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a b s t r a c t

Image restoration (IR) aims to recover image quality from various degradations. Existing convolutional
neural networks (CNN) based IR methods try to improve performance by enlarging the model receptive
field with the sacrifice of fine spatial details and extra artifacts. This paper proposes a Deformable
and Attentive Network (DANet) to address these problems. In DANet, we propose two novel blocks:
Attentive DEformable-convolution Block (ADEB) and Attentive Recurrent Offset Block (AROB). In
ADEB, deformable convolution is collaborated with various attention modules to generate more
adaptive receptive fields. AROB transfers more attentive texture information among different scales
during the encoding/decoding process for ADEB. To further refine DANet, we propose a knowledge
distillation scheme to train a light-weighted DANet (DANet-S) with limited performance loss. Extensive
experiments on several image benchmark datasets demonstrate that our method achieves state-of-the-
art (SOTA) results for various IR tasks, including image denoising, JPEG artifacts removal, and real-world
super resolution.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

During image acquisition, many factors can degrade the image
uality, such as the limitation of image capturing devices, the en-
ironment noises, and the artifacts caused by image compression–
ecompression methods. Therefore, to restore the high-quality
mages from the low-quality observations, image restoration (IR)
as been widely used in many applications, such as surveil-
ance [1], medical imaging [2] and remote sensing [3]. Approaches
or IR can be categorized into traditional model-based meth-
ds [4,5] and convolutional neural networks (CNN) based meth-
ds [6,7]. Traditional model-based approaches usually use man-
ally designed prior and models. Recently, many CNN-based
pproaches have achieved remarkable performance in different
R tasks [8], such as image denoising, JPEG artifacts removal and
ingle real image super resolution [9,10].
Most CNN-based IR methods focus on exploring deeper mod-

ls or multi-scale inputs to enlarge the receptive field and learn
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enriched features. SRCNN [11] first introduced CNN for IR tasks.
Based on SRCNN, VDSR [7] proposed a structure that cascades
small filters several times to achieve good performance, and they
also found that increasing the depth of the model can bring
significant improvements.

While the depth of the models increasing, the gradients will
gradually vanish during training. Researchers have developed
various methods to tackle this problem. DRCN [12] proposed
a deep model with recursive-supervision and gradient clipping
method, which combines the predictions from each recursive
layer to enhance the final results. DnCNN [6] introduced the
residual connection to ease the feature flow in building deeper IR
models. RCAN [13] introduced a residual structure combined with
the channel-wise attention module to obtain attentive features
in the deep model. To fully use the features of the deep model,
RDN [14] employed dense connection, local feature fusing, and lo-
cal residual learning to generate enriched features from different
scales.

Employing deep models in IR also brings the over smoothing
problem to restored images. Some work employed multi-scale
(e.g.encoder–decoder structure) inputs to enlarge the receptive
field instead of simply increasing the depth in IR models. In
REDNet [19], an encoder–decoder structure using convolution
and deconvolution layers was proposed with symmetric skip
connections for faster training. MWCNN [20] employed wavelet
transform instead of upsampling downsampling layers and multi-
dilated convolution in an encoder–decoder model to enlarge the
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Fig. 1. Real image denoising results of VDN [15] (c), RIDnet [16] (d), SADNet [17]
e) and the propose DANet (f), DANet-S (g) for the image ‘‘11_11.png ’’ on
IDD [18] dataset.

eceptive field. Another way of employing wavelet decompo-
ition in IR is the divide-and-conquer framework [21], which
irst decomposes images into different subspaces based on visual
mportance and exploits their prior differences using multiple
odels to preserve more contextual details. SADNet [17] em-
loyed deformable convolution in the decoder to acquire adaptive
eceptive field achieves better performance.

Though significant improvements have been made in the
bove methods, several issues still exist in developing a larger re-
eptive field and learning enriched features in IR models. First of
ll, as the IR models become deeper, like in VDSR [7], DRCN [12],
nCNN [6], Memnet [22] and RCAN [13], the restored images
end to be over smoothing and lack texture details [16,23]. Sec-
ndly, although employment of multi-scale inputs and dilated
onvolution can enlarge the receptive fields, like in RDN [14],
WCNN [20], it also leads to spatially inaccuracy and checker-
oard patterns in the restored images [17]. Furthermore, preserv-
ng more texture detail information and spatial accuracy at the
ame time remains to be a problem.
In this paper, to address the above issues, we aim to equip

he encoder–decoder models with the capability of preserving
patial details and avoiding additional artifacts. To achieve this,
e enhance a U-Net architecture to learn adaptive and attentive
eceptive fields that can preserve more local details. Specifi-
ally, motivated by the recent success of deformable convolution
DeConv) [24] and attention mechanism [25–27], we combine
he DeConv with various attention units and propose Atten-
ive DEformable-convolution Block (ADEB). In order to generate
ore attentive and adaptive receptive fields, we add attention
odules in cooperating with deformable convolution. The atten-

ion modules can help to provide focus features, and generate
ore precise sampling locations according to the image content.
ince the adaptively captured spatial details will still gradu-
lly vanish during downsampling when the network becomes
eeper, we propose Attentive Recurrent Offset Block (AROB) as
n attentive feature transfer module built upon ADEB. AROB is
mployed to propagate and maintain multi-scale features for
DEB throughout the network. More specifically, AROB learns
rom multi-high-resolution features and transfers them to further
trengthen those features obtained from low-resolution ones. In
his way, high-resolution details can still be preserved during
econstruction.

Moreover, we replace the upsampling and downsampling lay-
rs between two consecutive ADEB and AROB blocks by wavelet
ransform (decomposition/reconstruction), which captures both
requency and location information [20] to prevent the loss of de-
ailed textures during encoding/decoding processes. The above-
roposed modules constitute our final network, called the De-
ormable and Attentive Network (DANet). To further refine the
2

DANet, we propose a knowledge distillation scheme to train a
lightweight DANet Slim (DANet-S), which aims to preserve the
performance of DANet with fewer parameters and smaller model
size.

