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Real-world industrial scenarios pose a challenging task known as few-shot class-incremental learning (FSCIL),
which aims to recognize new classes using a few samples while not forgetting the old classes. Despite the recent
advance of FSCIL, most existing methods rely on a single metric for making incremental relation predictions,
which is unilateral and lacks stability. In this paper, we remedy this issue from two aspects. Specifically, to
make convincing relation predictions, we first propose a relation complementation strategy that aggregates

different metric models to investigate the comprehensive relation of classifier weights and test features. Then,
to make the proposed strategy well fit the incremental scenarios, we design a pseudo incremental relation
complementation learning scheme that constructs the learning tasks by mimicking the data setting in real
incremental sessions. Taken together, our proposed method dubbed Relation Complementation Network (RCN)
achieves the state-of-the-art performance on minilmageNet, CIFAR100 and CUB200. Our code is available at
https://github.com/YeZiLaiXi/KT-RCN.git.

1. Introduction

Deep neural networks (DNNs) have achieved great success in many
vision tasks [1,2], but these methods can only process predefined
classes. In real-world industrial scenarios, the number of classes that
needs to be processed grows continually. The conventional solution is
to train the model using the data of old and new classes. Obviously, this
solution costs substantial time and effort. In response to this weakness,
class-incremental learning (CIL) is proposed [3], aiming to learn new
classes fast while maintaining the performance on old classes. Despite
the success of current CIL methods [4-6], the key factor for this success
is the large number of annotated training samples available for new
class learning. However, annotating a large number of training samples
still costs time and effort, and the number of training samples in
some scenarios, such as identifying rare bird species or part defects,
is limited, which often makes these methods fail due to the overfit-
ting problem. In response to such challenging incremental scenarios,
few-shot class-incremental learning (FSCIL) [7] is proposed.

FSCIL inherits the characteristics of CIL and few-shot learning (FSL):
several learning sessions come in sequence like the common CIL, but
the number of training samples for each new class is limited, as FSL

assumes. The first (base) session provides sufficient training samples for
model learning, but the following (incremental) sessions only possess
limited training samples for each class. In each session, the model is
trained with only the current session’s data but evaluated using the
test sets of all encountered classes. The challenges lie in FSCIL are
catastrophic forgetting and overfitting problems due to the scarcity of
new training samples.

The model decoupling strategy [8-10], which freezes the backbone
in incremental sessions, owns a good trait of mitigating catastrophic
forgetting and overfitting issues, but it also leads to poor representa-
tions for new classes due to the frozen backbone lacking prior infor-
mation about new classes. With the poor representations, the model is
easy to give unreliable relation predictions. To remedy this issue, most
existing methods augment the representation by introducing several
trainable linear layers [9,10] in the incremental sessions or ensembling
different architectures [11]. Despite the advance of these methods, both
of them rely on a single metric to make relation predictions which
is unilateral and lacks stability due to the limited training samples
in the incremental sessions. In contrast to these methods, we propose
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Fig. 1. Our proposed method introduces a complementary model (column 3) to
complement the insufficient of the base model (column 2). As a result, satisfactory
results are obtained using our proposed method (column 4).

to ensemble different metric models to make convincing relation pre-
dictions. Particularly, in this paper, we achieve this by introducing a
complementary model with a squared euclidean-distance classifier to
couple with the widely used cosine-based metric model (base model).
In such a way, as shown in Fig. 1, we can complement the original rep-
resentation given by the base model by projecting a sample to different
feature space. Meanwhile, we can complement the original prediction
results by aggregating the prediction results of another metric space,
thus obtaining convincing relation prediction results.

To help the complementary model learn to complement the incre-
mental relation measuring results given by the base model, we attempt
to optimize the parameters of the complementary model under the
incremental setting, such that the model will fit well to the incremental
sessions. However, the limitation of using old data and scarce train-
ing samples in incremental sessions make such training impossible.
Motivated by recent works [8,12], we propose a Pseudo Incremental
Relation Complementation (PIRC) learning scheme to construct pseudo
incremental tasks with the data sampled from the base session. Con-
cretely, each pseudo incremental task constructed by PIRC consists
of three components: the pseudo base classifier weights, the pseudo
incremental data, and the synthesized incremental data. PIRC combines
the pseudo base classifier weights and the pseudo incremental data
to construct the pseudo global incremental task, which ensures the
learning objective is consistent with that of FSCIL. Meanwhile, PIRC
introduces the synthesized incremental data and combines it with the
pseudo incremental data to construct the pseudo local incremental
task. The superiority of this operation is that the diversity of pseudo
incremental classes can be enhanced by introducing the synthesized
data, thus making the pseudo local incremental task more effective.
By such a way, we can sufficiently and efficiently utilizes the data
provided by the base session to help the complementary model learn
to complement.

Our main contributions in this paper are summarized as follows:

» A relation complementation strategy is proposed, which en-
sembles different metrics to investigate the comprehensive rela-
tion of classifier weights and test features.

A pseudo incremental relation complementation learning
scheme is specially designed for FSCIL, in which we construct
pseudo incremental tasks globally and locally to help the comple-
mentary model learn to complement.

Competitive performance. Quantitative and qualitative experi-
mental results on minilmageNet, CUB200, and CIFAR100 demon-
strate the superiority of our proposed method over previous meth-
ods.

