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a b s t r a c t

Owing to the portable and excellent phone camera, people now prefer to take photos and share them in
social networks with their friends. If a user wants to obtain relevant information about an image, content
based image retrieval method can be utilized. Taking the limited bandwidth and instability of wireless
channel into account, in this paper we propose an effective scalable mobile image retrieval approach by
exploiting the advantage of mobile end that people usually take multiple photos of an object in different
viewpoints and focuses. The proposed algorithm first determines the truly relevant photos according to
visual similarity in mobile end, then learns salient visual words by exploring saliency from these relevant
images, and finally determines the contribution order of salient visual words to carry out scalable
retrieval. Moreover, to improve the retrieval performance, soft spatial verification is proposed to re-rank
the results. Compared to the existing approaches of mobile image retrieval, our approach transmits less
data and reduces the computational cost of spatial verification. Most importantly, when the bandwidth
is limited, we can transmit only a part of features according their contributions to retrieval. Experimental
results show the effectiveness of the proposed approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The bag of word (BoW) [1] model and local features, such as
SIFT [2] and SURF [3] make significant breakthroughs in content
based image retrieval (CBIR). And the idea of hierarchical vocabu-
lary tree [4] accelerates the speed of clustering and quantizing for
large scale image retrieval, and makes it feasible to realize scalable
recognition. Recent years, new technologies continuously emerge,
which facilitate the development of visual search and recognition,
such as domain-adaptive global feature descriptor [46], cross-
domain dictionary learning [53], re-ranking schemes for database
images [21,47], query expansion [5–7], visual synonym [8–13], co-
occurrence pattern [14–15] and geometric verification [16–17].
Query expansion enriches the query model over and over again by
combining it with top returned retrieval results. Co-occurrence
pattern constructs visual phrase or group and represent image as
bag of visual groups [14–15]. Visual synonyms are defined as the
visual words that correspond to similar visual patch. The goal of
visual synonym is to expand a visual word with its synonyms to
narrow down the semantic gap in visual word quantization [9].
Besides visual synonyms, discriminative features are proposed

[15,57]. Shao et al. [57] learn relative feature by max-margin
criterion between the input and its dissimilarity with the proto-
type images. Spatial verification enforces geometric consistent
constraint on common words that query and dataset image share,
such as RANSAC [16] and spatial coding [17]. Spatial coding
performs well in partial duplicate image retrieval. However, due
to the rapid development of digital camera, photos usually have
high definition, which results in that too many local features are
extracted from one photo. Thus spatial coding will be time-
consuming.

Recently, the multi-model is exploited to improve the visual
researches, e.g. [47] learns global feature via multi-objective genetic
programming, [48] selects crucial features by analyzing the shared
information among multiple tasks, and [50] generates multimodal
spatio-temporal theme to describe landmarks better. Multiple
models are correlated and complementary to each other. Therefore
using multiple models helps to make up the deficient of single
model. For the images about same object, the views of them are
usually various. It is effective to mine the view invariant features to
represent the object. The core methodology that tackles visual
problems with changes in viewpoint is to discover the shared
knowledge irrespective to such viewpoint changes [52]. Thus it is
feasible to explore shared information from multiple relevant
photos to represent the query better.

Smartphone is experiencing booming development recently.
According to the statistics, there are 4.5 billion mobile phones and
1.7 billion smart phone users in the world in 2014. And the number
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of smart phone users will mushroom in the future. Mobile phone
has been an indispensable part of people's lives. With the powerful
phone camera, most people now prefer to take pictures with mobile
phone. Usually, people are accustomed to taking many photos about
same object or view to ensure that at least one of them is satisfying
and to fully present the object from different viewpoints. Now that
many photos refer to the same scene, it is rational to comprehen-
sively analyze multiple relevant photos to acquire salient visual
words. The salient visual words should be stable and significant,
which capture the repeated crucial content from multiple photos.