In another existing method that employs deformable convo-
lution for IR, SADNet [17], the original DeConv was employed
in the decoder of a U-net model. Unlike SADNet, we build a
novel block, ADEB, based on the DeConv. We embed various
attention modules in the block to propagate more attentive multi-
scale features for DeConv to learn adaptive receptive fields. In
SADNet, a context block is proposed to extract different receptive
field features and preserve texture details. In DANet, a recurrent
connection among all the AROBs is used to preserve more spatial
details from multi-scale features. The attention modules and the
recurrent connection in the DANet help to preserve more texture
details in the restored images. Fig. 1 shows a visual comparison
between SADNet and DANet for real image denoising on the
SIDD dataset [18]. We can observe that DANet preserves more
precise edges and more contextual details without introducing
artifacts than the SADNet and other SOTA methods on real image
denoising.

In summary, our main contributions include:

• We propose an encoder–decoder-based IR model named
DANet. In DANet, we build two novel blocks ( i.e., ADEB and
AROB) upon DeConv to learn contextual features with more
adaptive receptive fields and preserve fine spatial details in
the restored images.

• We propose a knowledge distillation scheme for DANet.
With the proposed scheme, we can train a light-weighted
version of DANet, DANet-S, which still preserves the perfor-
mance of DANet.

• We apply DANet and DANet-S for synthetic and realistic
noise removal, JPEG artifacts removal, and real image super
resolution tasks, which achieve SOTA performance.

The rest of the paper is organized as follows. In Section 2,
we introduce the related works. In Section 3, we present our
proposed ADEB, AROB, DANet, and DANet-S for image restoration.
Extensive experiments are conducted in Section 4 to evaluate the
effectiveness of DANet and DANet-S on synthetic and realistic
noise removal, JPEG artifacts removal, and real image super reso-
lution tasks. Then ablation studies are presented in Section 5. The
conclusion is given in Section 6.

2. Related work

In this section, we briefly describe the typical methods for
several IR tasks, including synthetic and real image denoising,
JPEG artifacts removal, and image super resolution. We mainly
focus on several representative CNN-based approaches since they
have achieved a significant improvement comparing to traditional
methods.

2.1. Image denoising

In synthetic image denoising, Additive white Gaussian noise
(AWGN) is widely used to create synthetic noisy images to eval-
uate the denoising method. One of the typical architecture of CNN
models is based on the encoder–decoder structure (e.g.MWCNN
[20], SADNet [17], DIDN [28]). Specifically, the high-resolution
input or feature maps are downsampled to low-resolution ones
of different scales, then upsampled to the original resolution. This
procedure ensures that contextual information of different scales
can be learned through encoding/decoding, which is more effi-
cient than learning through single resolution models. However,
there still exists a major issue in these deep models, i.e., the loss
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f important spatial details (e.g., edges and textures) during the
ncode/decode reconstruction processes. To avoid this problem,
nother line of works (e.g.DnCNN [6], FFDNet [29], RNAN [30],
IDNet [16]) attempt to capture such details by directly operating
n high-resolution images without any down-sampling steps.
hese models, which process only on high-resolution features,
end to have limited receptive fields and lose texture details in
he restored results.

Unlike the synthetic image denoising, the realistic noisy im-
ges are captured with various camera types under different
SO levels and shutter speeds. Many approaches were recently
eveloped, such as VDN [15], CBDNet [31], which used a two-
tep model to estimate and remove the denoises. RIDNet [16] and
ADNet [17] proposed novel CNN structures to improve the de-
oising performance using attention mechanism and deformable
onvolution, respectively. Here we propose DANet to tackle the
bove problems, as shown in Sections 3 and 4.

.2. JPEG artifacts removal

Compression artifacts are caused by the image compression
ethod during compression and reconstruction. In CNN-based
ethods, Artifacts Reduction Convolutional Neural Network (AR-
NN) [32] first applied deep learning for JPEG artifacts removal.
o explore deeper CNN models, DnCNN [6] employed the residual
onnection to the CNN model. Memnet [22] utilized the non-
ocal information in deeper models and proposed an approach
ith a deep, persistent memory network. RCAN [30] introduced
he dense connections and attention mechanism to the models.
n the deep convolutional sparse coding (DCSC) [33] network,
hey sparse coded the feature maps with a CNN-based model
nstead of the raw images. Furthermore, they also designed multi-
cale feature maps to broaden the receptive field of the model.
o balance the trade-off between the receptive field size and
he model’s coefficient scale, MWCNN [20] applied the wavelet
ecomposition and reconstruction in the encoder–decoder-based
odel, which is used as a substitute for the downsampling and
psampling modules to improve the performance. We build a
ovel block using deformable convolution and various attention
odules to learn from the attentive and adaptive receptive field.
ased on the novel blocks, we propose DANet for JPEG artifacts
emoval, as shown in Sections 3 and 4.

.3. Super resolution

Early super resolution approaches were developed based on
he fixed sampling theory and interpolation methods. In CNN-
ased methods, SRCNN [11] first introduced the deep learning
ethod to the single image super resolution problem. To use
eeper CNN models, VDSR [7] proposed a deep model for single
mage super resolution. SRRESNET [34] added residual structure
nd generative adversarial training to the model. Furthermore,
CAN [13] introduced a channel-wise attention mechanism for
ingle image super resolution models. Recently, more and more
R tasks tend to use real image data for practical applications. In
P-KPN [35], a novel real image super resolution dataset(RealSR)
nd a Laplacian pyramid-based kernel prediction network (LP-
PN) were proposed. Instead of using the synthetic sampling
mage as low-resolution images, they used paired LR-HR images
f the same scene. Real-world low-resolution (LR) images are
ore complicated than stimulated ones. Thus models trained on
ynthetic data are not robust on real-world data. Targeting the
eal-world image super resolution dataset is more practical in real
cenarios. Here we apply the proposed IR models on a real image
uper resolution dataset for comparison.
3

2.4. Knowledge distillation

Knowledge distillation (KD) was first introduced as a model
compression method [36] and further explored with transferring
prior knowledge from a larger model (teacher model) to a smaller
model (student model) [37]. In KD, a larger teacher model is
trained with a larger dataset and a soft-target loss function. With
a transfer training dataset, the student model learns the mapping
of the teacher model’s output distribution to achieve compara-
ble performance with smaller models [38,39]. Meanwhile, many
definitions of prior knowledge can also be transferred from the
teacher model to the student model. In SCFace [40], the student
model learns a selective mapping between high-resolution faces
(generated by teacher model) and low-resolution faces by solv-
ing a sparse graph optimization problem. SNSR [41] proposed a
distillation scheme to boost the performance, where they built a
larger model as the teacher model to transfer learned features and
knowledge to the student model. Similarly, PISR [42] proposed
a knowledge distillation scheme based on the baseline model
(FSRCNN [43]). However, they cannot capture the full-scale prior
knowledge for IR because it used an unbalanced encoder–decoder
structure model in the teacher model. Unlike PISR, we propose an
asymmetrical structure of the teacher model based on DANet to
acquire full-scale prior knowledge. PISR used distillation loss to
collaboratively train the student model and transfer knowledge
from the teacher model, which is suitable for hardware-friendly
methods. We initialized the student model with the parameters
from the teacher model’s decoder. Then we finetuned the student
model instead of collaborative training with the teacher model.
As shown in the experiment section, the DANet-S achieves com-
parable performance with fewer parameters. Because of the large
size of DANet, finetuning is more friendly in a limited hardware
situation.