The remainder of this article is structured as follows. Section 2
provides a brief review of some related works. Section 3 presents
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preliminary knowledge about FSCIL. Our proposed method is detailed
in Section 4. In Section 5, we report the experimental results. The
conclusion of this paper is made in Section 6.

2. Related work
2.1. Few-shot learning

Few-shot learning (FSL) aims to develop machine learning algo-
rithms capable of processing unseen classes using limited training
samples. Scarce training samples provide limited prior knowledge,
making it challenging for the model to recognize unseen classes.
To address this issue, the learning paradigm in FSL is often orga-
nized as meta-tasks similar to the inference task. Based on this learn-
ing paradigm, recent methods can be divided into three categories:
metric-based, optimization-based, and hallucination-based methods.
The metric-based methods [13,14] leverage different metrics or net-
works, such as Euclidean or graph neural networks(GNNs), to construct
the nearest neighbor classifier to measure the similarity between the
prototypes and query samples, where the prototypes are often given
by class-wise mean features of the support samples. The optimization-
based methods [15,16] design different meta-learners or optimization
strategies to learn to adapt to different query sets with the sup-
port set, such as the classical and famous optimization-based method,
MAML [15], which designs a two-stage optimization strategy that
makes the model learn to use the support samples to initialize the
model for different tasks. This strategy is conducted by optimizing the
model using the support samples in the inner loop and optimizing the
model using the query samples in the outer loop when training the
meta model. The hallucination-based methods design or utilize various
generation models or modules to generate or predict the classifier
weights [17] or fake samples [18]. Additionally, some researchers [19,
20] adopt the semi-supervised learning paradigm, which combines both
the labeled and unlabeled data, to compensate for the insufficient new
class data.

Although this research field is similar to FSCIL, most FSL methods
do not consider the performance on old classes, while FSCIL aims to
achieve good performance on both old and new classes.

2.2. Class-incremental learning

The goal of class-incremental learning (CIL) is to continually learn
new classes while maintaining the performance on old classes. Because
the old data are restricted to use in the incremental phase and the
number of training samples for new classes is sufficient, the main
problem in CIL is the notorious catastrophic forgetting problem. To
solve this problem, the regularization-based methods [3,21,22] distill
the knowledge from previous tasks when training the new task to
prevent the model from forgetting old, such as Li et al. [3] propose
to distill the outputs of classification model while Douillard et al. [21]
proposed distilling each layer’s features. The rehearsal-based meth-
ods [23,24] adopt different strategies, such as reservoir sampling, to
restore samples of the previous task and then use them either as
inputs or constrain to alleviate catastrophic forgetting when training
the new task. To store more old samples with limited memory, Wang
et al. [24] propose reducing the image’s quality. The isolation-based
methods [25,26] introduce extra parameters for each new task, for
example, Yan et al. [25] trained a new feature encoder for each new
task. With the emergence of foundation model [27,28], rehearsal-free
methods design various prompt-based strategies to learn corresponding
knowledge for different incremental tasks [29,30].

Despite the advances made by current CIL methods, these methods
often assume that many training samples can be used to learn the new
classes, which is not suitable for some incremental scenarios where the
number of training samples for new classes is limited.
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2.3. Few-shot class-incremental learning

FSCIL aims to learn a global classifier in phases, where the number
of new training samples is scarce. Because the number of training
samples for new classes is scarce, the model often suffers from noto-
rious catastrophic forgetting and overfitting problems in incremental
sessions. To mitigate these issues, the knowledge distillation strategy is
adopted by most FSCIL methods [31,32]. For example, Dong et al. [31]
proposed distilling the relation between different classes to balance
stability and plasticity. Cheraghian et al. [32] designed a semantic-
guided distillation strategy that distills the semantic information to
prevent catastrophic forgetting. As an alternative solution, the model
decoupling strategy is broadly adopted [8-10,33]. The model decou-
pling strategy decouples the learning of representation and classifier.
However, because the encoder is frozen in the incremental sessions,
the model’s plasticity is constrained by the knowledge learned in
the base session. To solve this problem, mimicking the incremental
setting to construct pseudo incremental tasks becomes an emerging
and effective solution. For example, Zhu et al. [12] proposed a pseudo
incremental learning learning scheme named random episode selection
strategy (RESS) that constructs a series of global pseudo incremental
tasks by sampling part of the old data as pseudo new data and the
prototypes of other base classes as the pseudo old prototypes. Zhang
et al. [8] designed a learning scheme that constructs the local pseudo
incremental tasks by sampling and rotating several randomly sampled
classes, where the data of each sampled class is limited, similar to
the setting in the real incremental sessions. Chi et al. [34] design a
learning scheme that constructs sequential-based pseudo incremental
tasks as in real incremental settings and design a module to update
the model using several support samples. Recently, considering that a
single model mainly focuses on one-side knowledge which limits the
ability to resist catastrophic forgetting, Ji et al. [11] propose to en-
semble different models to capture diverse knowledge to mitigate such
limitations, where a CNN architecture is introduced to capture global
knowledge and a transformer architecture is introduced to capture local
knowledge.

Similar to most previous methods, we adopt the decoupling strategy
to design our method. Unlike previous proposed learning schemes,
our proposed pseudo incremental relation complementation learning
scheme constructs the pseudo incremental tasks globally and locally,
which not only coincides with the learning objective of FSCIL but can
also improve the model’s plasticity. Furthermore, we ensemble different
metrics to give convincing incremental relation estimations rather than
different architectures.

