝐵 is represented 
by the one-hot vector, which indicates the index in the 
position vocabulary. We next apply an embedding layer to 
project the one-hot representation into 𝜄-dimensional vector, 
we still denote the new embedding vector as 𝑏1 for the sake 
of simplicity. 

We can then simply generate the position representation of 
region 𝑣1 based on the embedding block vector: 

𝑝1Z = 𝑏JKL×𝑎1Q
E
Q[$               (4) 

3) Position Focused Attention 
  After obtaining the block embedding, we can represent the 
position of region 𝑣1 according to the Eq. (4). However, it’s 
insufficient to directly use the rate of the overlapping area. 
Since there are many blocks completely covered by the region 
and the contributions of these blocks will be equal 

accordingly. From this consideration, an adaptive weight is 
assigned to each block with respect to each region. As shown 
in Fig. 3, the proposed attention aims at deciding how much 
weight should pay to the position cell for the current region: 
    𝛽1Q = tanh(𝑓(𝑣1, 𝑏JKL)) , 𝑖 ∈ 1, 𝑛 , 𝑗 ∈ [1, 𝐿]   (5) 

where 𝛽1Q is the attention that the region 𝑣1 should pay to 
the position cell 𝑏JKL and 𝑓 is the bilinear function: 

  𝑓(𝑣1, 𝑏JKL) = 𝑣18𝑀𝑏JKL            (6) 
where 𝑀 ∈ 𝑅c×d is the mapping matrix. 

Besides the completely covered blocks should be different, 
another intuition is that the more of the block is covered by 
the region, the more important it should be. According to 
above considerations, we improve the Eq. (4) accordingly as 
following: 

𝑝1Z = 𝑏JKL×𝛾1Q

E

Q[$

																											(7) 

and 

	𝛾1Q =
𝛾1Qg

𝛾1QgQ
, where	𝛾1Qg =

exp	(𝛽1Q)
exp	(𝛽1Q)Q

×𝑎1Q				(8) 

The final position representation of region 𝑝1Z  is then 
concatenated with the visual feature 𝑣1 to allow the region 
feature to carry position information, i.e. 𝑣1

J = [𝑣1, 𝑝1Z] ∈
𝑅ckd. 

C. Image-Sentence Relevance Calculation 
  Given an image I with n regions and a sentence S with T 
words, we utilize a fully-connected layer to project the final 
region representation 𝑣1

J into a h-dimensional feature 𝑣1Z ∈
𝑅l. As for the words, the final feature is obtained by feeding 
the embedding vector into a bi-directional GRU [44], whose 
dimension of the hidden state is also set as h. The final 
representation 𝑒3 of the word is the average of forward and 
backward feature: 

   𝑒3 = 	
Zn
okZn

p

&
∈ 𝑅l               (9) 

where 𝑒3
qand 𝑒3r  are the forward and backward features, 

respectively. 
Following the work in [2], an attention weight 𝛼13  for 

region 𝑣1 with respect to the word 𝑤3 is calculated, which 
decides how much attention to pay the region for current 
word. The visual vector of the current word is then defined as 
the weighted combination of region representation: 

𝓋3 = 𝛼13𝑣1Z
(

1[$

																																	(10) 

The semantic relevance between the image I and the 
sentence S is taking the average of the relevances between all 
the semantic features in S and the attending visual vectors: 

𝒮 𝐼, 𝑆 =
𝑟 𝑒3, 𝓋33

𝑇
																							(11) 

where 𝑇 is the number of words in the sentence, 𝑟(∙,∙) is 
the cosine similarity function. 

On the other hand, the procedure of attending image to the 
text is analogous to the above. The attention weights are 
assigned to the words with respect to each image region, and 
semantic vectors for regions are generated. The visual 
relevance of sentence and image is estimated according to Eq. 
(11) analogously. 
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D. Global-Local Joint Embedding Learning 
  Only region features for image representation will miss the 
semantic order of the whole visual information. Inspired by 
the work [22] that the global information can benefit the joint-
embedding learning. In this paper, besides the local regions 
and the words, the global features are also introduced to 
enhance the embedding learning. 
  For the image I, we gather all the global and the local 
features as the complete representation of the image: 
{𝑣$

J, 𝑣&
J, … , 𝑣{

J} and 𝑔. As for the global representation of 
the sentence S, we first embed the original one-hot vector of 
word, then the word sequence is fed to the bi-GRU, the last 
hidden state 𝐸 encodes the whole semantics of the sentence 
and is treated as the global feature.  
  We record the embedding of the global visual feature as 
𝑔Z and the overall similarity between image and sentence is 
integrated: 

 𝒮g = λ𝒮 𝐼, 𝑆 + (1 − λ) ��∙�
�� × �

																	(12) 

where λ is the weight scalar. 
  The triplet loss is employed for network training, which is 
a common ranking objective for image-text matching. As 
reported in [2] [21], the hardest negative samples can make 
more contribution to the convergence and the reliability of the 
network. Therefore, in this work, we only pay close attention 
to the hardest sample for a positive pair in a mini-batch by 
following Lee et al. [2] and Fagphri et al. [21]. Given a 
matching triplet pair (𝐼, 𝑆) , the hardest negative visual 
sample is the most similar unmatched image to sentence S: 