3. Proposed network

This section presents an overview of the proposed DANet
and DANet-S for IR, including the models for synthetic and real
image denoising, JPEG artifacts removal, and real-world super
resolution. Fig. 2 illustrates the overall architecture of DANet,
which consists of two novel blocks (i.e., ADEB and AROB) and
wavelet transform (i.e., decomposition and reconstruction) mod-
ules. More concretely, (1) ADEB provides enriched contextual
features from informative spatial details learned by adaptive and
attentive receptive fields; (2) AROB is an attentive recurrent mod-
ule built upon ADEB, maintaining the offset information learned
from feature maps of different resolutions; (3) with the pro-
posed knowledge distillation scheme, DANet-S can preserve a
comparable performance as DANet with fewer parameters.

Formally, DANet learns a mapping function fθ with a set of pa-
rameters θ by taking the noisy images/low resolution images (LR)
{Îi}Ni=1, Îi ∈ RH×W×C (H as the height, W as the width and C as the
channel of the image) as inputs and outputting the corresponding
clean images/high resolution images (HR) {Ii}Ni=1, Ii ∈ RH×W×C ,
with an ℓ2 loss function:

L = argmin
θ

N∑
i=1

∥fθ (Îi) − Ii∥2. (1)

In the following, we first briefly introduce the deformable convo-
lution mechanics and then discuss the critical components of the
proposed DANet in detail.
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Fig. 2. An overview of the proposed DANet for image restoration.
.1. Deformable convolution

Given an input feature map x ∈ RH×W×C , the standard convo-
lution is typically performed on a regular grid R (which defines
he receptive field size) over x:

y(p0) =

∑
pn∈R

w(pn) · x(p0 + pn), (2)

where y is the output feature map, p0 indicates the location in
the feature maps x and y, pn indicates the location in the grid R,
and w is the weight.

On the other hand, the DeConv learns from an adaptive re-
ceptive field, with the grid R determined by a set of learn-able
offsets. The DeConv [24] was first proposed for semantic segmen-
tation and object detection, and then further improved [44]. In
our work, we adopt the improved version of DeConv. Specifically,
in addition to pn in Eq. (4), we learn an extra set of offsets, i.e.,
∆pn (n = 1, . . . ,N), where N = |R|. In the meantime, we
also learn a modulation scalar ∆mn for the nth location, which
can modulate the input feature amplitudes from different spatial
locations. Thus, the improved DeConv is formulated as follows:

y(p0) =

∑
pn∈R

w(pn) · x(p0 + pn + ∆pn) · ∆mn. (3)

Based on the above formula, the DeConv layer can sample the
feature map with a more spatially adaptive receptive field than
the standard convolutional layer. In practice, two parallel con-
volutional layers are applied on the same input feature map to
obtain the output feature map and the offset field, respectively.

In image denoising, since different pixels contribute differently
to the output feature map [45], it is better to operate on more
adaptive receptive fields to focus on the spatially meaningful
features. To this end, we build two novel blocks based on De-
Conv, with ADEB extracting enriched and attentive features and
AROB propagating offset fields throughout the whole network to
preserve spatial details.
4

3.2. Attentive Deformable-Convolution Block (ADEB)

Based on the DeConv [44], we propose a novel block to gen-
erate more attentive features with an adaptive receptive field.
Fig. 3 shows the proposed ADEB, which comprises a DeConv layer
and a dual-attention module (DAM). Specifically, given an input
feature map x ∈ RH×W×C , we first compute a new feature map
xd ∈ RH×W×C as the input to the dual-attention module. As shown
in Fig. 3, xd is obtained after feeding x to a DeConv layer, several
convolutional layers and the ReLU activation function. As a result,
xd represents more adaptive features from spatially important re-
gions like edges. Subsequently, after respectively feeding xd to the
two distinct attention modules, we can obtain more informative
features and suppress less useful features at both channel and
spatial levels. Furthermore, several residual connections are also
introduced to the ADEB to improve the information flow during
the learning process.

The dual-attention module comprises channel-wise attention
(CA) unit and spatial-wise attention (SA) unit, which exploits the
inter-channel and inter-spatial dependencies of the convolutional
feature maps. In practice, we adopt the attention mechanism
similar to CA [46] and SA [47]. The detailed flow chart of these
two units is also shown in Fig. 3. As can be seen, given the
input feature map xd, the CA unit performs average pooling over
xd to generate a channel-wise attention map x′

ca ∈ R1×1×C . To
further explore the channel-wise relationship, channel reduction
and channel upsampling are applied (using several convolutional
layers and the Sigmoid activation function). Finally, xd is rescaled
by this up-sampled attention map to yield the CA unit’s final
output. The SA unit, given xd as the input feature map, first ex-
tracts the spatially dependent features using max/average pooling
along the channel dimensions, followed by an unsqueeze operator
(i.e., several convolutional layers). Next, the outputs of these two
branches are concatenated as a new feature map x′

sa1 ∈ RH×W×2.
Finally, a spatial attention map x′

sa2 ∈ RH×W×1 is obtained by
passing the above feature map through a convolutional layer and
a Sigmoid activation, which rescale the input feature map xd and
generate the SA unit’s final output.
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Fig. 3. An overview of the proposed Attentive DEformable-convolution Block (ADEB). ADEB combines the deformable convolution with spatial wise and channel wise
attention module to generate more adaptive and more spatial accurate receptive fields in the IR model.
Fig. 4. An overview of Attentive Recurrent Offset Block (AROB). AROB connects
nd transfers multi-scale features between two consecutive ADEB blocks in
ANet. The input1 represents the offset mask from the former AROB (for the
irst AROB in the model, there is no input1). The input2 represents the input
eature map for the corresponding ADEB. The sizes of two inputs are aligned
sing wavelet transform (WT).