3. Preliminary knowledge

Before delving into the details of our methodology, we first in-
troduce the problem definition of few-shot class-incremental learning
(FSCIL). The goal of FSCIL is to learn a global classifier in phases
that classifies all the seen classes, where each learning phase is also
called a session in FSCIL. The incremental setting of FSCIL is as follows.
Formally, let D° — D' — .. denote the data stream. The classes
contained in different sessions satisfy C'nC/ = @(i # j). Each D' consists
of a training set D! . and a test set D/, , where only D° . contains
many samples, D) . (i > 0) contains a few samples. In session i, only
Di . is available. In contrast, the union of {D? ..., Di } is used
to evaluate the performance of the model. Under the background of
the model decoupling strategy, the essential problem that needs to be
solved in FSCIL is an incremental relation measuring problem between
test features and classifier weights. However, scarce training samples
make such a problem challenging in incremental sessions.
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4. Method

In this section, the overall framework is first described in Sec-
tion 4.1. Then, we describe the conventional training paradigm in
Section 4.2. Next, we detail our proposed pseudo incremental relation
complementation learning scheme in Section 4.3. Finally, we detail the
inference process in Section 4.4.

4.1. Framework overview

Our proposed method consists of a base model with the cosine
classifier as in previous FSCIL methods [8,12,35] and a complementary
model with the squared Euclidean-based classifier. We first adopt the
conventional training paradigm to learn the parameters of the base
model. Then, as shown in Fig. 2, our proposed pseudo incremental rela-
tion complementation learning scheme constructs pseudo incremental
tasks globally and locally to learn the parameters of the complementary
model. For the sake of following description, we denote the following
feature encoding of the base model and the complementary model as
f1(x) = N(x;6)) and f,(x) = N'(x;0,), where 0, and 0, refer to the
parameters of the base model and the complementary model’s encoder.

4.2. Conventional training paradigm

Sufficient training samples in the base session enable us to train
a satisfactory classification model to classify base classes. However,
simply employing a linear layer as the classification layer will result
in an imbalance magnitude between the base and future incremental
classes [8,36], compromising the model’s performance. Therefore, we
replace the linear classification layer with the cosine classifier. Con-
cretely, let x denote the image data. We first input the x to the base
model and compute the classification score P as follows:

P = softmax(s®@, (f,(x), W})), @

. b . . o g
where s is the scale factor, @,(a, b) = m is the cosine classifier, -
2

refers to the inner product, and W, refers to the classifier weights. After

obtaining the classification score P, we optimize the parameters 6, and

W, by

07, W =argmin L (P, y), ®))
0,.W;

where L., denotes the cross-entropy loss function, and y is the ground

truth of x.

4.3. Pseudo incremental relation complementation learning

4.3.1. Pseudo incremental task construction

In FSCIL, the scarce training samples in the incremental sessions
make it difficult to further train the model, resulting in a common
problem, i.e. , the representations for incremental classes are weak. Due
to the weak representations for incremental classes, the model easily
makes improper relation predictions. For this problem, our solution is
to use a complementary model with a different metric from the base
model and ensemble different metrics to mitigate this problem. To learn
the parameters of the complementary model, a straightforward method
is to train it in a conventional manner. However, the data forms in
the incremental sessions are few-shot based, and the task gap between
the base session and the incremental sessions makes such a method
suboptimal. To help the complementary model learn to complement
the relation prediction results given by the base model, the proposed
pseudo incremental relation complementation learning scheme imi-
tates the real incremental setting to construct learning tasks, which is
achieved by the proposed pseudo incremental task construction (PITC).
PITC constructs many pseudo incremental tasks globally and locally for
each episode with the data provided by the base session, where the
pseudo global incremental task is used to coincide with the learning
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Fig. 2. Overview of our proposed pseudo incremental relation complementation learning scheme. The proposed learning scheme utilizes the (a) pseudo incremental task construction
to construct pseudo incremental tasks locally and globally to help the complementary model learn to complement the base model.

objective of FSCIL, and the pseudo local incremental task is used to
improve the model’s plasticity. To construct these tasks, there are four
main steps, weight collection, data sampling, weight sampling, and data
synthesis.

« Weight collection. To prepare for later weight sampling, with

DO . PITC first computes the classifier weights W, of the base model

train’

by

W, = mean(f;(x)) € RV*4, 3

where N denotes the number of base classes, and d refers to the
dimension of data embedding. Next, the classifier weights W, of the
complementary model are computed by

W, = mean(f,(x)) € RN, “

where f,(x) denotes the data embedding of D?rm.n encoded by the
complementary model. Finally, W, and W, are stored in the memory.

« Data sampling. To mimic the data setting of incremental classes,
several classes from C are randomly selected by PITC as the pseudo
incremental classes. Then, PITC randomly samples a few data for each
selected class to constitute the support set .S and the query set Q, where
S, and Q will serve as the training set and test set of real incremental
classes, respectively.

« Weight sampling. To mimic the data setting of base classes in the
incremental session, except the classifier weights of pseudo incremental
classes, other classifier weights of W, and W, are selected as the
pseudo base classifier weights I/le b and I/Vzpb of the base model and
complementary model, respectively.

« Data synthesis. To improve the model’s plasticity, PITC synthe-
sizes incremental data to enhance the diversity of pseudo incremental
classes. Concretely, PITC rotates .S and Q to synthesize the support set
S and query set Q% of synthesized incremental classes.