𝐼 = 	 arg	max
�∈�\�

𝒮g 𝐼, 𝑆 																							(13) 

where C is the collection of the data in a mini-batch, and the 
hardest negative semantic sample can be picked up in a 
similar way: 

𝑆 = arg	max
�∈�\�

𝒮g 𝐼, 𝑆 																							(14) 

The loss for a mini-batch is defined as followings: 
𝐿𝑜𝑠𝑠 = $

|�|
	 𝜂 − 𝒮g 𝐼, 𝑆 + 𝒮g 𝐼, 𝑆

k
+ 𝜂 −(�,�)∈�

𝒮g 𝐼, 𝑆 + 𝒮g 𝐼, 𝑆 k 																									(15)   
where 𝜂 ∈ 𝑅 is the margin between matched and unmatched 
pair and [∙]k ensures that the output is nonnegative. 

IV. EXPERIMENTS 
  To demonstrate the effectiveness of our proposed methods, 
we conduct our Position Focused Attention Network on two 
public datasets: Flickr30K and MS-COCO, and a practical 
Chinese news dataset: Tencent-News1. We denote this work 
as PFAN++ to discriminate with our conference version. We 
systematically make comparisons with several latest start-of-
the-art methods and thoroughly investigate the performance 
of the proposed PFAN++. As for the performance measure 
criterion for sentence retrieval or image retrieval, we apply 
the commonly used recall on top H (R@H), which is defined 
as the percentage of correct items in the top H retrieved 
results. 

A. Implements Details 
1) Dataset   
  We evaluate PFAN++ on the widely used and authoritative 
dataset Flickr30K and MS-COCO, the data splits for these 

two datasets follow the work [27] and [2]. Besides the public 
datasets, a practical news dataset, Tencent-News, is also 
collected to evaluate the value of the proposed method in the 
practical application. We construct this dataset from the 
crawled Tencent News data, which can be used for training 
image-text models to further support Chinese corpus. 
Tencent-News. For a piece of news, the title and one perfect 
matching image in this news make up a basic data item, and 
the title is regarded as the description of this image. In this 
way, we collect 143,317 training pairs and 1,000 pairs for 
validating. There are 141,736 different images, 130,230 
different titles in total. In the test procedure, we manually 
label 510 news and several corresponding images (≥ 5) for 
performance evaluation. There are 510 titles and 2,794 
labeled images in total. Each title has 5.5 candidate images, 
2.3 irrelevant images and 3.2 relevant images on average. In 
this practical dataset, we focus on the news auto-image 
recommendation task, i.e. the news editor inputs the news 
title, and the model can automatically output several related 
candidate images for this news, which can remarkably 
alleviate the effort of editors and speed up the news publish. 
In this application scene, we only focus on the task of the 
image retrieval.  

2) Training Details 
  All of our experiments are conducted on a workstation with 
NVIDIA Tesla GPU. Adam optimization algorithm is used to 
train the overall network. The mini-batch size is 128. The 
image region is extracted by the Faster R-CNN model [37], 
and we retrain 36 detected regions for the image 
representation, i.e. 𝑛 = 36. The K is set as 16, i.e. each image 
is split into 16×16 blocks. We select the first 15 blocks with 
the maximum overlapping with a region to infer the position, 
i.e. 𝐿 = 15. The dimension of joint embedding is fixed as 
1024. The weight parameter λ is set as 0.5.  
  For the image region, the block index is first embedded into 
200-dimensional space, and the original 2048-dimensional 
visual vector together with 200-dimensional position feature 
is mapped into the 1024-dimensional feature by a linear 
projection layer. The global image feature is feed into a fully 
connected layer with shape (2048, 1024) to obtain its 
embedding. In our experiment, directly optimizing the global 
fully connected layer together with the other two branches 
can’t get satisfied performance. We guess this is because it is 
too hard to optimize three network branches simultaneously 
by only one type of loss. Therefore, we first pre-train an auto-
encoder network for global feature with structure (2048 ⇒
1024 ⇒ 1024 ⇒ 2048) by the respective training data, and 
utilize the fixed encoder to project the global image feature.  
  On the subject of the word, the one-hot vector is first 
embedded into 300-dimensional dense representation, then 
the dense representation is fed into the bi-GRU whose hidden 
dimension is set as 1024 as well. For Flickr30K dataset, the 
training procedure begins with a learning rate of 0.0002, 
which is discounted by 10 for every 15 epochs. For MS-
COCO dataset, we begin with a learning rate 0.0005, which 
is discounted by 10 for every 15 epochs. On the Tencent-
News dataset, the parameter settings except the embedding 
size are the same as the Flickr30K, we set the embedding size 
as 512 to get better performance. 