For the mobile image retrieval, two factors need to be consid-
ered: (1) the limited bandwidth and instability of wireless channel
[22–24] and (2) the electric quantity of the battery. Hence, the
mature approach for web image retrieval is not suitable to be
applied in mobile end. The mobile image retrieval requires that: (1)
the less data are transmitted; (2) the computational cost of the
algorithm that performed in mobile end is low; and (3) the
transmitted data volume is changeable according to the condition
of the wireless channel. The state-of-the-art mobile image retrieval
approaches focus on extracting more compact descriptor, such as
CHOG [25–26] and PCA-SIFT [27], or compressing the BoW histo-
gram [22–24,28,29]. In most cases, the BoW histogram is trans-
mitted in a compact form to reduce the volume of data. As to
compact descriptors, the total amount of data is up to the number of
features extracted from an image. And BoW histogram compressing
approaches, like sparse coding, occupy much memory and are very
complex. Both of the two kinds of methods do not take the
instability of channel into account. Actually, the instable condition
of wireless channel requires the algorithm to be scalable, i.e. the
transmitted data can be adjusted according to the variant channel
capacity.

The idea of scalability is successfully applied in Scalable Video
Coding (SVC), such as spatial and quality scalability in H.262|MPEG-
2 Video, H.263 and MPEG-4 Visual. H.264 includes temporal
scalability besides. The SVC technology makes the length of video
stream variable to satisfy the users' need in the condition of current
channel condition. Inspired by SVC, we proposed a scalable mobile
visual search method by adjusting the number of salient visual
words that are sent to server end.

In this paper, a novel spatial verification algorithm is proposed
based on salient visual word for mobile image retrieval. Our
approach consists of 3 steps: (1) mining multiple relevant photos.
Once a user inputs a query, our approach automatically mines some
relevant photos from mobile end; (2) extracting salient visual word
(SVW) and ranking them for scalable image retrieval. With the
relevant photos, we extract the stable, robust and distinctive visual
words; (3) re-ranking the retrieval results based on spatial verifica-
tion to improve the performance.

The main contributions of this paper are summarized as follows:
(1) we learn salient visual words, which eliminates the effect of
noisy, unstable and irrelevant features; (2) the small number of
robust salient visual words is suitable for mobile retrieval; (3) we
change the restrict spatial consistent constraint into a soft type of
accumulating consistent score, which makes spatial coding applic-
able to universal image retrieval task besides duplicate image
retrieval, and achieve notable performance; and (4) considering
the instability of invariance of wireless channel, we propose a
selection scheme for salient visual words, which is the fundamental
of scalable mobile image retrieval.

The remainder of this paper is organized as follows. In Section 2,
related work is reviewed. Section 3 overviews the system. Section 4
describes the method of mining multiple relevant photos. Section 5
details the strategy of extracting salient visual word from multiple
relevant photos and the re-ranking scheme. In Section 6, we introduce
the spatial verification model. Experimental results and discussion are
represented in Section 7. Conclusions are drawn in Section 8.

2. Related work

The CBIR thrives in recent years. The excellence of the SIFT
feature and BoW model have been manifested in computer vision.
However, there still exists deficiency in BoW model. For example,
SIFT is sensitive to little disturbance like viewpoints, which makes
the SIFT features extracted from similar visual patches not iden-
tical. And owing to the quantization loss, the visual word is not
discriminative enough. Recently, plenty of papers make contribu-
tion to remedy these defects, such as learning synonyms [8-13],
introducing spatial verification [14,15, 17, 30–33] , using multiple
queries [34,35] and learning compact descriptors [24-29, 37,44].

2.1. Learning Synonyms

The visual vocabulary usually has to be rather large to successfully
distinguish one image from dissimilar ones in large scale image
retrieval. Nevertheless, the over large codebook may contain many
synonyms owing to over-splitting in the process of clustering. The
methods to address synonym phenomenon resorts to assign a SIFT
feature to more than one visual words such as soft quantization [8].
The idea of soft quantization focuses on assigning features according
to Euclidean distance in descriptor space. Actually, synonyms can be
defined in visual level and semantic level. For instance, in [9] visual
synonym is aimed at mining visual words that correspond to same
semantic meaning. The synonyms are the words with similar con-
textual distribution which is the statistics of both co-occurrence and
spatial information of surrounding words. The visual synonym can
also be acquired based on geometric coherence estimation. In [10,11],
Gavves et al. define visual synonyms as pairs of independent visual
words that could be mapped to each other in similar images via a
trained homographic matrix. And in [12] synonyms are explored by
counting the frequency that two visual words are coherent in
training set. In our previous work [13], we introduced geometry diff-
erence into the local features extracted from multi-photos input to
detect the visual synonyms for retrieval, which captures the saliently
important visual words.