Overall, the combination {S, 0, 5% 0%, I/Vl" b VVZP b } forms a pseudo

incremental task, where the combination { S, Q, Wlp b szb forms the

pseudo global incremental task, and the combination {S,Q, S ,Q“'}
forms the pseudo local incremental task.

Algorithm 1 Complementary learning.

Require: The base model f(;6,), the complementary model f(;6,),
pseudo global incremental task {S,Q,S”,Q“i , Wl”b, Wz"b}, pseudo

local incremental task {5, 0, 5%, Q% }.
Ensure: A trained f(;0,).

1: while not done do

2: I/I/I"i,I/I/z”’ « Get the base model’s and complementary model’s
pseudo incremental classifier weights using S, Eq. (3) and Eq.
(4), respectively.

3: Wl”g « Get the base model’s pseudo global classifier weights by
concatenating W, " and w/ b

4: Wz”g « Get the complementary model’s pseudo global classifier

weights by concatenating W’ " and wy b

5:  Pyop — Make predictions for Q using Wl"g R szg , Eq. (5), (6) and
)
6:  Lygopy < Compute the global loss by using Eq.(8)

7: WZS" « Get the synthesized incremental classifier weights using
S and Eq. (4) _

8: Wz’ « Get the local classifier weights by concatenating sz " and
WZSI .

9 Pyyeq < Make predictions for {Q,Q*} using W/, Eq. (6) and (9)

10: L, < Compute the local loss using P, and Eq. (10)
11: £ < Compute the total loss using Eq.(11)
12:  Optimize the complementary model with SGD

13: end while

4.3.2. Complementary learning

With the constructed pseudo incremental tasks, the complementary
learning aims to optimize the complementary model for relation cali-
bration. The pseudo code of this stage is illustrated in Algorithm 1. With
the constructed pseudo global incremental task { .S, O, W”", Wz"b , we
first encode the data of S and Q using f(;6,) and f(;6,). The corre-
sponding data embeddings are denoted as f7(x), f](x), f;(x), and f(x),

respectively. Then, the pseudo incremental classifier weights W]”i of
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the base model are computed using Eq. (3) and f}(x). Analogously,
the pseudo incremental classifier weights Wz”‘ of the complementary
model are computed using Eq. (4) and f5(x). Next, Wl”i and Wlpb are
concatenated as the pseudo global classifier weights Wlpg of the base
model, while Wz"i and Wz”b are concatenated as the pseudo global
classifier weights WZ”g of the complementary model. Given the pseudo
global classifier weights W ¢ and W%, the respective relations can be
calculated accordingly:

ry =@/ (0. W), ©)
ry = Oy (f3 (), W), O

where r; and r, are the relation estimations given by the base model
and complementary model, respectively, and ®@,(a,b) = —|la — b||*/d
refers to the squared Euclidean distance-based classifier. With r; and r,,
the final incremental relation measuring P, is given by integrating
the above two predictions:

v
Pyiopar = softmax(s(gl +7,)), @

where d is used to eliminate the impact of dimension. Finally, the global

loss L,,p, is computed by the cross entropy (CE) loss:

Lg10pat = LcEPytopat> Yeiopar)> (8)

where Y., refers to the ground truth of the query data contained in
the pseudo global incremental task.

With the constructed pseudo local incremental task {S, 0, 5% 0% },
we first encode the data of S* and Q% using f(;,). The corresponding
data embeddings of S* and Q% are denoted as f;'”'(x) and fz‘l“i(x),
respectively. Then, the synthesized incremental classifier weights Wz’i
are_computed by Eq. (4) and fzm (x). Next, we concatenate W;i and
W' as the local classifier weights W2’ to classify f,”(x) and f;(x)
using Eq. (6). Let the computed relation be r;,.,;, and the local relation
estimation P, is predicted by

Py = softmax(sry,eq)- 9
Consequently, the local loss is defined as:

£lucal = CCE(PIacaI’ Ylacal)’ (10)

where Y., refers to the ground truth of the query data contained in
the pseudo local incremental task.

To coincide with the learning objective of FSCIL and improve the
model’s new class adaptation ability, we define the total objective as:

L= MLyopar + 12 Ligcars an)

where 4, and 4, are hyperparameters to balance the two losses.
4.4. Incremental relation measurement

In the inference stage, the training set of current incremental ses-
sions is first used to expand the previous classifiers. For example, let
W,° and W,° denote the old classifier weights of the base model and
complementary model. In each incremental session, we first obtain the
data embedding of the available training set by inputting the training
set to the base model and complementary model. Then, we use Egs. (3)
and (4) to compute the classifier weights W" and W)’ of new classes,
respectively. Next, we use the concatenation of W;° and W}" to expand
the old classifier of the base model. The updated classifier weights
are denoted as ng . Similarly, the old classifier weights W,° of the
complementary model are expanded by the concatenation of W,° and
W,'. We denote the updated classifier weights of the complementary
model as Wzg. Given a test sample x from the test set of all encountered
classes, the incremental relation estimation P is given by

P = @(f1(x), W) + @y (fo(x), W), 12)
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5. Experiments

5.1. Datasets

minilmageNet. The minilmageNet dataset is the subset of the Ima-
geNet [37] dataset. There are 100 classes in this dataset, where each
class has 500 training images and 100 test images. Following the
incremental setting proposed by [7], we split this dataset into 9 (1+8)
sessions, where the base session consists of 60 classes and the following
8 incremental sessions consist of the remaining 40 classes. Each session
takes the 5-way-5-shot setting, which implies that there are five classes
and each class has five training images.