B. Performance Evaluation 
1) Comparison with the Competing Method 
In this subsection, we make comparisons with several state- 

                     
1The Tencent News data download link and our code can be found at: 
https://github.com/HaoYang0123/Position-Focused-Attention-Network/ 
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Table 1: Comparisons of cross-modal retrieval on Flickr30K dataset with the competing methods 

methods Image-to-Text Retrieval Text-to-Image Retrieval mR R@1 R@5 R@10 R@1 R@5 R@10 
SCAN [2] 67.4 90.3 95.8 48.6 77.7 85.2 77.5 
PFAN [48] 70.0 91.8 95.0 50.4 78.7 86.1 78.7 
GVSE [57] 68.5 90.9 95.5 50.6 79.8 87.6 78.8 
VSRN [56] 71.3 90.6 96.0 54.7 81.8 88.2 80.4 

ACMM [58] 80.0 95.5 98.2 50.2 76.8 84.7 80.9 
UNITER [59] - - - - - - 88.5 
MMCA [61] 74.2 92.8 96.4 54.8 81.4 87.8 81.2 

Unicoder-VL [60] 86.2 96.3 99.0 71.5 90.9 94.9 89.8 
PFAN++-P 66.1 89.4 95.2 50.9 78.1 86.2 77.6 
PFAN++ t-i 67.2 91.2 96.1 50.8 77.8 85.3 78.1 
PFAN++ i-t 67.3 88.6 93.7 45.7 75.4 83.8 75.7 

PFAN++ t-i+i-t 70.1 91.8 96.1 52.7 79.9 87.0 79.6 
 

Table 2: Comparisons of cross-modal retrieval on MS-COCO dataset with the competing methods 

methods Image-to-Text Retrieval Text-to-Image Retrieval mR R@1 R@5 R@10 R@1 R@5 R@10 
1K Test Images 

SCAN [2] 72.7 94.8 98.4 58.8 88.4 94.8 84.7 
PFAN [48] 76.5 96.3 99.0 61.6 89.6 95.2 86.4 

GVSE [57] 72.2 94.1 98.1 60.5    89.7 95.8 85.0 
VSRN [56] 76.2 94.8 98.2 62.8 89.7 95.1 86.1 

ACMM [58] 81.9 98.0 99.3 58.2 87.3 93.9 86.4 
MMCA [61] 74.8 95.6 97.7 61.6 89.8 95.2 85.8 

Unicoder-VL [60] 84.3 97.3 99.3 69.7 93.5 97.2 90.2 
PFAN++-P 75.3 95.1 97.8 60.9 88.6 94.8 85.4 
PFAN++ t-i 75.4 95.5 98.2 60.9 88.9 94.7 85.6 
PFAN++ i-t 72.0 94.6 98.5 56.4 86.1 92.6 83.4 

PFAN++ t-i+i-t 77.1 96.5 98.3 62.5 89.9 95.4 86.7 
5K Test Images 

SCAN [2] 50.4 82.2 90.0 38.6 69.3 80.4 68.5 
PFAN [48] 50.8 83.9 89.1 39.5 69.5 80.8 68.9 
GVSE [57] 47.2 76.6 88.4 31.2 61.2 70.5 62.5 
VSRN [56] 53.0 81.1 89.4 40.5 70.6 81.1 69.3 

ACMM [58] 63.5 88.0 93.6 36.7 65.1 76.7 70.6 
MMCA [61] 54.0 82.5 90.7 38.7 69.7 80.8 69.4 

Unicoder-VL [60] 62.3 87.1 92.8 46.7 76.0 85.3 75.0 
PFAN++-P 50.9 83.2 88.6 40.3 70.1 78.2 68.6 
PFAN++ t-i 49.7 83.1 89.8 39.4 70.0 78.7 68.5 
PFAN++ i-t 48.3 81.6 87.3 37.6 66.7 77.2 66.5 

PFAN++ t-i+i-t 51.2 84.3 89.2 41.4 70.9 79.0 69.3 

of-the-art methods and verify the performance of our 
proposed model. Table 1 and 2 show the performances of all 
methods on Flickr30K and MS-COCO dataset, where the 
PFAN++ t-i means only employing the loss of attending text 
to image to train the network and PFAN++ t-i + i-t fuses the 

models from the PFAN++ t-i and the PFAN++ i-t, the 
PFAN++-P indicates the PFAN++ w/o position attention (i-t 
+ t-i fused). From Table 1, the method Unicoder-VL [60] and 
UNITER [59] surpass the other methods by a large margin, 
this is because these two approaches use extra millions of 

Fig. 4: The visualization figures of attending image region to each word 
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Table 3: Performances on Tencent-News dataset 
 MAP@1 MAP@2 MAP@3 A@1 A@2 A@3 

SCAN 67.2 70.6 75.7 67.2 69.1 73.6 

PFAN 76.0 79.0 82.0 76.0 76.3 79.7 

PFAN++ 77.2 80.3 81.9 77.2 77.1 80.9 

 
image-text pairs to pre-train the model. Except for these two 
pre-training models, we find that our PFAN++ is competitive 
with the other methods. For example, the MMCA [61] 
outperforms our method on Flickr30K, while the PFAN++ is 
more outstanding on MS-COCO 1K and comparable with the 
MMCA [61] on MS-COCO 5K test. Comparing with our 
PFAN++, the ACMM [58] is powerful on text retrieval but 
relatively weak on image retrieval. Besides, from Table 1 and 
2, we can observe that our PFAN++ could win once at least 
when competing with the latest mothods except for the pre-
training approaches. Furthermore, if we only consider the 
methods using the standard training data, the PFAN++ 
achieves the best average performance on MS-COCO 1K, 
which reveals our model is still an effective methodology. 
  Comparing with PFAN, the sentence retrieval of PFAN++ 
outperforms a few, but the image retrieval performs much 
better than PFAN. For example, the R@1 of image retrieval 
task on Flickr 30K can be improved from 50.4 to 52.7, which 
validates the global feature is helpful. To validate the 
effectiveness of the designed position attention, we also 
conduct experiments for PFAN++ without position attention 
(PFAN++-P). The results are also reported in Table 1 and 2. 
From these two tables, we can clearly see that the position 
attention is important for our system. The performances of 