2.2. Spatial Verification

The spatial relationship within the visual words attracts much
attention recently. It plays a great role in the retrieval, such as wei-
ghting the features [18–20] and learning visual synonyms [21]. And
spatial information can reinforce the discriminative power of single
word. A direct method to distinguish the same word in two images is
to compare the orientation information or neighboring visual words in
two images. Usually the spatial information is embedded in bundled
visual words which are near to each other and co-occur frequently
[14–15,30–32]. A paradigm of co-occurrencemodel is the spatial visual
phrase model which describes the geometric information such as
relative scale, orientation, Euclidean distance and the frequency of
other words' appearing in the neighborhood of the specified word
[14]. Spatial verification is introduced to verify whether the retrieved
image in truly matched with the query image, it performs well in
near-duplicate image retrieval (NDIR). For example, [21] exacts local
feature groups from images, and measures the spatial contextual
similarity between groups to find a best matcher order which is used
to calculate the group distance for NDIR and [17] encodes the relative
position among local features into binary spatial maps based on
coordinate. The spatial verification in NDIR requires restrict geometric
consistency, e.g. in [17] the spatial maps of query image and dataset
image must be same if they are truly matched. However, in semantic
image retrieval, spatial consistency should be in a soft type. Ref. [33]
presents the word spatial arrangement to describe the rough distribu-
tion of the visual words in an image and compute the similarity
between images. In [15], the images are indexed by descriptive visual
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words (DVWs) and visual phrases (DVPs). In [32], visual phrases are
constructed to embed spatial layout constraints in image retrieval.

2.3. Using multiple queries

Typically, the input of the image retrieval system is one query
image. For one query image, the following shortcomings catch
attention: (1) too many local features extracted in the query; (2) it
is difficult to remove the noise and unstable features: (3) the
significant visual words cannot be selected. To address the above
problems, multiple queries is proposed. The multiple queries are
achieved in two ways: by asking the user to input directly [34] and
utilizing the feedback of retrieval result such as query expansion
[5–6]. On one hand, the multiple queries can be used to select key
points, as in [34] the words that appear at least two among queries
are regarded as key points. And in our previous work [35],
identical salient point (ISP) is detected from the topic album
which contains a set of relevant images of the same landmark to
measure the viewpoint of each image. Similar to [35], in this paper,
we learn salient visual word (SVW) from multiple photos which
are mined from mobile end. The SVW requires not only the ISPs
are similar in descriptor space but also the features in an ISP are
assigned to the same visual words. And in this paper we rank the
SVWs according to their significance. On the other hand, multiple
queries are useful to expand the synonyms [13] or enrich the
query model [5–6]. Query expansion [5–6] improves the repre-
sentative model of query by combining it with new results
returned every time and adopts the complex RANSAC to perform
geometric verification. Contrast to query expansion, multiple
relevant photos in our approach derive from the initial result,
and we represent the query model as a set of concise salient
visual words.

2.4. Compact descriptor for mobile image retrieval

With the development of mobile phones, mobile image retrieval
draws attention recently. By utilizing the user's photo album, mobile
image retrieval helps to narrow the gap between user's intent and
the description of query in the way of interaction [42,43]. To deal
with the challenges of low bit rate, compact descriptors are proposed
to replace SIFT, such as CHoG [25,26], PCA-SIFT [27] and CEDD [36].
And some words focus on compressing the BoW histogram [22–
24,28,29]. One way to compress the BoW histogram is removing the
redundancy, e.g. BoW histogram is encoded as intervals between
positive-count nodes of scalable vocabulary tree in [28]. Another way
is reducing the scale of vocabulary tree. As in [29], some trivial
branches of vocabulary tree are pruned to decrease the dimension of
BoW. To further reduce the transmitted data and meanwhile main-
tain the performance, sparse coding is introduced. Sparse coding
compresses the original BoW histogram of query by reconstructing