CIFAR100. As in minilmageNet, the CIFAR100 [38] consists of 100
classes, and each class has 500 training images and 100 test images,
but the size of the image is small. We follow the incremental learning
setting in minilmageNet to split this dataset, i.e. , the base session
consists of 60 classes, the following 8 incremental sessions consist of 40
classes, and each incremental session takes the 5-way-5-shot setting.

Caltech-UCSD Birds-200-2011. The CUB200 [39] dataset consists of
200 classes, and each class has approximately 30 training images and
30 test images. Following the incremental setting proposed by [71],
we split this dataset into 11 (1+10) sessions, where the base session
consists of 100 classes, the following 10 incremental sessions consist of
remaining 100 classes, and each session takes a 10-way-5-shot setting.

5.2. Implementation details

We adopt the PyTorch [40] platform to implement our proposed
method. Following [12,33], ResNet18 is adopted as the encoder for
benchmark datasets.

« In the pretraining stage, on CUB200, the base model is trained for
50 epochs with a batch size of 128 using the SGD optimizer. The initial
learning rate, weight decay, and momentum are set to 0.03, 0.0001,
and 0.9, respectively. We decay the learning rate by a factor of 0.1 per
10 epochs. On CIFAR100 and minilmageNet, except we set the batch
size to 64, the learning rate to 0.1, the weight decay to 0.0005, and
decay the learning rate by a factor of 0.1 every 40 epochs, others are
the same as the setting on CUB200.

« In the pseudo incremental relation complementation learning
stage, we freeze the base model and train the complementary model for
80 epochs. In each epoch, 200 pseudo incremental tasks are randomly
constructed. We adopt the SGD optimizer to optimize the model. We set
the initial learning rate, weight decay, and momentum to 0.03, 0.0001,
and 0.9, respectively. We decay the learning rate by a factor of 0.1 per
20 epochs. The scale factors are set to 16, 16, and 12 for CIFAR100,
CUB200, and minilmageNet respectively. Following Zhu et al. [12], we
adopt the random resized crop, random horizontal flip, and color jitter
techniques to augment the data during training.

5.3. Evaluation protocol

In the inference stage of each session, the test sets until the current
session are used to evaluate the performance of the model, and the
top-1 accuracy is reported. To evaluate the model’s overall perfor-
mance, we compute the average accuracy Avg.= M#H Zgo A,; across
all sessions, where M represents the number of incremental sessions
and A; represents the top-1 accuracy of the i—th session. Following
previous class incremental learning methods [29,41], we also compute
the performance gap Diff.= A, - A',‘"; between the method and
the upper-bound method Joint-CNN, where Joint-CNN represents the
method that uses both the training data of old and new classes to train
the model in each session and A‘I‘\’; represents the accuracy in the last
session of Joint-CNN.
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Table 1

Comparison with other methods on minilmageNet.
Method Sessions Avg. Diff.

0 1 2 3 4 5 6 7 8

Joint-CNN 81.20 75.62 70.66 65.81 62.20 58.41 55.78 53.16 50.00 63.65 0.00
NCM?* [42] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.83 —35.83
iCaRL? [23] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 33.29 -32.79
EEIL? [43] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 34.97 -30.42
TOPIC [7] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 —25.58
SPPR [12] 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92 52.76 —8.08
CEC [8] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 -2.37
F2M [33] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 57.89 -2.16
MCNet [11] 72.33 67.70 63.50 60.34 57.59 54.70 52.13 50.41 49.08 58.64 —-0.92
MetaFSCIL [34] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 —-0.81
MFS3 [44] 73.65 68.91 64.60 61.48 58.68 55.55 53.33 51.69 50.26 59.79 +0.26
FACT [45] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 60.70 +0.49
C-FSCIL [9] 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41 61.61 +1.41
SoftNet [35] 79.77 75.08 70.59 66.93 64.00 61.00 57.81 55.81 54.68 65.07 +4.68
ALICE [46] 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70 63.99 +5.70
NC-FSCIL [10] 84.02 76.80 72.00 67.83 66.35 64.04 61.46 59.54 58.31 67.82 +8.31
RCN(Ours) 84.62 79.94 75.70 72.21 69.38 66.26 63.48 61.39 60.02 70.33 +10.02

2 Represents the results copied from [7].

Table 2

Comparison with other methods on CIFAR100.
Method Sessions Avg. Diff.