.3. Attentive Recurrent Offset Block (AROB)

As discussed above, the encoder–decoder structure tends to
mit spatial details. Even with the help of DeConv, the details
till gradually vanish because of downsampling. Especially when
he network becomes deeper and deeper, this will lead to over
moothed results. We propose Attentive Recurrent Offset Block
AROB) to preserve more spatial details, which provides a con-
istent flow for the offset field across feature maps of various
esolutions.

The original DeConv obtains the offset feature by applying a
onvolutional layer over the current input feature map. Therefore,
f we adopt DeConv directly, the offset information learned from
he preceding layers cannot be accessed by the subsequent lay-
rs. To address this limitation, we propose AROB to recurrently
onnect the ADEB block and transfer the offset feature across
ifferent resolution features.
More concretely, AROB receives two kinds of feature maps as

nputs, i.e., the offset field from the preceding AROB module and
he feature map to be passed to the DeConv from the correspond-
ng ADEB, as shown in Fig. 4. Then, we adjust the size of the offset
eature (i.e., ‘‘Input1’’ in Fig. 4) by using either discrete wavelet
transform (DWT) during encoding or inverse wavelet transform
(IWT) during decoding. We adopt DWT/IWT other than bilinear
interpolation [24], considering its ability to preserve location
information. After concatenating the two feature maps, we apply
a spatial-attention module to obtain more spatially significant
offsets. As shown in Fig. 4, DWT and IWT are also employed for
decomposition/upsampling and reconstruction/downsampling in
our main encoder–decoder structure. As an additional benefit,
DWT/IWT can prevent the loss of details to some extent as it
captures both the frequency and location information of feature
maps.

3.4. Knowledge distillation scheme

To further reduce the parameters of the DANet with minor
performance loss, we propose a simple distillation scheme to
5

Fig. 5. An overview of the DANet-S and the proposed knowledge distillation
scheme for training DANet-S.

promote the efficiency of the model. DANet has three scales
of modules embedded with ADEB and AROB. We constructed a
lightweight version of DANet, DANet Slim (DANet-S), by reducing
downsampling and upsampling modules. Since the performance
of DANet-S falls due to parameter reduction, we propose a KD
scheme to boost the DANet-S’s performance. Fig. 5 shows the
proposed KD pipeline. We employ two DANet-S cooperating as
a degraded reconstructed structure as the teacher model. The
teacher model takes a clean/high-resolution image as the input,
and the first DANet-S performs as a degradation model to gen-
erate the noisy/low-resolution images. The generated noisy/low-
resolution images are used as input for the second DANet-S
to restore the clean/high-resolution image. The teacher model
takes the constraint loss during training, which combines the
two DANet-S to learn the prior knowledge within the degra-
dation and the restoration process. We adopt this symmetric
structure to capture the full-scale prior knowledge in different
image restoration tasks.

The student model shares the same structure as the restora-
tion model in the teacher model. The student model is initial-
ized using the teacher model’s restoration model to transfer the
teacher’s prior knowledge to the student. The student model is
trained using the noisy/low-resolution and clean/high-resolution
image pairs with L2 loss. While another knowledge distillation
scheme PISR, which aims to boost hardware-friendly super reso-
lution method, employs similar student model initialization and
then collaboratively trains the student model with the distillation
loss. The added distillation loss contributes a relatively small part
of the loss, formalized as below:

Loss = L + λ × L , where λ = 1e−6 (4)
reconstruction distillation
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able 1
verage PSNR (dB) and SSIM [48] results of different methods for image super
esolution, tested on Set5 dataset with scale factors scale = {2, 3, 4}.
Training dataset Scale BL BL+PISR BL+PISR_NC

37.15 37.33 37.28
×2 0.9568 0.9576 0.9573

33.15 33.31 33.24
×3 0.9157 0.9179 0.9168

30.89 30.95 30.92

DIV2K

×4 0.8748 0.8759 0.8755

The reconstruction loss employs the L2 loss, while the distillation
loss measures the average mean loss of the intermediate features
from the teacher model and student model. In comparison, our
way of training the student model can not only bring performance
gain but is also more friendly to a large-sized model like DANet
in a limited hardware situation.

Furthermore, we remove the collaborative training (distil-
ation loss) during the second phase of training the baseline
odel [42] (represent as BL) with PISR (represents as BL+PISR_NC,

PISR_NC’ represents the PISR scheme without collaborative train-
ng) to demonstrate the performance difference in Table 1. We
an observe that removing the collaborative training only caused
cceptable performance loss, but it also makes the scheme much
ore friendly to large-size models.

. Experiments

In this section, we perform extensive experiments on diverse
enchmark datasets to evaluate the proposed scheme’s effective-
ess on different tasks. Firstly, we give a brief description of
raining datasets and then provide the implementation details
or (a) synthetic and realistic noise removal, (b) JPEG artifacts
emoval, and (c) image super resolution. Secondly, we compare
he results with the SOTA methods in each IR task and provide
visual comparison. The trained models will be released along
ith the source code.

.1. Implementation details

We implement the DANet as an end-to-end model using the
yTorch library [51]. During training, the initial learning rate is
×10−4 and gradually decreased to 1×10−6. The model is trained
ith the Adam optimizer (β1 = 0.9, β2 = 0.999) for 100 epochs.

We set the batch size to 12 and perform random horizontal and
vertical flipping for data augmentation. The same settings are
used in each IR task. During training DANet-S with the KD, the
batch size is set to 5 and 12 for training the teacher model and
the student model, respectively. The rest of the settings are the
same as training DANet. The experiments are conducted on a PC
with a single NVIDIA Tesla V100 GPU.