the it with a linear combination of some bases [22,23,37,41,44,49,51].
Thus the high dimensional BoW histogram is projected into a low
dimensional vector via a transformation matrix or dictionary. Sparse
coding takes a post processing operation on BoW histogram by
representing it as a linear combination of dictionary elements. Sparse
coding schemes, such as Lasso [38] can learn the dictionary from
original BoW codebook. Considering the loss of information from
dimension reduction, Fu et al. [56] propose locally adaptive subspace
and similarity metric learning based on locally embedded analysis
which preserves the local nearest neighbor affinity. To control the
data size, the geometry information is disregarded in many works. In
[24], the orientation of visual word is transmitted along with
frequency for re-ranking. But just a portion of visual words occur
once in the query, so many points' geometry information is aban-
doned. In our approach, we mine salient visual words from multiple
relevant photos. The salient visual words are discriminative, and their
number is small which is suitable for mobile image retrieval.
Furthermore, we rank them according to their stability and signifi-
cance to achieve scalable transmission.

3. System overview

As shown in Fig. 1, the proposed mobile image retrieval approach
consists of the following three steps: (1) multiple relevant photos
mining; (2) salient visual words learning and re-ranking; and (3)
performing spatial verification to re-rank the initial retrieval results.
After a user appoints one of the images in his mobile as the query
image, our system mines multiple most relevant photos automati-
cally according to the visual similarity. Then, with the multi-photos,
we extract salient visual words from them. The salient visual words
are the most stable and prominent words that represent the pivotal
content of the multiple photos. To make our algorithm adaptive to
labile wireless channel, we rank the salient visual words according
to their stability in multiple relevant images. Thus in the circum-
stance that bandwidth is narrow, we transmit part of the salient
visual words to server end. In the server end, we perform spatial
verification to re-rank the initial results that are retrieved by SVWs.
Because the corresponding visual word of the noisy feature in
dataset image may be same with salient visual word, spatial
verification can judge whether the features matched in word level
are truly matched in spatial level.

4. Mining multiple photos

As a user usually takes many photos of the same object, it is
possible that there are many photos relevant to the appointed query
image. Our aim is to find visually similar images in the user's mobile
end and extract salient visual words from them for retrieval.

Mine 
multiple 
photos

Spatial consistency 
verification

Learn salient 
visual words

Multi-photos

Fig. 1. The flowchart of the whole system. After a user inputs the query, our approach first mines multiple most relevant photos. Then the salient visual words (SVWs) are
learned and transmitted to server end along with the corresponding coordinate positions. In server end, SVWs are used to search candidate similar images. The position
information of SVWs is used to re-rank the similar images by spatial consistency verification. A patch of the query is amplified to illustrate the spatial verification in the right.
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In mobile end image retrieval, some valuable contextual infor-
mation can be utilized to mine multiple relevant photos such as the
temporal information and GPS information. With the information,
we can preliminarily remove most of images which are much
different with the query. Thus we just need to perform visual
similarity on fewer images in mobile end to reduce the computa-
tional cost. In this paper, we focus on utilizing visual information to
mine multiple photos.

We describe each image with a set of local features. An image
represented through local features can be more powerful than
global features [39]. SIFT (scale invariant feature transform) fea-
ture is robust against illumination, affine change, scale and other
local distortions [2]. A SIFT feature consists of a 128-D descriptor
vector and a 4-dimensional DoG key-point detector vector (x, y,
scale, and orientation). Each of the 128-dimension SIFT descriptors
of an image is quantized to a bag-of-words visual vocabulary with
W codebooks by hierarchical quantization [13].

To mine the most relevant multiple photos, we measure the
similarity between the query and other images in mobile end.
Assuming that the normalized BoW histograms of the input image
and the images in mobile end are respectively denoted as hq and
hm(k), the similarity score of the k-th image in smart phone to
query, D(k), can be calculated using the city block distance as
following:

DðkÞ ¼ expð� hq�hmðkÞ
�� ��Þ ð1Þ

where dj jdenotes L1 norm, and k¼ 1;⋯; P, P is the number of
images in mobile end, which are primarily from the user's
photo album.

We sort the similarity scores in descending order. The top
ranked M�1 results along with the original query form candidate
multiple photos. Although the candidate multiple photos are the
most relevant to the input, there still exist noisy images among
them. As the noisy images degenerate the performance and the
number of multiple photos is tightly related to the calculating cost,
it is necessary to remove the noisy. If the similarity score of one

candidate photo is too small, we eliminate it. And if the similarity
score of one is too big e.g. it is approximately equal to 1, then the
image may be a duplicate of the query and should be removed as
well. The remnant X candidates are final multiple relevant photos
which are used for exploring saliency. If no multiple photos are
mined finally, the retrieval system degrades into mobile visual
search with single query. In this paper, the typical BoW model is
used to search similar images in this case.