0 1 2 3 4 5 6 7 8

Joint-CNN 80.15 74.57 69.93 65.31 61.00 57.79 54.47 51.59 49.66 62.72 0.00
NCM* [42] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 -36.12
iCaRL? [23] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 —35.93
EEIL? [43] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 33.79 —-33.81
TOPIC [7] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 —-20.29
SPPR [12] 63.97 65.86 61.31 57.60 53.39 50.93 48.27 45.36 43.32 54.45 —6.34
CEC [8] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 —-0.52
F2M [33] 71.45 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35 59.14 -0.31
MetaFSCIL [34] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 +0.31
C-FSCIL [9] 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 61.64 +0.81
MCNet [11] 73.30 69.34 65.72 61.70 58.75 56.44 54.59 53.01 50.72 60.40 +1.06
MEFS3 [44] 73.42 69.85 66.44 62.81 59.78 56.94 55.04 53.00 51.07 60.93 +1.41
FACT [45] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 62.24 +2.44
ALICE [46] 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10 63.21 +4.44
SoftNet [35] 79.88 75.54 71.64 67.47 64.45 61.09 59.07 57.29 55.33 65.75 +5.67
NC-FSCIL [10] 82.52 76.82 73.34 69.68 66.19 62.85 60.96 59.02 56.11 67.50 +6.45
RCN(Ours) 83.40 78.75 74.94 70.81 67.84 64.89 63.10 60.92 58.53 69.24 +8.87

2 Represents the results copied from [7].

5.4. Comparison methods

To validate the effectiveness of our proposed method, we compare
it with some classical class-incremental learning methods (iCaRL [23],

EEIL

[43], and NCM [42]) and recent FSCIL methods (TOPIC [7],

SPPR [12], CEC [8], F2M [33], C-FSCIL [9], MetaFSCIL [34], FACT

[45],

ALICE [46], SoftNet [35], MCNet [11], and NC-FSCIL [10]). The

descriptions of these methods are presented as follows:

iCaRL stores the data of learned classes by the herding strat-
egy [47] and replays them to mitigate catastrophic forgetting
problems.

EEIL further proposes a balanced fine-tuning strategy that selects
the same number of old and new training samples to finetune the
model after finishing the training in each session.

NCM incorporates cosine normalization, a less-forget constraint,
and inter-class separation to learn a unified classifier to balance
the bias between old and new data.

TOPIC constrains the topology of the feature space to mitigate
the catastrophic forgetting problem.

SPPR utilizes the relations between old and new prototypes to
update the global prototypes and proposes a learning scheme that
constructs pseudo global incremental tasks to learn functional
modules.

CEC propagates context information between old and new clas-
sifiers to update the classifier and proposes a learning scheme
that constructs pseudo local incremental tasks to learn functional
modules.

F2M introduces random noise to the encoder’s parameters to find
the base training objective’s flat local minima and fine-tunes the
model within this minima in the incremental sessions.

C-FSCIL freezes the encoder and replays old features with new
data to fine-tune the fully-connected layer to adapt the model’s
outputs to new classes.

MetaFSCIL proposes a learning scheme that optimizes the model
by constructing sequential pseudo local incremental tasks.

FACT squeezes the learned classes’ feature space to reserve the
space for new class learning.

ALICE adopts angular penalty loss and augmentation strategies to
improve the generalization ability of the model.

SoftNet freezes the major part and updates the minor part of a
subnetwork obtained by a soft mask to mitigate the catastrophic
forgetting and overfitting problems.

MCNet enhances the representations for new classes by ensem-
bling information captured by different architectures.

NC-FSCIL preassigned classifier prototypes and fine-tunes a pro-
jection layer to drive the output features into their corresponding
prototypes.
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Table 3
Comparison with other methods on CUB200.
Method Sessions Avg. Diff.
0 1 2 3 4 5 6 7 8 9 10

Joint-CNN 78.68 73.49 69.86 66.10 64.74 62.47 60.64 59.32 57.25 57.67 57.50 64.34 0.00
NCM® [42] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 -37.63
iCaRL* [23] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 -36.34
EEIL? [43] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27 —-35.39
TOPIC [7] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 -31.22
SPPR [12] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.34 -20.17
CEC [8] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 -5.22
MFS3 [44] 75.63 72.51 69.65 65.29 63.13 60.38 58.99 57.41 55.55 54.95 53.47 62.45 -4.03
MetaFSCIL [34] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.93 -4.86
F2M [33] 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 63.96 -1.61
SoftNet [35] 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75 64.68 -0.75
FACT [45] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 -0.56
MCNet [11] 77.57 73.96 70.47 65.81 66.16 63.81 62.09 61.82 60.41 60.09 59.08 65.57 +1.58
NC-FSCIL [10] 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 67.28 +1.94
ALICE [46] 77.40 72.70 70.60 67.20 65.90 63.40 62.90 61.90 60.50 60.60 60.10 65.75 +2.60
RCN(Ours) 79.86 76.48 73.34 69.72 68.48 65.93 64.58 63.68 62.04 61.48 60.47 67.82 +2.97

2 Represents the results copied from [7].

Table 4

Ablation studies on minlmageNet. PIRC refers to the proposed pseudo incremental relation complementation learning scheme. Compared with
single metric, ensembling different metrics achieves better performance, and our proposed PIRC can further boost the performance.

B-model C-model PIRC Sessions
0 1 2 3 4 5 6 7 8
v 81.87 76.82 72.29 68.60 65.44 62.45 59.57 57.42 55.98
v 80.83 74.32 70.20 66.68 63.79 60.92 58.34 56.61 55.18
v v 82.98 77.60 73.31 69.87 67.03 64.15 61.56 59.83 58.70
v v 82.80 77.66 73.59 69.83 67.00 63.48 60.49 58.38 56.68
v v v 84.62 79.94 75.70 72.21 69.38 66.26 63.48 61.39 60.02

5.5. Quantitative comparisons

As can be observed from Tables 1, 2, and 3,

» On minilmageNet, CIFAR100, and CUB200, the performance of
CIL methods, such as iCaRL, EEIL, and NCM, decreases signifi-
cantly as the learning process proceeds. The intrinsic reason is
that these methods overfit the training data because the training
samples in the incremental sessions are scarce.