PFAN++ on both text retrieval and image retrieval all 
outperform the PFAN++-P when the depth varies from 1 to 
10. This reveals the proposed position attention can help 
capture a more reliable and credible relationship between the 
image and the sentence, which validate the contribution of the 
proposed position attention. 
  Table 3 shows the performances on Tencent-News dataset. 
For a returned image list of a news title query, we not only 
care about the number of relevant images but the ranking 
order of the relevant items, therefore, we use the Mean 
Average Precision (MAP) [41, 47] and the Accuracy (A) to 
evaluate the performance. Accuracy with depth M (A@M) is 
defined as the number of the correct items divided by M, 
while the AP with depth M is defined as follows: 

𝐴𝑃@𝑀 = $
�

�L
1

1
Q[$

�
1[$ 																			(16) 

where 𝑟Q  indicates the 𝑗 -th candidate image is relevant 

Fig. 5: The visualization of position embedding similarity 

b 

a 

c 

d 

PFAN++: 
1. Six people ride mountain bikes through a jungle 
environment . 
2. Men , surrounded by nature , are riding mountain 
bikes . 
3. There are six men mountain biking in a forest 
terrain . 
PFAN: 
1. Six people ride mountain bikes through a jungle 
environment . 
2. Six People riding bikes on a trail in the forest . 
3. A group of people is bike riding in the woods . 
SCAN: 
1. Six People riding bikes on a trail in the forest . 
2. Six people ride mountain bikes through a jungle 
environment . 
3. Five cyclists , all wearing the same uniforms , are 
riding one behind the other in a bicycle race .  

(a) 

PFAN++: 
1. Two young boys sitting on a sunlit floor smiling 
and holding a black lab puppy . 
2. Two little boys smiling and holding a tiny , black 
puppy . 
3. Two young boys pose with a puppy for a family 
picture . 
PFAN: 
1. Two young boys sitting on a sunlit floor smiling 
and holding a black lab puppy . 
2. Two young boys pose with a puppy for a family 
picture. 
3. Two children sitting with a black puppy . 
SCAN: 
1. Three girls are smiling for a picture . 
2. Three girls smiling for the camera . 
3. Two little boys smiling and holding a tiny , black 
puppy . 

(b) 
PFAN++: 
1. Man taking picture of church while the american 
flag blows in the wind. 
2. A man wearing a turquoise jacket is taking a 
picture of a church . 
3. A man in a jacket is taking a photograph of a 
large building . 
PFAN: 
1. A man in a blue jacket is taking a picture of a 
church . 
2. A man with a blue jacket photographing a large 
building . 
3. Man taking picture of church while the american 
flag blows in the wind 
SCAN: 
1. A man in a blue jacket is taking a picture of a 
church . 
2. A man wearing a turquoise jacket is taking a 
picture of a church . 
3. Two men are having a conversation in a 
cathedral or mosque . 

(c) 

Fig. 6: Four sentence retrieval results of PFAN++, PFAN and SCAN 

(d) 

PFAN++: 
1. A blond-haired baby is sitting on the floor playing 
with toys while looking at a black and white cat . 
2. The infant has plenty of toys , but attention is 
drawn to the nearby cat . 
3. A baby girl looking at a black and white cat while 
holding a toy . 
PFAN: 
1. A baby playing with her toys looking at a black 
and white cat . 
2. a black and white cat looking at a baby . 
3. A blond-haired baby is sitting on the floor playing 
with toys while looking at a black and white cat . 
SCAN: 
1. A blond-haired baby is sitting on the floor playing 
with toys while looking at a black and white cat . 
2. A baby laughing on the floor . 
3. a black and white cat looking at a baby . 
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(labeled as 1) or irrelevant (labeled as 0) to the query title. 
The mean AP@M on all the test data is the MAP@M.  
  It is clear from Table 3 that our PFAN++ is still more 
outstanding than method SCAN and PFAN, the PFAN++ can 
outperform the SCAN by seven points on average under both 
MAP and Accuracy. Tables 1-3 show the effectiveness and 
the practical application value of the proposed method. 

C. Result Visualization 
In this subsection, we would visualize some results to 

intuitively see the ability of the proposed network on 
relationship capture aspect. The parameters are the same as 
the settings in subsection IV A) 2).  

1) Position Embedding Visualization 
Given an image, we split the image into blocks to infer the 

relative position of the image region. Instead of applying the 
simple one-hot representation, we utilize the embedding layer 
to adaptively learn the position embedding for better position 
representation. More details can be found in Section III. 