5. Mining and ranking SVW

After finding multiple relevant photos for the query image at a
user's mobile end, we learn the robust and distinctive salient
visual words from these relevant photos. Since people focus on
their object when they are taking pictures, the object will exist in
most of their photos. Thus the object occurs more frequently than
disturbance in these photos, i.e. the frequency of visual words
corresponding to crucial content is higher than that to background
as the background is always changed if user takes photo in
different viewpoints. As shown in Fig. 2, the tower is the object,
which occurs more frequently than the trees and other buildings.
Our purpose is to pick out these high-frequency salient visual
words for retrieval. Then, to achieve scalable mobile image
retrieval, we rank the salient visual words before transmission.

5.1. Detecting identical semantic point

We mine salient visual word based on identical semantic point
(ISP) detection in our previous work [35,54]. An ISP is a subset of
similar SIFT points occurs in most of the images in the album,
which can capture the major and unique part of a landmark. As in
[35], detecting ISP needs to match SIFT features between every
two images. For one local feature in an image, it is matched with
all the features in other images to detect the optimal matched pair.
ISP detection is based on the idea that one feature has its optimal

Fig. 2. The comparison between raw SIFT features and extracted ISPs. The average number of SIFT points is 3697, while the average number of SVWs is 42. (b) Salient visual
words mainly occur in the tower, the common object of the multiple photos.
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matched feature in another similar image. In theory, the optimal
matched features should represent identical visual content. To
speed up the process of mining salient visual word, we perform
feature matching on features that are assigned to the same visual
word. Thus the scope of features which one SIFT is matched with is
shrunk tremendously.

Firstly, we find common words that at least two of the mined
multiple relevant photos share. Given that w is a visual word that
occurs in the i-th and the j-th image, we denote the local features
that are assigned to w in the two images as Si and Sj respectively.

Following [35], then we perform optimal matching pair deter-
mination between every two images in multi-images to capture
repeated content. During each image–image match, we record all
the optimal matched SIFT points pairs (u,q) and their matching
scores MS(u,q). The similarity score of two optimal matched SIFT
points (u,q) is measured as follows:

MSðu; qÞ ¼ u� qT
� �

= uj j � q
�� ��� � ð2Þ

where u denotes 128-D SIFT descriptor vector from Si and, q is
from Sj. |x| denotes the norm of vector x.

Identical Salient Points (ISP) is determined based on the
matching score. An ISP is a set of matched SIFT points, denoted as

ISPl ¼ fd1l ; :::; dil; :::; dXl g ð3Þ

where ISPl denotes the l-th ISP, X denotes the number of multiple
images, dil is the SIFT ID of the l-th ISP in the i-th image, which
implies the occurrence of the l-th ISP in the i-th image. dil¼0, if no
feature in the i-th image matches with other features in ISPl.

The corresponding visual word of the ISP is defined as salient
visual word (SVW). SVWs are pertinent to the crucial content, and
the number of SVWs is very small. As shown in Fig. 2, the average
SIFT point number of the three images is 3697, while the average
SVW number is only 42, which is about 1% of raw SIFT features.
And the SVW rarely occurs in the trees or the lower house, which
manifests that extracting SVW eliminates the noise effectively.
Owing to the small number of SVWS, we can cut down the time
cost on searching remarkably.

5.2. Ranking the salient visual word

Wireless channel is vulnerable to interference. There exists serious
latency when mobile devices suffer from weak signal. To adapt to the
variant wireless channel, we propose scalable retrieval. We rank the
salient visual words according to their contribution to the retrieval, so
that we can adjust the data volume to the channel condition. We rank
the SVWs in two levels: frequency of occurrence of SVW to rank them
on the whole and stability in the multi-photos to rank them in detail.

We denote occurrence of an ISP in multiple relevant images as C

Cl ¼ fc1l ; :::; cil; :::; cXl g ð4Þ

where, cil stands for the occurrence of the l-th ISP in the i-th image.
cil ¼ 1, if dila0, otherwise cil ¼ 0.