On minilmageNet, compared to other methods, our proposed
method achieves the best performance in each session. Particu-
larly, compared to the second-best method NC-FSCIL, the average
accuracy Avg. of our proposed RCN has an improvement of
2.51%, while the performance gap Diff . with the Joint-CNN of
our proposed RCN has an improvement of 1.71%.

On CIFAR100, compared to other methods, our proposed RCN
also achieves the best performance in each session. Particularly,
compared to the second-best method NC-FSCIL, the average accu-
racy Avg. of our proposed RCN has an improvement of 1.74%,
while the performance gap Diff. with Joint-CNN of our pro-
posed RCN has an improvement of 2.42%.

On CUB200, compared to other methods, our proposed RCN
achieves the best performance in almost all sessions as on
minilmageNet and CIFAR100. Particularly, on the average accu-
racy Avg., compared to the second-best method NC-FSCIL, our
proposed RCN has an improvement of 0.54%. On the perfor-
mance gap Diff. with the Joint-CNN, our proposed RCN has
an improvement of 0.37% compared to the second-best method
ALICE.

In summary, the quantitative comparisons demonstrate the superi-
ority of our proposed RCN compared to other methods.

5.6. Ablation study

To validate the effectiveness of each component in RCN, we conduct
several ablation studies on minilmageNet and CUB200. As we can see

Fig. 3. Visualization with GradCAM on CUB200, where (a) raw images of new classes,
(b) results without using our proposed pseudo incremental relation complementation
learning scheme, (c) results with using our proposed pseudo incremental relation
complementation learning scheme.

from Table 4, Row 1/2 refers to using only the base model (B-model)
/ the complementary model (C-model) trained by the conventional
training paradigm to make incremental predictions, and the accuracy
in the last session is 55.98%/,/55.18%. Row 3 refers to combining the
B-model and C-model to make incremental predictions. The accuracy
in the last session is 58.70% which surpasses that given by using
the B-model or the C-model alone by a margin of 2.72% and 3.52%,
respectively. The results demonstrate that ensembling different metrics
is an effective strategy for FSCIL. Row 4 refers to using our proposed
pseudo incremental relation complementation (PIRC) learning scheme
to train the C-model. We can see that our proposed PIRC boosts the
C-model (Row 2) performance in the last session from 55.18% to
56.68%. Similarly, Row 5 refers to using PIRC to train the C-model and
combining the B-model and C-model to make incremental predictions,
we can see that our proposed PIRC boosts the performance of the
full model (Row 3) from 58.70% to 60.02%. Furthermore, as we can
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Fig. 4. The performance under various pseudo-incremental settings on CUB200 in the
pseudo incremental relation complementation learning stage. The method we propose
prefers a small way and a large shot.
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Fig. 5. The influence of losses on CUB200, where we change 4, and 1, among different
values and report the (a) average accuracy and (b) the accuracy on new classes.

see from Fig. 3, using our proposed PIRC can help the model capture
more effective regions of the target for new classes than not using our
proposed PIRC. The quantitative and visualization results shown above
demonstrate that our proposed PIRC is effective.

5.7. Discussion

5.7.1. The influence of sampling setting

In the pseudo incremental relation complementation learning stage,
we adopt the N-way-K-shot setting to sample the data of pseudo
incremental classes from the base session. To study the influence of
the N-way-K-shot setting on average accuracy in the pseudo incre-
mental relation complementation learning stage, we change the num-
ber of ways among {5, 10, 15,20,25} and the number of shots among
{1,5,10,15,20}. The results given by different combinations are re-
ported in Fig. 4. Regardless of whether the number of ways or shots
is fixed, our proposed method can achieve a satisfactory result as long
as suitable shots or ways are set. Particularly, setting the number of
ways to 5 and the number of shots to 20 achieves the highest average
accuracy on CUB200. The primary reason we guess is that the data of
constructed pseudo tasks is sampled from the base session. Setting a
small way can reduce overfitting, and a large shot can provide sufficient
prior information.

5.7.2. The influence of Ly,p, and L,y

To study the influence of L, and L,,,, we change 4, and
A, among {0,0.5,1,1.5,2.0} and report the average accuracy and the
accuracy on new classes. As shown in Fig. 5(a), using only £ ;opu/Liocars
the maximum average accuracy is 66.23%,/66.96%. When we combine
Lyiopar and L., to optimize the model, the maximum average ac-
curacy is 67.82%. The results demonstrate that £, and L, are
effective. As we can see from Fig. 5(b), using only L,,,, improves
the model’s performance on new classes from 40.90% to 42.89%. The
results indicate that the model’s plasticity can be improved by making
the pseudo incremental task coincide with the learning objective of
FSCIL. Furthermore, combining £, and L, to optimize the model,
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Fig. 6. Comparison with different pseudo incremental learning schemes on CUB200,
where RESS [12], PIL [8], and meta-learning [34] are the previously proposed pseudo
incremental learning schemes, PIRC refers to our proposed pseudo incremental relation
complementation learning scheme, M, C, R, inter and intra refer to MixUp [48],
CutMix [49], Rotate [8], class-wise operation and sample-wise operation, respectively.
Values shown in the bracket are coefficients of Beta distribution B(a,a). Detailed
descriptions of RESS, PIL and meta-learning can be found in Section 2.3.

the model’s performance on new classes given by using only L.,
is improved from 42.89% to 45.26%. The results indicate that £,
can further improve the model’s plasticity. In summary, the results
described above indicate that £, and £, are effective and can be
used to improve the model’s plasticity. Particularly, setting 4, to 1.5
and 4, to 2.0 is an optimal configuration.