The learned block index embedding should preserve the 
locality, i.e. the neighbor position embeddings should be 
close to each other. In order to see if the learned position 
embedding preserve the locality, we first compute the 

similarity matrix 𝑆𝑀 = 𝑅$�×$�  of the block position 
embeddings, and the component 𝑆𝑀(𝑖, 𝑗) is defined as the 
average similarity between the block embedding in i- th row 
and j-th column and its adjacent embeddings: 

𝑆𝑀 𝑖, 𝑗 = $
|ℒ r� |

exp − r��𝒹
�

&��𝒹�ℒ(r�) 		  (17) 
the SM is calculated based on Gaussian kernel function, 
where the 𝑚 = 𝑖×16 + 𝑗 , ℒ 𝑏   is the collection of 
position embedding that is directly adjacent to the 𝑏 , 𝜎 ∈
𝑅 is a scalar, we simply set it as the average distance between 
all the position embeddings.  
  Fig. 5 shows the visualization result of matrix 𝑆𝑀, we can 
find that the closer block position embeddings share the 
higher similarity in most cases. For example, the four blocks 
in box (a)-(d) are very similar to each other, and many 
analogy situations can be found in Fig. 5, which means the 
learned position embeddings preserve the locality. 
  We can also observe that the similarities of some position 
embeddings close to the center are with lower value ((c), (d)), 
while many marginal blocks are highly similar to each other. 
We guess that this is because the regions in the corners are 
relatively similar, just as shown in the lower right region in 
Fig. 1(a) and (b). Therefore, the position features in corner  

Fig. 7: Two image retrieval results of PFAN++, PFAN and the SCAN on Flickr30K 

(a) Results of query: “A girl is in a field surrounded by 
trees and pushing a pink scooter on the grass.” 

SCAN 

PFAN++ 

PFAN 

(1) (2) 

PFAN++ 

SCAN 
(b) Results of query: “Five people standing in front 

of a body of water.” 

PFAN 

Fig. 8: Two exemplary queries on Tencent-News dataset 

PFAN++ 

SCAN 

(a) Results of query: “第三季度扣非净利下滑九成 科
大讯飞虚胖症缘何难解”(non-net profit declined by 90% 
in the third quarter, why is it difficult to solve the puffiness 
of IFLYTEK ) 

PFAN 

PFAN++ 

SCAN 

(b)  Results of query: “一文打尽所有爆料，关于最新款

Mac、iPad 的信息都在这里了” (catch all stuff in one 
article, all the information about the latest Mac、iPad is here) 

PFAN 

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 11,2020 at 02:12:25 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3024822, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) 
< 
 

9 

 
frequently meet similar visual content and fit the similar 
visual feature in each iteration. The final learned position 
embedding should be similar. However, the content close to 
the center in different images are violently changed, the 
corresponding block position needs to fit various visual 
contents, therefore, there will be obvious differences 
accordingly. 

2) Attention Visualization 
We design a position attention mechanism to adaptively 

determine the importance of the block position to the region, 
the region positional and the visual feature are then 
concatenated and fed into the image-text attention mechanism 
to investigate the interplay between regions and words. More 
details can be found in Subsection III-B. In this subsection, 
we visualize the attention results in this paper. 

An exemplary visualization result is shown in Fig. 4, where 
the green box indicates the image region, the word with the 
maximum attention weight to the region is exhibited in each 
figure. The red frames indicate the blocks of the region 
attending, we exhibit the blocks of the first 6 maximum 
weights for each region and the brighter ones are with higher 
weights. There are two observations from Fig. 4: 

a. The correspondings between the image regions and the 
sentence words is satisfied, most of the words can attend to 
their related semantic regions, like the words “wearing”, 
“shirt”, “shorts”, and so on. 

b. The brighter blocks indeed reveal the more important 
part of the regions. For example, the third image in the first 
row, the brightest block locates in the center of the region, 
which is one of the most semantic related parts. From the 
sixth image, we can get the similar observation. 

D. Retrieval Experiments  
In this section, we exhibit some sentence and image 

retrieval results to intuitively display the performances. We 
only make comparisons with the current best method SCAN 
[2] and PFAN to show the superior of our method PFAN++. 

1) Sentence retrieval 
This subsection presents some sentence retrieval results of 

proposed PFAN++, PFAN and SCAN. Fig. 6 exhibits the top 
3 retrieved results of four image queries for three methods 
respectively, where the red color indicates the irrelevant  

results. From Fig. 6, we can see that the SCAN suffers from 
the lack of relevance. For example, in Fig. 6. (b), the results 
of SCAN introduce two irrelevant results in the top 3 
retrieved results, and the results in Fig. 6 (a), (c) and (d) all 
introduce one irrelevant results. While our method can recall 
the relevant sentences for these four image queries, which 
reveals the superior of our method.  

2) Image Retrieval 
Fig.7 shows two exemplar sentence queries and the 

corresponding top-5 retrieval images. The green frame 
indicates the ground truth image of the query in the test 
dataset. From Fig. 7, we can find that the top-5 retrieved 
results of the PFAN++, PFAN, and SCAN are similar. From 
Fig. 7 (a)-(b), we can obtain two important observations:  

a. The proposed PFAN++, PFAN and the SCAN can both 
recall the ground truth image in top-5 retrieval results for 
these two queries. 

b. Our PFAN++ and the PFAN can pick up the truly 
relevant image for the query sentence, although there are 
many images that have similar semantics with the ground 
truth, while the SCAN is not that good.  