The significance of the l-th ISP is measured based on its
consistency score (CS) as follows:

CSl ¼
XX
i ¼ 1

cil ð5Þ

Thus by ranking the consistency score CS for all the identical
salient points, we rank the SVWs on the whole. The ISPs with
equal frequency are put on an equal footing.

Then we rank the SVWs in detail. We accumulate the total
matched score of the descriptors in an ISP to measure the stability

(Sta) of the ISP as follows:

Stal ¼
X
i;j;ia j

MSðdil; djlÞ ð6Þ

In general, the SVWs are firstly ranked in light of CS in
descending sort. Then for the SVWs with same occurring fre-
quency in multiple photos, they are ranked according to Sta. After
the SVWs are ranked, a fit number of SVWs that ranked highly are
transmitted according to the available bandwidth of wireless
channel.

6. Spatial verification on SVW

In mobile end, we have finished mining multiple relevant photos,
learning salient visual words from multiple relevant photos and
ranking the salient visual words. The salient visual words along with
their coordinate information in the query image are sent over to the
server end. In server end, we first search the candidate similar
images as the initial results through an inverted file indexing
structure. The candidate similar image should contain at least one
visual word that is the same with the salient visual word trans-
mitted from the mobile end.

For the candidate similar images, we perform spatial verifica-
tion to re-rank the initial retrieval results. Spatial coding [17] is
adopted to describe the relative position among SVWs. It is
possible that the mined multiple images are all eliminated and
only the input is remained. In this case, we refine the features
extracted from the query image as in [21].

Firstly, SIFT features assigned to the same visual word will be
considered as valid match when its orientation difference with the
query feature is less than π/t. t is set as 4 in this paper. More
discussions are given in Section 7.4.4.

Spatial coding encodes the spatial relationship among visual
words in an image into two binary maps: X-map and Y-map. The
two maps describe the relative position of each valid feature pairs.

Each element in X-map and Y-map is defined as following:

X mapi;j ¼
1 if xioxj
0 if xi4xj

(
ð7Þ

Y mapi;j ¼
1 if yioyj
0 if yi4yj

(
ð8Þ

where xi and xj denote the horizontal coordinate of the i-th feature
and the j-th feature, respectively, and yi and yj denote the vertical
coordinate.

For query image Iq and matched image Im, X-map and Y-map
are generated for each, denoted as (Xq, Yq) and (Xm, Ym), which
encode the spatial relationship among the salient visual words
which occur in database image. Hence, to verify the spatial layout
of common visual words is to compare the X-map and Y-map.
Logical Exclusive OR (XOR) operation � is performed on the
spatial maps as following:

SVX ¼ Xq � Xm ð9Þ

SVY ¼ Yq � Ym ð10Þ
where SVX and SVY denote the difference in X-map and Y-map.

Thus the spatial difference of matched features in two images
can be denoted as

SPXðiÞ ¼
XN

j ¼ 1
SVXði; jÞ ð11Þ

SPY ðiÞ ¼
XN

j ¼ 1
SVY ði; jÞ ð12Þ
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where N denotes the number of common visual words. SPX (i) and
SPY (i) denote the spatial consistency of the i-th common vis-
ual word.

For partial duplicate image retrieval, SPX (i) and SPY (i) are
required to be zero strictly if the i-th common visual word are
truly matched in Zhou's paper [17]. However, for universal image
retrieval, too rigorous spatial constraint may regards the true
matched features as false. To address this problem, we change
the absolute way of judgment into a soft way, i.e. calculating the
consistency score as follow:

Score¼
XN

i ¼ 1
expð� SPX ið ÞþSPY ið Þð Þ=NÞ � R ið Þ ð13Þ

where Score denotes the spatial consistency score of two images.
R(i) is a binary function. R(i)¼1, if SPX ið ÞþSPY ið Þð Þ=Nothr, other-
wise R(i)¼0. thr is the threshold. More discussions are given in
Section 7.4.1.

After computing the spatial consistency score for each initial
retrieved image, the initial results are re-ranked according to their
spatial consistency with query image.