5.7.3. Further analysis of pseudo incremental relation complementation
learning

To further study the influence of pseudo incremental relation com-
plementation learning (PIRC), we adopt different strategies to synthe-
size the data and compare the corresponding performance with the
previously proposed pseudo incremental learning schemes RESS [12],
PIL [8], and meta-learning [34]. As we can see from Fig. 6, compared
to the performance given by RESS, PIL, or meta-learning, our proposed
PIRC can achieve the highest accuracy on each session on CUB200
under different conditions. The results demonstrate that optimizing the
model from the global perspective to coincide with the learning objec-
tive of FSCIL and the local perspective to improve the model’s plasticity
is a more effective than global task-focused RESS, local task-focused
PIL, and sequential local task-focused meta-learning. Furthermore, we
can see that using rotation [8] can help our proposed method achieve
better performance than the benefit brought by using MixUp [48] or
CutMix [49]. The results show that rotate [8] is more effective than
MixUp [48] and CutMix [49].

5.7.4. The influence of ensemble strategies

To study the influence of ensemble strategies, we use different
metric-level and output-level ensemble strategies and report the cor-
responding results in Table 5 and Fig. 7. From the metric level, as
we can see from Table 5, using the KL divergence shows the strongest
catastrophic forgetting resistance ability compared to other metrics. Us-
ing the squared Euclidean distance shows the best plasticity compared
to other metrics and achieves the highest average accuracy. From the
output level, as shown in Fig. 7, we can observe that simply adding the
relation logits of the base model and complementary model without
any further operation obtains the best performance.

5.7.5. The sensitivity of the number of incremental shots

To explore the influence of the number of shots in the inference
stage, we change the number of shots among {1,5,10,20,50}. As can
be seen from Fig. 8(a), increasing the number of shots from 1 to 5, the
performance on incremental sessions is improved by a large margin.
However, such improvement gets small when we continually increase
the number of shots. The main reasons are that increasing the number
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Table 5

The influence of metric-level ensemble strategies, where Base acc.
refers to the accuracy on the base classes, New acc. refers to the
accuracy on the new classes, Cos., KL div., and S-Euc. represent the
metric models using cosine, KL divergence, and squared Euclidean
distance as the classifier, respectively.
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Fig. 7. The influence of output-level ensemble strategies, where logits refer to the
estimation results given by the classifier directly, s-softmax refers to multiplying the
logits with a scale factor and then applying the softmax function.
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Fig. 8. The performance given by different incremental shots on CIFAR100 in the
inference stage, where (a) the performance in each session, (b) the accuracy on base
and new classes, values shown in the bracket of the legend is the average accuracy
across all sessions.

of shots from 1 to 5 slightly drops the model’s performance on old
classes but improves the model’s performance on new classes by a large
margin as shown in Fig. 8(b), and increasing the number of shots from
5 to a larger value seems to have a slight influence on old and new
classes.

5.7.6. The sensitivity of the number of incremental steps

To explore the influence of the number of steps in incremental
sessions, we change the number of steps among {1,2,4,5,8,20,40}. As
can be seen from Fig. 9, increasing the number of steps drops the
performance, but the decreasing trend is gradually flattening out as the
number of steps increases. The results demonstrate that our proposed
method is not sensitive to the incremental steps as in conventional
class-incremental learning.

5.7.7. The sensitivity of incremental orders

To explore the influence of incremental order, we use the general
order given by [7] as the baseline and randomly shuffle the order
five times. As we can see from Fig. 10, different incremental orders
mainly influence the performance on middle incremental sessions, and
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Fig. 9. The influence of incremental steps, where (# a, b) refers to the number of
incremental steps is a and the average accuracy is b.
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Fig. 10. The influence of incremental order on CIFAR100, where values shown in the
bracket of the legend are relative incremental orders.

the influence is slight for our proposed method. The results show that
our proposed method has a strong resistance ability for the incremental
order.

6. Conclusion

In this paper, we focus on solving the challenging few-shot class-

incremental learning (FSCIL) task. Firstly, a relation complementation
strategy that integrates different metric models is proposed to perform
incremental relation measuring. Secondly, an effective pseudo incre-
mental relation complementation learning scheme is proposed to help
the complementary model learn to complement the relation prediction
results given by the base model. The proposed learning scheme mimics
the real incremental setting and constructs the pseudo incremental
tasks globally and locally, where the pseudo global incremental task is
used to coincide with the learning objective of FSCIL, and the pseudo
local incremental task is used to improve the model’s plasticity. Exper-
iments are conducted on three FSCIL datasets, and the quantitative and
qualitative results demonstrate the superiority of our proposed method
compared to previous methods.
Limitations and future work: Although the proposed pseudo in-
cremental relation complementation learning scheme is effective and
general as demonstrated in the main paper, the large size of the model
makes it difficult to deploy the model to some memory-constrained
devices. Moreover, the performance of our proposed method is limited
by the model’s representation ability for new classes. In future work,
based on this work, we will consider designing a model with a small
size and has strong representation ability for new classes, even if the
number of training samples for the new classes is limited.
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