For example, there are four common images of our 
PFAN++, PFAN and the SCAN in Fig. 7 (a). Fig. 7 (a) in fact 

shows a hard query, the image (1) and the image (2) are 
very similar to each other, and we can’t discriminate them 
only according to the first half of the query sentence: “a girl 
is in a field surrounded by trees”. To pick up the truly relevant 
image, the model must accurately capture the relation 
between the image content and the second half of the sentence: 
“pushing a pink scooter on the grass.” From Fig. 7(a), our 
PFAN++ correctly models the relation and pick up the truly 
relevant image, while the SCAN doesn’t properly capture the 
relation and ranks the correct image in the second place. The 

Fig. 9: Two exemplar image-sentence fragments matching instances, the blue vertical line indicates 
the sentence fragments. 

a) 图片中的孩子是一名唐氏综合症患儿, 孩子自己一个人靠墙坐着, 而拉布拉多注意到孩子低落的情绪

, 想要逗孩子开心起来, 但是显然, 孩子并不想理拉布拉多(The child in the picture is with Down syndrome, 
he sits alone against the wall, and Labrador notices the child's low mood, it wants to make the child happy, but 

obviously, the child does not want to play with Labrador)  

b) 倪妮，大家都很熟悉了, 尤其是给人印象最深刻的是她极高的时尚品味, 不管是私服穿搭还是出席活

动, 穿搭都十分在线,这当然离不开她的高颜值, 姣好的身材，以及对时尚的独特见解 (Ni Ni, everyone is 
very familiar with her,  especially the one that is most impressive is her high fashion taste, whether it is wearing a 
private service or attending an event,  she is very radiant, this is of course inseparable from her beautiful face, great 
figure, and special insights into fashion) 
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Table 4: The performances of PFAN++ with different split size on Flickr30K 

methods Image-to-Text Retrieval Text-to-Image Retrieval 
R@1 R@5 R@10 R@1 R@5 R@10 

PFAN++-2×2 t-i 64.9 86.1 90.0 47.3 75.9 83.9 
PFAN++-4×4 t-i 64.2 87.1 91.2 48.2 76.7 84.1 
PFAN++-8×8 t-i 67.4 88.8 93.7 49.3 78.2 85.8 

PFAN++-16×16 t-i 67.2 91.2 96.1 50.8 77.8 85.3 
PFAN++-32×32 t-i 65.3 88.3 93.8 49.7 77.5 84.3 

PFAN++-2×2 i-t 65.1 88.3 91.4 43.1 72.6 82.3 
PFAN++-4×4 i-t 66.7 88.6 91.9 43.9 73.6 83.3 
PFAN++-8×8 i-t 67.3 89.7 93.8 44.1 74.0 82.8 

PFAN++-16×16 i-t 67.3 88.6 93.7 45.7 75.4 83.8 
PFAN++-32×32 i-t 67.3 90.3 94.5 45.4 76.0 84.0 
PFAN++-2×2 t-i+i-t 66.8 88.7 94.1 48.3 75.4 84.9 
PFAN++-4×4 t-i+i-t 67.5 90.2 94.9 48.7 76.8 85.3 
PFAN++-8×8 t-i+i-t 68.9 89.9 94.7 49.6 77.4 85.6 

PFAN++-16×16 t-i+i-t 70.1 91.8 96.1 52.7 79.9 87.0 
PFAN++-32×32 t-i+i-t 68.9 90.4 94.7 49.8 78.4 85.9 

Table 5: The performances of PFAN++ with different numbers of blocks for position inferring on Flickr30K 

methods Image-to-Text Retrieval Text-to-Image Retrieval 
R@1 R@5 R@10 R@1 R@5 R@10 

PFAN++-1 t-i 55.2 86.1 91.2 43.4 72.1 80.0 
PFAN++ 5 t-i 57.1 87.1 92.1 44.9 73.2 82.4 

PFAN++-10 t-i 56.4 87.0 93.2 45.4 72.9 81.3 
PFAN++-15 t-i 67.2 91.2 96.1 50.8 77.8 85.3 
PFAN++-25 t-i 65.6 88.7 96.6 49.4 76.9 85.8 
PFAN++-1 i-t 66.2 88.0 92.7 44.1 73.6 82.1 
PFAN++-5 i-t 67.2 89.2 93.3 45.9 74.9 83.8 

PFAN++-10 i-t 68.0 90.2 93.9 46.2 75.6 84.1 
PFAN++-15 i-t 67.3 88.6 93.7 45.7 75.4 83.8 
PFAN++-25 i-t 67.8 89.8 94.2 46.3 75.0 83.9 

PFAN++-1 t-i+i-t 64.9 88.2 93.3 47.3 76.7 85.5 
PFAN++-5 t-i+i-t 65.3 88.9 95.7 51.2 77.0 85.9 

PFAN++-10 t-i+i-t 66.1 90.7 96.2 53.1 78.4 86.0 
PFAN++-15 t-i+i-t 70.1 91.8 96.1 52.7 79.9 87.0 
PFAN++-25 t-i+i-t 69.4 90.9 94.8 50.5 78.0 85.7 

PFAN++ is also more outstanding on the query shown in Fig. 
7(b). 