7. Experimentation

Most of our experiments are conducted on the Oxford Buildings
Dataset. The scalable vocabulary tree (SVT) is learned on the
dataset, including 61,724 leaf nodes in total. To show the effec-
tiveness of our approach, we compare our method with Query
Expansion (QE) [5] and the original spatial coding (SP) [17]. We
denote our method as SSV. Some main factors that influence the
performance are discussed as well. In addition, a bigger dataset,
GOLD [40,45], is used to test our approach. The depth of the visual
vocabulary used to quantize the GOLD is 8 levels, and the branch
factor is 10. The further testify our approach, we create a real-
world mobile image collection and perform our approach on it.

7.1. Datasets

The main dataset we tested our approach on was the Oxford
Buildings Dataset which affords the test collection and ground
truth [55]. The Oxford Buildings Dataset consists of 5062 images
collected from Flickr by searching for particular Oxford landmarks,
11 landmarks in total. For each landmark, 5 possible queries are
given. Our test set consists of the given 55 query images. For each
query, the similar images are given in three types: good, OK and
junk. We carried out retrieval with each query. If the result is one
of the good or OK collections, it is regarded as a right result. The
first step of our approach, obtaining multiple relevant photos, is
run on Oxford Buildings set. If the system is applied in reality, the
first step should be performed on photos stored in mobile end.

The other testing dataset is GOLD dataset which is a geo-tagged
large scale web image set [40], which is crawled from Flickr. GOLD
contains more than 227 thousand images together with 80 places-
of-interests which are selected from 60 world-wide cities with
about 3.3 million images. We take it as disturbance when carrying
out experiments on Oxford Building dataset.

7.2. Evaluation criterion

Mean precision at top K (P@K) is the evaluation criterion to
measure the mean percent of relevant images in the top N
retrieved results. It is defined as

P@K ¼ 1=T
� ��XT

i ¼ 1
Ri=K
� � ð14Þ

where T is the size of test set, T¼55 in this paper. Ri denotes the
number of retrieved relevant images up to K for the i-th
query image.

7.3. Performance comparison

We compare our approach with four typical methods: (1) the
query expansion (QE) [5]; (2) original spatial coding (SP) [17];
(3) BoW model (BoW) [1]; and (4) Lasso based sparse coding (SCL)
[37]. To be fair with our approach, no query region is specified in
QE. The input of QE is the whole image. In SP, all the features
extracted from the query image are used for retrieval. The Lasso
based sparse coding compresses the 61,724-dimensional BoW
histogram to 1501 dimensions. Our approach is denoted as SSV.
The results shown in Fig. 3 demonstrate the effectiveness of our
approach. Owing to the too strict requirement in spatial consis-
tency, SP performs inferior in universal image retrieval to that in
duplicate retrieval. When the object is not clear or occupies a small
region of query, QE cannot perform well. The sparse coding
method compresses the BoW histogram and reconstructs it in
server end, which brings about loss. So the performance of sparse
coding is inferior to BoW model. Our approach performs best with
the least data because our approach can mine the salient visual
word which is closely relevant to the crucial content of the
query image.

In addition, to show the less necessary data volume of our
approach, we estimate the data size of different methods. In our
approach, the salient visual words along with their corresponding
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Fig. 3. The mean precision of the five different methods.

Table 1
The comparison of necessary data size.

Approaches SSV SP QE BoW SCL JPEG

Data (bytes) (K) 600 18 316 60.3 5 385.8
Percent (%) 0.16 4.67 81.97 15.64 1.30 100
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Fig. 4. The performance for different thr value.
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horizontal and vertical coordinates are transmitted. Considering
the sparse distribution of SVWs, their coordinates can be rounded
to short integer (2 bytes) memory. And each SVW needs 2 bytes.
So each SVW along with its horizontal and vertical coordinate
needs 6 bytes. Supposing that 100 SVWs are transmitted, 600
bytes are needed, while the compact descriptor like [37] needs
about 5 K bytes. Table 1 show the data size of different methods. It

demonstrates that our approach needs the least bandwidth source.
We find that our approach only requires 12% of the data of
compact descriptor [37].

From Table 1, we find that the average amount of data JPEG
image is about 385.8 K bytes. When we repesent the image by
features, the total amount of data can be decreased dramatically. In
BoW, QE, SP and SSV, only15.64%, 81.97%, 4.67% and 0.16% of raw
JPEG are required. It is interesting to find that our SSV is only
required 3.33% data of SP while with the best performances.