4.2. Synthetic and realistic noise removal

4.2.1. Synthetic noise removal
This section demonstrates the effectiveness of the proposed

DANet for synthetic AWGN image denoising in gray- scale and
RGB scale. We train our network only on the training set of the
DIV2K [56], which consists of 800 high-resolution images. Image
patches of 256 × 256 with an interval of 130 pixels were cropped
and used during training.
On Grayscale Images. We first demonstrate the effectiveness of
our DANet for synthetic image denoising on grayscale images
corrupted by AWGN. Our trained models are evaluated on Set12,
BSD68 [49], and Urban100 [50] datasets. To fully validate differ-
ent methods’ denoising abilities, we adopt AWGN with different
6

noise levels (standard deviation σ ), e.g., σ=15, 25, 50, and 75.
able 2 summarized quantitative comparisons in terms of PSNR
nd SSIM [48], where we can see that our DANet performs fa-
orably against the traditional as well as recent SOTA CNN based
enoising algorithms at all noise levels. Specifically, compared to
he previously best methods SADNet, our algorithm achieves a
erformance gain of 0.1 to 0.2 dB in PSNR at each noise level on
ifferent test sets. Moreover, our DANet demonstrates superior
erformance, especially in the Urban100 test set, where the im-
ges contain more structural texture details. Furthermore, with
he proposed knowledge distillation scheme, the DANet-S shows
omparable performance with fewer parameters than DANet.
Additionally, Fig. 6 shows the visual comparison of DANet with

ecent leading denoising methods. We can observe that BM3D
nd DnCNN lose fine details, MWCNN, RIDNet, and SADNet obtain
lurred edges, while our DANet preserves a clear line similar
o the ground truth. Therefore, DANet successfully reconstructs
he structural content and fine details of the corrupted image.
specially in textual abundant images, DANet shows superior
erformance. As shown in Fig. 7, we can observe that the DANet
till keeps an outstanding performance among the comparison
ethods in restoring the subtle line in the image.
n RGB Images. In addition to grayscale images, we also evaluate
he performance of DANet on RGB ones. Quantitative comparisons
n terms of PSNR and SSIM are summarized in Table 3. As can
e seen, DANet achieves the highest results compared to SOTA
ompetitors. Specifically, on Koda24 and CBSD68, DANet obtains
.1 to 0.3 dB higher in PSNR than the second-best method, i.e.,
ADNet, which also adopts the DeConv for image denoising but in
more straightforward way. The performance gain on Urban100

s even higher (∼0.5 dB in PSNR w.r.t. different noise levels). As
hown in Fig. 8, the DANet still outperforms other comparison
ethods in visual quality, in which both DANet and DANet-S can

estore cleaner image texture details without any artifacts.

.2.2. Realistic noise removal
We compare the proposed DANet with several SOTA realis-

ic noise removal approaches. We train on SIDD medium [18]
raining set, and test on SIDD [18], DND [53] test sets. SIDD [18],
ainly collected with smartphone cameras, contains 320 high-

esolution image pairs for training and 1280 patches of 512 × 512
or testing. DND [53] consists of 50 high-resolution images, which
re cropped into patches of 512 × 512 for testing. Without
round truth images (the ground truth images are not publicly
vailable), the PSNR and SSIM are acquired by submitting the de-
oised images to the official website of DND dataset. Quantitative
omparisons in terms of PSNR and SSIM [48] metrics are summa-
ized in Table 4. As can be observed, our DANet outperforms the
xisting methods. For instance, compared with VDN and RIDNet,
he PSNR results of DANet are 0.5 to 0.6 dB higher on SIDD and
.2 to 0.3 dB higher on DND.
Moreover, we also visually depict some denoising results on

hese two real image datasets, as shown in Figs. 9 and 10. It
an easily be observed from Fig. 9 that the proposed DANet
ecovers much cleaner edges and preserves finer image details
han other competitors. In Fig. 10, compared to several SOTA
ethods, DANet preserves clearer textural details (such as the
dges) and structural content.

.3. JPEG artifacts removal

This section demonstrates our algorithm’s effectiveness on
PEG artifacts removal. To train the model, we use only DIV2K [56]
the same settings as synthetic noise removal task) training set
nd test on CLASSIC5 and LIVE1 [57] datasets. Quantitative com-
arisons in terms of PSNR and SSIM [48] metrics are summarized
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Table 2
Average PSNR (dB) and SSIM [48] results of different denoising methods for AWGN denoising on gray-scale images, tested on Set12,
BSD68 [49], Urban100 [50] datasets with AWGN levels σ = {15, 25, 50, 75}. The best and the second best results are highlighted in
red and blue, respectively.
Dataset σ Method BM3D DnCNN FFDNet MWCNN SADNet RIDNet DANet DANet-S

metric [4] [6] [29] [20] [17] [16]

PSNR↑ 32.37 32.86 32.75 33.15 33.18 32.91 33.29 33.2615 SSIM↑ 0.8952 0.9027 0.9024 0.9088 0.9127 0.9085 0.9141 0.9137
PSNR↑ 29.97 30.43 30.43 30.79 30.88 30.60 31.01 30.9925 SSIM↑ 0.8505 0.8618 0.8631 0.8711 0.8752 0.8694 0.8772 0.8767
PSNR↑ 26.72 27.18 27.32 27.74 27.80 27.43 27.97 27.9250 SSIM↑ 0.7676 0.7827 0.7899 0.8056 0.8069 0.7944 0.8109 0.8093
PSNR↑ 24.91 25.20 25.49 25.88 26.02 25.72 26.14 26.09

Set12

75 SSIM↑ 0.6950 0.7095 0.7355 0.7487 0.7542 0.7406 0.7579 0.7561
PSNR↑ 31.08 31.72 31.64 31.86 31.89 31.81 31.95 31.9315 SSIM↑ 0.8722 0.8906 0.8902 0.8947 0.9008 0.8982 0.9015 0.9013
PSNR↑ 28.57 29.23 29.19 29.41 29.46 29.34 29.52 29.5125 SSIM↑ 0.8017 0.8278 0.8288 0.8360 0.8431 0.8381 0.8448 0.8443
PSNR↑ 25.62 26.23 26.29 26.48 26.50 26.40 26.62 26.5950 SSIM↑ 0.6869 0.7189 0.7239 0.7366 0.7382 0.7314 0.7436 0.7427
PSNR↑ 24.21 24.64 24.79 24.98 25.05 24.89 25.10 25.08

BSD68

75 SSIM↑ 0.6139 0.6401 0.6577 0.6707 0.6742 0.6639 0.6775 0.6750
PSNR↑ 32.34 32.67 32.42 33.17 33.21 33.09 33.70 33.6515 SSIM↑ 0.9220 0.9250 0.9273 0.9088 0.9104 0.9364 0.9425 0.9422
PSNR↑ 29.70 29.97 29.92 30.66 30.71 30.53 30.92 31.4025 SSIM↑ 0.8777 0.8792 0.8887 0.9026 0.9033 0.9009 0.9132 0.9145
PSNR↑ 25.94 26.28 27.65 27.42 27.75 27.05 28.29 28.1750 SSIM↑ 0.7791 0.7869 0.8057 0.8371 0.8380 0.8242 0.8569 0.8545
PSNR↑ 23.91 23.94 24.51 25.52 25.95 25.22 26.38 26.22