Fig. 8 shows two exemplary queries on Tencent-News 
dataset, from which we can find that the PFAN++ and PFAN 
achieve more satisfactory results than SCAN. For example, 
there is only one appropriate image for the query title in Fig. 
8 (a), the PFAN++ picks up the most relevant images, while 
the SCAN puts the correct image in the second place. From 
Fig. 8 (b), the superior of our PFAN++ is more obvious. 

From the retrieval results shown in Figs. 6-8, it is clear that 
our proposed model PFAN++ can capture the more accurate 
and reliable relation between the sentence and the image, 
which validates the effectiveness of proposed method. 

E. An Interesting Exploration Experiment: Short Dynamic 
Video Generation for Tencent News 
  When users browse a piece of news, they usually want to 
get more information from the news with a lower time cost. 
This can be achieved by providing a very short video about 
the news. In order to generate a satisfied short video, the news 
main description need to be extracted and need to be actually 
matched with the images of the news, which is a key step in 
overall procedure. The steps of our short video generation are 
summarized in Appendix A. 
  Fig.9 shows the image-sentence fragments matching 
results of two news. The blue vertical line indicates the 
sentence fragments and the corresponding matched image is 
placed by the same order. From Fig. 9, we find that the most 

of the sentence fragments can be assigned to an appropriate 
image. For example, the example in Fig.9 a) shows a good 
match, the images and the sentence fragments are consistent 
and the final generated video will form a coherent semantics. 
We supply 466 dynamic examples, which can be found at 
https://drive.google.com/file/d/1XfVGJXzaBca67y1V_6c3NVoQY
CylTFrs/view?usp=sharing.  

V. DISCUSSION  
  In this subsection, we conduct experiments on Flickr30K 
to explore the impact on the final performance of some 
parameters in our proposed methods, including the split size 
𝐾 and the number of block 𝐿 employed to infer the region 
position. Besides, the time cost is also analyzed in this section.  

1) Discussion About the Split Size 
  To infer the position of the region, we equally split the 
image into 𝐾×𝐾 blocks, and the parameter 𝐾 is set as 16 
in our baseline method. In this subsection, we investigate the 
impacts of different 𝐾. Table. 4 shows the performances of 
PFAN++ with different split sizes on the Flickr30K dataset, 
where the PFAN++-#×# means PFAN++ with split size #. 
From Table. 4, we can see that the performance of PFAN++ 
with split 2 and 4 is not satisfactory, especially the PFAN++ 
with 2×2 split is much worse, whose R@1 of image retrieval 
is only 47.3. We guess the reason for the poor performance 
may stem from two aspects: first, limited position cells are 
too sparse to support the accuracy position inferring. Second,  
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Table 6: Time cost comparison on Flickr30K for four methods (“s” 
and “m” indicates the second and minute, respectively). 

 VSE++[21] SCAN[2] PFAN[48] PFAN++ 

Feature 
Extraction 

Resnet152[36] 0.0330s - - 0.0330s 
Faster 

RCNN[37] - 0.3084s 0.3084s 0.3084s 

Inference/image 0.0266s 0.2916s 0.3571s 0.3790s 
Total test cost/image 0.0594s 0.6000s 0.6655s 0.6874s 
Training cost/epoch 2.184m 14.22m 14.99m 15.33m 

 
the fewer split size means each position cell would cover 
much large region, consequently, the semantics of each 
position embedding is ambiguous, which also would cause a 
bad position inferring. With the split size increasing, we can 
get satisfactory results. For example, the R@1 of PFAN++-
8×8 t-i can reach 67.4 for text retrieval, and the fused result 
of PFAN-16×16 achieves the best performance. Therefore, 
we set the split size as 16. Although the split size is set as 16 
in our baseline method, the PFAN with other split sizes like 
8 and 32 can also achieve satisfactory performance. 

2) Discussion About the Parameter 𝐿 
The first 15 block positions are applied to generate the 

position feature in our baseline method. In this subsection, the 
split size is fixed at 16, we vary the number of blocks 
employed for position inferring to investigate the 
performance effect of different 𝐿.  

Table. 5 shows the performance of PFAN++ employing 
different numbers of blocks to generate the position feature, 
where the PFAN++-# means the PFAN++ with 𝐿 = #., i.e. 
𝐿 = 1, 5, 10, 15, 25. From Table 5, the case of 𝐿=1 performs 
worst, because the position attention could not be equipped 
with only one position candidates, in addition, using only one 
position blocks for position inferring is also not an excellent 
strategy. The R@1 of the PFAN++-5 and 10 t-i also perform 
much worse than other situations, this may be because the too 
few block positions are insufficient for the region’s position 
inferring. The performances of the PFAN++ with 𝐿 =
15	and	25 are very competitive, the PFAN++-15 shows the 
best performance on average. The final fused performance of 
PFAN++-25 performs a little worse than the PFAN++-15, we 
guess this because too many block positions introduce some 
redundant information and confuse the joint learning 
procedure, which causes the performance dropping. 