7.4. Discussion

The performance of our approach is influence by following
factors: (1) thr which judges whether a matched pair is spatial
consistent; (2)the number of SVWs that are transmitted to server
end; (3) M, i.e. the number of candidate multiple photos; and (4) t
which controls the orientation difference between the matched
visual words. We discuss their impact in this section. And finally
we test our approach on GOLD.

7.4.1. The impact of thr
The parameter thr determines whether a matched feature pair

is regarded as truly matched. Fig. 4 shows the performance with
different thr values. The results show that the performance is the
best when thr is around 0.8. Bigger thr will not lead a better
performance, because some actually false matching will be taken
as right matching. And over small values exclude a part of truly
matched pairs.

7.4.2. The impact of data volume transmitted
Another main factor that influences the retrieval performance is

the number of salient visual words that are sent to the server terminal.
We use 20, 50,100, 150, and 200 SVWs to carry out retrieval
respectively. Fig. 5 shows that more SVWs result in a better perfor-
mance. However, when the data volume reaches 100 SVWs, the rising
trend of precision decelerates. And we find that 20 SVWs are enough
for retrieval, for SVWs are pertinent to the crucial content of the
query image.

7.4.3. The impact of M
For we have removed noisy images from candidate multiple

relevant photos, the number of the multiple photos that are
actually used to mine salient visual words is not definite. We use
M to discuss the impact of number of multiple images. The
parameter M, i.e. the number of candidate multi-relevant photos,
has impact on both precision and computational complexity. Fig. 6
shows that bigger M produces a better result. However, bigger M
will expand the computational cost since mining SVW needs to
match SIFT features between every two images. And the result
presents that rising tendency of the performance turns slow from
M¼4. Considering the performance and complexity comprehen-
sively, we set M¼3 in our other experiments.

7.4.4. The impact of t
The parameter t influences the number of matched visual

words in database image that are qualified to construct spatial
map. Generally, bigger t filters out more visual words. Thus our
approach performs spatial verification on less matched pairs,
which reduces the necessary time to finish spatial verification.
Actually, as shown in Fig. 7, t effects little to the precision, since
the falsely matched visual words will not get through spatial
consistency verification. However, the performance deteriorates if
t is set too large, because the over strict constraint in orientation
may remove some truly matched visual words.
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7.4.5. The performance on GOLD
To show the effectiveness of our method on large dataset, we

test our approach on GOLD. 100 SVWs are used for retrieval in our
approach (SSV). Fig. 8 shows the result. Our approach still performs
superior to QE and SP. Moreover, the precision at top 10 is 0.6018 on
GOLD dataset, and 0.6527 on oxford buildings dataset in the
condition that all the parameters are set the same. Therefore, our
approach is capable to be applied to the large scale image retrieval.

7.4.6. The performance on mobile image collection
To further testify our approach, we create a mobile photos

collection to perform the first step. The real mobile photo collec-
tion contains 186 images from my mobile phone. A photo of the
library of Xi'an Jiaotong University is set as the query. And some
images of the library are put into Oxford building dataset as the
database in server end. These photos are shared by 6 volunteers
and downloaded from the Internet.

First, we select the query which was circled by black frame in
Fig. 9. Then two more similar images were searched in mobile end.
The other two images in Fig. 9 are the relevant photos.

We learned semantic features from above three images, and
used 150 SVWs for retrieval on the extended Oxford building
dataset. The top 10 retrieval results are shown in Fig. 10. In Fig. 10,
there are 6 of 10 images relevant to the query, which demonstrates
the effectiveness in mobile platform of our approach.

8. Conclusion

In this paper, we propose a novel mobile image retrieval scheme
based on learning salient visual words from multiple relevant
photos. The salient visual word is more robust and really pertinent
to the theme of the query. Our approach achieves the better

performance with less data. Generally our method requires less
than 1 KB bandwidth to transmit data. In extreme condition, e.g. the
user is in remote mountain area, we can transmit only hundreds of
bytes to carry out the retrieval. Our future work will focus on mining
salient visual words from single query image to make our method
available in the case that multiple relevant images cannot be mined
in mobile end. And we are trying to improve our approach to further
speed up the process of learning salient word.
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