Urban100

75 SSIM↑ 0.6950 0.6989 0.7367 0.7810 0.7958 0.7639 0.8070 0.8013
Table 3
Average PSNR (dB) and SSIM [48] results of different denoising methods for AWGN denoising on RGB-scale images, tested on Koda24,
CBSD68 [49], Urban100 [50] datasets with AWGN levels σ = {15, 25, 50, 75}. The best and the second best results are highlighted
in red and blue, respectively.
Dataset σ Method CBM3D CDnCNN FFDNet MWCNN SADNet RIDNet DANet DANet-S

metric [52] [6] [29] [20] [17] [16]

PSNR↑ 34.44 34.85 34.73 35.03 35.11 34.91 35.31 35.2415 SSIM↑ 0.9192 0.9233 0.9224 0.9293 0.9303 0.9272 0.9321 0.9315
PSNR↑ 31.86 32.35 32.24 32.58 32.69 32.32 32.91 32.8425 SSIM↑ 0.8700 0.8812 0.8799 0.8898 0.8922 0.8842 0.8952 0.8942
PSNR↑ 28.65 29.16 29.08 29.55 29.65 29.27 29.90 29.8150 SSIM↑ 0.7762 0.7985 0.7971 0.8143 0.8169 0.8034 0.8225 0.8214
PSNR↑ 26.90 27.05 27.33 27.97 28.06 27.68 28.26 28.20

Koda24

75 SSIM↑ 0.7109 0.7186 0.7386 0.7617 0.7643 0.7505 0.7701 0.7684
PSNR↑ 33.33 33.99 33.84 33.87 33.93 33.79 34.04 34.0115 SSIM↑ 0.9238 0.9303 0.9288 0.9330 0.9338 0.9315 0.9348 0.9344
PSNR↑ 30.63 31.31 31.20 31.30 31.39 31.11 31.51 31.4725 SSIM↑ 0.8698 0.8848 0.8825 0.8896 0.8921 0.8856 0.8934 0.8928
PSNR↑ 27.35 28.01 27.96 28.17 28.25 27.98 28.39 28.3450 SSIM↑ 0.7647 0.7925 0.7910 0.8044 0.8072 0.7969 0.8101 0.8103
PSNR↑ 25.63 26.02 26.23 26.56 26.63 26.37 26.73 26.70

CBSD68

75 SSIM↑ 0.6903 0.7115 0.7240 0.7425 0.7453 0.7352 0.7493 0.7472
PSNR↑ 33.90 34.12 33.94 34.30 34.49 34.28 34.90 34.7915 SSIM↑ 0.9425 0.9436 0.9429 0.9488 0.9503 0.9477 0.9529 0.9522
PSNR↑ 31.44 31.66 31.50 31.94 32.19 31.66 32.74 32.6125 SSIM↑ 0.9111 0.9145 0.9136 0.9232 0.9265 0.9180 0.9315 0.9302
PSNR↑ 28.05 28.16 28.10 28.79 29.10 28.41 29.80 29.5550 SSIM↑ 0.8401 0.8490 0.8485 0.8710 0.8769 0.8589 0.8888 0.8840
PSNR↑ 25.97 25.29 26.05 27.12 27.40 26.73 28.03 27.85

Urban100

75 SSIM↑ 0.7754 0.7637 0.7907 0.8315 0.8379 0.8168 0.8517 0.8477
Table 4
Average PSNR (dB) and SSIM [48] of different methods on the SIDD test set [18] and the DND dataset [53]. The best and the second
best results are highlighted in red and blue, respectively. ‘‘NA’’ means ‘‘Not Available’’ due to unavailable code or model.
Dataset Method CBM3D TNRD MLP DnCNN FFDNet CBDNet SADNet RIDNet VDN DANet DANet-S

metric [52] [54] [55] [6] [29] [31] [17] [16] [15]

SIDD [18] PSNR↑ 25.65 24.73 24.71 23.66 NA 30.78 39.36 38.71 39.28 39.87 39.70
SSIM↑ 0.685 0.643 0.641 0.583 NA 0.754 NA 0.914 0.909 0.915 0.913

DND [53] PSNR↑ 34.51 33.65 34.23 37.90 37.61 38.06 39.37 39.26 39.38 39.50 39.39
SSIM↑ 0.851 0.831 0.833 0.943 0.942 0.942 0.954 0.952 0.952 0.953 0.951
7
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Fig. 6. Denoising results of a typical image (‘‘boats.png’’ from set12 test set) using different denoising methods corrupted by AWGN noise (σ = 25). The best result
s highlighted in bold.
Fig. 7. Synthetic denoising results of a typical grayscale image (‘‘img_001.png’’ from Urban100 test set) using different denoising methods corrupted by AWGN (σ =
50). The best result is highlighted in bold.
in Table 5. We can see that our proposed method achieves signifi-
cant improvements over SOTA approaches. For instance, compare
with RNAN [30] and MWCNN [20], DANet achieves superior per-
formance on both test sets. Visual comparison in Fig. 11 shows
that MWCNN and RNAN have the over smoothing problem while
DANet can preserve more subtle texture details.

4.4. Image super resolution

In this section we compare our proposed method against
the SOTA SR algorithms (VDSR [7], SRResNet [34], RCAN [13],
LP-KPN [35]) on the RealSR testing images with upscaling fac-
tors of ×2, ×3 and ×4. Note that all the benchmark algorithms
8

are trained on the RealSR [35] dataset for a fair comparison
(the comparing results are also provided from RealSR [35]). Re-
alSR [35] contains real-world LR-HR image pairs of the same
scene captured by adjusting the cameras’ focal length. In RealSR,
the number of training image pairs for scale factors ×2, ×3 and
×4 are 183, 234, and 178, respectively. Moreover, the dataset
also provides 30 additional test images for each scale factor.
Here, we compute the PSNR and SSIM [48] using the Y channel
(in YCbCr color space), as it is a common practice in existing
SR methods [7,13,34]. The results in Table 6 show that DANet
achieves a clear advantage over the other compared methods. The
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Fig. 8. Synthetic denoising results of a typical RGB image (‘‘img_010.png’’ from Urban100 test set) using different denoising methods, corrupted by AWGN (σ = 50).
The best result is highlighted in bold.