3) Efficiency Analysis 
  In this subsection, we simply analyze the time efficiency 
of the proposed PFAN++. To get the ranking texts for an 
image query, our model need first extract the image features 
and feed the visual features and the text forward the model to 
obtain the similarity score, by which we could pick up the 
relevance text for the image (if text serves as query, the 
procedure is analogous). We conduct the experiments on 
Flickr30K and count the time of the similarity vector 
calculation for each test image (1000 in total) VS 5000 
candidate sentences, the average time costs are reported in 
Table 6. As shown in Table 6, the VSE++ [21] is the most 
time-saving method due to its simple input, architecture, and 
loss calculation. Comparing to VSE++ [21], the other three 
methods all use the fine-grained object features, and the 
similarity/loss computation is more complex. Consequently, 
their time costs are much higher. PFAN [48] introduces the 
position embedding layer and the position attention 
mechanism, therefore, its inference speed is lower than 
SCAN [2]. Our PFAN++ further introduces an additional 
layer for the global feature based on PFAN, which also slows 

down the inference speed. Although our PFAN++ is the most 
time-consuming, it could boost the performance on all three 
datasets while only sacrifice 0.0219(s) in inference stage 
comparing to PFAN. When the text serves as query, most of 
the time would be spent on image feature extraction. For 
PFAN++, since there are 1000 images, and the number of 
candidates is 5 times fewer than the text retrieval, the total 
time cost for a text query would be around: 
(0.033+0.308)	×1000+0.379/5(s) (feature extraction + model 
inference). In practice, we could extract and save the regional 
and global features of images beforehand, which could save 
around 44.86% of the text-retrieval time, and 99.9% of the 
image-retrieval time. 
  As for the training time, because of the complexity of 
model architecture and similarity/loss computation, the 
conclusion is the same as in the test stage. The VSE++ [21] 
is still the fastest. Comparing to PFAN [48], our time cost of 
PFAN++ is 0.333 mins slower, which is acceptable 
considering the performance improvement. 

VI. CONCLUSION AND FUTURE WORK 
  In this paper, we develop a position focused attention 
network for the image-text bi-directional retrieval task. 
Instead of only paying attention to the regions themselves, the 
clue of the region position is taken into consideration. We 
first split the image and utilize the split blocks to infer the 
relative position of the region, an attention weight is then 
assigned to the block with respect to each region and position 
feature is then adaptively generated by the designed position 
attention. Positional feature and visual feature are 
concatenated to form the final representation of the region. 
Besides the local feature, the global information is also 
introduced to enhance the embedding learning, which makes 
the performance step further. The experiments on the popular 
Flickr30k and MS-COCO datasets reveal that integrating the 
position information can help model a more reliable relation 
between the image and the text. We further collect a practical 
dataset (Tencent-News) and make the first attempt to evaluate 
the application value of our image-text model. The results on 
these three datasets are all much better than the competing 
methods and achieve the competitive performance. In the 
future, we will fuse more semantic information to learn the 
cross-modality relations. 

APPENDIX A: SHORT DYNAMIC VIDEO GENERATION 
  Our short video generation consist of four steps: 
  Step 1: Key Sentence Extraction. As for the expression 
of the main news content, we simply extract one sentence 
(called key sentence) to represent the key content of the news. 
Since the news title has been exhibited for the user when user 
browses, we don’t repeatedly show it and choose another 
sentence to allow the user to get more information by a simple 
glance. We first extract the news summary by method 
TextRank [49] and the key sentence is selected according to 
the similarity with the news title under the BERT [50] feature 
representations.  
  Step 2: Text Detection. Since the sentence fragment 
assigned to an image will serve as a caption in the bottom. 
The images with texts in the bottom need to be removed in 
advance. Therefore, we employ the text detection framework 
[51] and remove the images with text in their bottom.  
  Step 3: Image-Sentence Fragments Matching. Our 
extracted key sentence is long enough, therefore, we need 
first cut the key sentence into fragments with appropriate 
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length. Then the fragments and the images in this news are 
matched by our image-text matching model PFAN++. 
  Step 4: Short Video Generation. Since the occurrences of 
the images in news obey the semantic order of the overall 
content, the order of frames (images) in the generated video 
should be consistent with the order in the original news. That 
is the next frame (image) should be one of the subsequent 
images of current frame (image). With the image-sentence 
fragments similarity in step 3, we employ the Breadth-First-
Search algorithm to find an optimal image sequence. For each 
frame, the top-k images with the highest matching scores are 
chosen as candidates. Assuming that there are n sentence 
fragments {𝑓1}1[$(  and m frames (images, {𝐼Q}Q[$  ), for every 
fragment 𝑓1, the k frames with the highest matching scores 
are retained and we set k as the total number of candidate 
images to guarantee finding at least one satisfied sequence. 
By this way, the semantic order of frames can be preserved. 

The matched sentence fragment for each frame is treated 
as the caption at the bottom of the frame, finally, a short video 
is generated by splicing all the image-fragment pairs. 
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