Fig. 9. Denoising results of a typical image (‘‘0002_19.png ’’ from DND [53] test set) using different denoising methods. The best result is highlighted in bold.

Fig. 10. Denoising results of a typical image (‘‘39_9.png ’’ from SIDD [18] test set) using different denoising methods. The best result (PSNR in dB) is highlighted in
bold.

9
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(

Fig. 11. JPEG artifacts removal (Q=20) results of a typical image (‘‘peppers’’ from Classic5 test set) using different JPEG artifacts removal methods. The best result
PSNR in dB) is highlighted in bold.
Table 5
Average PSNR (dB) and SSIM [48] results of different methods for JPEG artifacts removal, tested on Classic5, LIVE1 [57] datasets with
quality factors = {10, 20, 30, 40}. The best and the second best results are highlighted in red and blue, respectively. ‘‘NA’’ means
‘‘Not Available’’ due to unavailable code or model.
Dataset Q Method JPEG SA-DCT ARCNN TNRD DnCNN MemNet RNAN MWCNN DANet DANet-S

metric [5] [32] [54] [6] [22] [30] [20]

PSNR↑ 27.82 28.88 29.03 29.28 29.04 29.69 29.96 30.01 30.27 30.1810 SSIM↑ 0.7595 0.8071 0.7929 0.7992 0.8026 0.8107 0.8178 0.8195 0.8333 0.8311
PSNR↑ 30.12 30.92 31.15 31.47 31.63 31.90 32.11 32.16 32.45 32.3620 SSIM↑ 0.8344 0.8663 0.8517 0.8576 0.8610 0.8658 0.8693 0.8701 0.8821 0.8810
PSNR↑ 31.48 32.14 32.51 32.78 32.91 NA 33.38 33.43 33.66 33.6130 SSIM↑ 0.8744 0.8914 0.8806 0.8837 0.8861 NA 0.8924 0.8930 0.9033 0.9027
PSNR↑ 32.43 33.00 33.34 NA 33.96 NA 34.27 34.27 34.45 34.43

Classic5

40 SSIM↑ 0.8911 0.9055 0.8953 NA 0.9247 NA 0.9061 0.9061 0.9150 0.9148
PSNR↑ 27.77 28.65 28.96 29.15 29.19 29.45 29.63 29.69 30.32 30.2710 SSIM↑ 0.7595 0.8093 0.8076 0.8111 0.8123 0.8193 0.8239 0.8254 0.8343 0.8334
PSNR↑ 30.07 30.81 31.29 31.46 31.59 31.83 32.03 32.04 32.66 32.6220 SSIM↑ 0.8512 0.8781 0.8733 0.8769 0.8802 0.8846 0.8877 0.8885 0.8969 0.8963
PSNR↑ 31.41 32.08 32.67 32.84 32.98 NA 33.45 33.45 34.06 33.9730 SSIM↑ 0.9000 0.9078 0.9043 0.9059 0.9090 NA 0.9149 0.9153 0.9222 0.9203
PSNR↑ 32.35 32.99 33.63 NA 33.96 NA 34.47 34.45 35.05 34.95

LIVE1

40 SSIM↑ 0.9173 0.9240 0.9198 NA 0.9247 NA 0.9061 0.9301 0.9360 0.9327
Table 6
Average PSNR (dB) and SSIM [48] results of different methods for real-world super resolution, tested on RealSR [35] dataset with
scale factors scale = {2, 3, 4}. The best and the second best results are highlighted in red and blue, respectively. ‘‘NA’’ means ‘‘Not
Available’’ due to unavailable code or model.
Dataset Scale Method Bicubic VDSR SRResNet RCAN LP-KPN DDet CDC DANet DANet-S

metric [7] [34] [13] [35] [58] [59]

PSNR↑ 32.61 33.64 33.69 33.87 33.90 33.22 33.96 34.25 34.13
×2 SSIM↑ 0.907 0.917 0.919 0.922 0.927 NA 0.925 0.930 0.924

PSNR↑ 29.34 30.14 30.18 30.40 30.42 30.62 30.99 30.99 30.95
×3 SSIM↑ 0.841 0.856 0.859 0.862 0.868 NA 0.869 0.872 0.850

PSNR↑ 27.99 28.63 28.67 28.88 28.92 28.94 29.24 29.30 29.09

RealSR

×4 SSIM↑ 0.806 0.821 0.824 0.826 0.834 NA 0.827 0.841 0.832
.

Table 7
Parameters, FLOPs and running time for synthetic noise removal task on image
of size 480 × 320 (from BSD68 test set).

DnCNN MWCNN SADNet RIDNet DANet DANet-S

Params. 558k 24930k 4234k 1499k 23481k 15940k
FLOPs 86.1G 159.3G 50.1G 230.0G 1040.9G 571.1G
times(ms) 21.3 85.6 26.7 84.4 225.3 169.0
PSNR(dB) 29.23 29.41 29.46 29.34 29.52 29.51

PSNR improvement is around 0.4 to 0.5 dB comparing with LP-
KPN and RCAN. The visual comparison in Fig. 12 further proves
the advantage of DANet on restoring structural details. Our DANet
and DANet-S can preserve clearer edges in the restored results,
while RCAN and LP-KPN restore blurry edges and lack texture
details.
10
Table 8
Ablation experiments on the modules in DANet for synthetic noise removal task

DeConv ADEB AROB WT PSNR(dB)/SSIM
× × × × 30.15/0.8556
� × × × 30.81/0.8690
× � × × 30.91/0.8754
× � � × 30.96/0.8767
× � � � 31.01/0.8772

5. Ablation studies

This section studies the impact of our architectural compo-
nents on the final model performance. All the ablation exper-
iments are performed for the synthetic noise removal task on
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Fig. 12. Super resolution results of a typical image (‘‘00100.png ’’ from RealSR [35] test set) using different super resolution methods.
Fig. 13. Visualization of the sampling locations in the learnt adaptive receptive fields.
AWGN noise level σ = 25, using Nvidia cuDNN-v7.0 deep
learning library under Ubuntu 16.04 system.

5.1. Model size, complexity and test time

Table 7 lists the model parameter size, the number of FLoating-
point OPerations(FLOPs), and the GPU run time of the competing
methods on denoising tasks for comparison. FLOPs can measure
the number of floating point operations an algorithm required
to solve a problem and compare the relative speed of meth-
ods, which are widely used in the CNN-based image restoration
methods comparison. From Table 8, we can observe that despite
the superior performance of DANet, the parameter size, FLOPs,
and run-time evaluation demonstrate that it is also a ponderous
model. The proposed DANet has a larger model size, and it is
more computational complex than the comparison methods due
to the multiple uses of dual-attention modules and deformable
convolution modules. To further optimize this, we proposed a
knowledge distillation scheme to refine DANet and train a light
weighted version DANet, DANet-S. After applying the proposed
knowledge distillation method, the DANet-S can retain superior
performance with an acceptable parameter size, while the FLOPs
and run time still need to be optimized.
11
5.2. Ablation on the proposed modules

Table 8 shows the detailed comparison results. In particular,
we first adopt a baseline U-Net architecture (mostly based on
stacked convolutional layers) without using any proposed compo-
nents. In the second row in the table, we add DeConv as SADNet
did, and the performance is relatively poor. Subsequently, we
gradually add the proposed components to see how the perfor-
mance changes. Based on the results from the third to last rows,
we have the following observations: (1) Adding ADEB instead of
directly applying DeConv has the most considerable effect on the
overall performance, with the model even outperforming some
recent CNN based approaches (such as RIDNet in Table 2), which
aligns well with our motivations and indicates the importance
of learning adaptive receptive fields. Comparing with directly
adding DeConv in the structure like SADNet, our ADEB further
improve the performance. (2) The proposed AROB, to cooperate
with ADEB, further improve the overall performance. The re-
sults show that building attentive recurrent offset features for
ADEB is beneficial to image denoising. (3) After incorporating
all the proposed components, we introduced DWT/IWT modules
in the model to further improve the results. Furthermore, the
final model acquired a performance increase over the baseline
U-Net structure and U-net structure with DeConv (e.g., 0.86 dB
and 0.2 dB in PSNR, respectively). Once again, it verifies the
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Fig. 14. Visualization of offset transferred feature generated in the last block by (a) U-net+ DeConv, (b) U-net+ ADEB and (c) U-net+ADEB+AROB on the gray scale
image ‘‘cameraman.png ’’ (from Set12) for synthetic noise removal.
importance of all the components and the superiority of the
overall architecture of DANet.

5.3. Visualization of adaptive receptive fields

To better understand the adaptive receptive fields learned by
the proposed DANet, we show the obtained sampling locations
around specific regions on a typical image in Fig. 13. In simple
convolution, the sampling location around one point should be in
a square. With the proposed module, DANet can acquire attentive,
adaptive receptive fields. We can observe from the visualization
of the receptive fields in DANet that the learned sampling lo-
cations tend to gather around the fine spatial details, e.g., the
yellow edge in Fig. 13(a) and the textural band in Fig. 13(b). For
less critical regions on the image, e.g., the background area in
ig. 13(c) and the less textual hair in Fig. 13(d), the receptive
ields radiate out to capture more contextual information and
tructural content surrounding the target pixel. All the above
bservations demonstrate the superior capability of DANet, i.e.,
ttending to fine spatial details and capturing rich contextual
eatures. Fig. 13(e) to (j) show that the sampling location can be
daptive to the image content and texture, which can prove the
ffectiveness of the proposed model. In this case, the proposed
odel can preserve more attentive texture information during IR.

.4. Visualization of feature transfer

To explore the benefits of employing the original DeConv and
he proposed ADEB and AROB in an encoder–decoder structure,
e visualized the feature maps generated by the DeConv, ADEB,
nd ADEB with AROB in the IR model. In Fig. 14, we chose
hree structures: (1) U-net with DeConv in the decoder (the
tructure proposed in SADNet), (2) U-net with the proposed ADEB
odules (applied in the encoder and decoder), and (3) U-net
ith ADEB and AROB modules in the encoder and decoder. The
isualization of the offset branch feature maps in the last block
f the model shows the effectiveness of AROB in propagating
ulti-scale features through the IR model. The proposed attentive
nd recurrent offset branch is transferred from local and former
eatures to generate more sparse and adaptive receptive fields.
rom Fig. 14(a) to (c), we can see that with adding the atten-
ion modules and recurrent connection, the feature maps show
rogressive enhanced contextual edges of the image. Especially
rom Fig. 14(b) to (c), a more sparse and attentive offset feature

s generated.

12
Fig. 15. Average PSNR (dB) and SSIM results of Set12 on synthetic image
denoising corrupted by AWGN noise (σ = 25), which compare the performance
of DANet-S training with and without the proposed knowledge distillation
scheme. .

5.5. Benefits of the proposed knowledge distillation scheme

In this section, we discover the performance gain brought
by the proposed knowledge distillation scheme for the DANet.
Fig. 15 shows a comparison of training a single DANet-S with and
without the knowledge distillation scheme. After applied the KD,
the performance is improved by 0.11 dB and achieves comparable
performance with DANet, which has deeper models and more
extensive parameters.

6. Conclusion

This paper proposes a novel neural network named DANet
for image restoration tasks. We equip the conventional encoder–
decoder structure with the additional capabilities of preserving
fine spatial details by learning adaptive and attentive features.
Motivated by the success of deformable convolution, we propose
two novel blocks (i.e., the ADEB and AROB) to learn informative
contextual features and capture important local details (such as
edges and textures). With the additional help of wavelet trans-
form, our overall framework consistently achieves SOTA perfor-
mance in synthetic and real noise removal, JPEG artifacts removal,
and real image super resolution tasks on several popular test
sets. To further reduce the parameter size of the DANet, we
propose a KD scheme and a light-weighted DANet (DANet-S),
which achieves a comparable performance with DANet. Since the
test time still needs optimization, we will improve this in future
work.
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ppendix A. Supplementary data

Supplementary material related to this article can be found on-
ine at https://doi.org/10.1016/j.knosys.2021.107384. In this sup-
lementary document, we provide: (a) more qualitative results
f different methods for grayscale image denoising on the BSD68

and Urban100 test sets, (b) more qualitative results of different
methods for RGB image denoising on the CBSD68 and Urban100
test sets, (c) more qualitative results of different methods for
real image denoising on the DND and SIDD test sets, (d) more
ualitative results of different methods for JPEG artifacts removal
n Classic5 test sets, (e) add reproduced results for comparison to
eplace the ‘NA’ in Table 5 of the main paper. These reproduced
esults, consistent with the original papers’ results, are marked
ith ∗.
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