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Abstract—Most recommendation systems focus on predicting rating or finding aspect information in reviews to understand user
preferences and item properties. However, these methods ignore the effectiveness and persuasiveness of recommendation results.
Consequently, explainable recommendation, namely providing recommendation results with recommendation reasons at the same time,
has attracted increasing attention of researchers due to its ability in fostering transparency and trust. It is lucky that some E-commerce
websites provide a kind of new interaction box called Tips and users can express their comments on items with a simple sentence. This
brings us an opportunity to realize explainable recommendation. Under the supervision of two explicit feedbacks, namely rating and textual
tips, we can implement a multi-task learning model which can provide recommendation results and generate recommendation reasons
at the same time. In this paper, we propose an Encoder-Decoder and Multi-Layer Perception (MLP) based Explainable Recommendation
model named EMER to simultaneously implement reason generation and rating prediction. Item’s title contains significant product-related
information and plays an important role in grabbing user’s attention, so we fuse it in our model to generate recommendation reasons.
Numerous experiments on benchmark datasets demonstrate that our model is superior to the state-of-the-art models.
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1 INTRODUCTION

W ITH the development of e-commerce shopping
websites, amounts of products spring up on the In-

ternet and information overload has become very crucial
to the success of e-commerce [1], thus recommendation
systems emerge as the times require. Early approaches to
recommendation systems mostly focus on content-based
recommendation or collaborative-filtering based recom-
mendation [2]. Content-based recommendation systems
try to recommend items similar to those a given user has
liked in the past, whereas collaborative recommendation
systems identify users whose preferences are similar to
those of a given user and then recommend items the
identified users have liked [3].

However, these recommendation systems focus on
accuracy of recommended results but ignore their ef-
fectiveness and persuasiveness. Recommendations based
on explanations can increase user’s trust and satisfaction
on recommendation systems [4], [5]. Consequently, when
recommendation systems implement rating prediction, it
will be very useful to generate recommendation reasons
at the same time.

It is clear that content-based recommendation systems
can identity item content features [3], [4], [6], which
users are interested in, so it is intuitive to explain to
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the users why an item is recommended out of other
candidates in this kind of recommendation system. The
most well-known usage is ”You may like this item be-
cause it is good at these features...” used by Amazon1.
Consequently, finding useful features becomes the key
point in this task, while collecting content information
in different applications is a time consuming task.

In collaborative recommendation systems, we can pro-
vide a given user user-based explanations based on users
who have the similar preferences with the user or item-
based explanations based on items which are similar to
some other items the user bought before [7]. This kind
of recommendation system achieves great success when
Latent Factor Models (LFM) and Matrix Factorization
(MF) were introduced in late 2000’s [8], [9]. However, the
explanation form of the former is uniform, which can be
”Customers who bought this item also bought ...”, and
the latent factors of the latter could not possess intuitive
meanings.

The two kinds of explanations mentioned above are
generic and tedious, whose attraction to users is rela-
tively weak. But if we utilize easy-to-understand recom-
mendation reasons explaining why the system recom-
mends this product, there will be great probability that
users will accept the recommendation. For example in
Figure 1, when recommending this movie to a given user,
recommendation systems generate a personalized reason
to introduce the feature of the movie according to the
user’s interests. It seems the personalized explanations
are more able to meet the user’s preferences and makes
users feel friendly.

1. https://www.amazon.com/
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Fig. 1: One example of recommendation result which
contains product’s title, predicted rating and generated
reason.

In e-commerce shopping websites, user will write
some reviews and tips and give numerical ratings af-
ter purchasing products. Reviews written by users are
always too long and contain a great deal of information,
because they describe users’ detailed feelings and views
on products. So reviews are too redundant to act as
recommendation reasons. As for tips, there is always
one topic in them which expresses users’ feelings and
experience on a product, and tips can give other users
quick insights for the recommendations. Meanwhile, tips
are short and can quickly give users insight into a prod-
uct [10]. Consequently, we propose a multi-task learning
model to model rating through MLP and tip through
Encoder-Decoder in this paper. Additionally, reasons we
used as explanations in our model, is a general concept
and the tips are website specific. Tips can be regarded
as a type of reasons and are treated as ground truths of
reasons for model training and evaluation in this paper.
We set item’s title as an important part in the process of
reason generation and adapt attention mechanism and
coverage mechanism to make full use of the output of
the encoder.

Many studies separating the two tasks, namely recom-
mendation and explanation, have achieved good perfor-
mance [11], [12]. However, in many e-commerce shop-
ping websites, the personalized rating and the personal-
ized reason are quite relevant to each other. Users give
high ratings generally relying on some good experiences
that may be shown in the personalized reasons. The per-
sonalized reason can be regarded as an extra supervised
information for the rating prediction model. The person-
alized reason can be regarded as an extra supervised
information for the rating prediction model. Similarly,
when users are writing the reasons, their personalized
ratings are helpful for us to predict how good or how bad
about their experiences. The personalized ratings also
can be regarded as a supervised signal to generated the
accurate reasons. Consequently, We integrate the feature
in the process of rating prediction into reason generation
to make the two tasks mutually reinforcing.

The main contributions of our framework are summa-
rized below:
• We propose a multi-task learning model named

EMER combining an Encoder-Decoder model and
a MLP model. The model can simultaneously gen-
erate recommendation reasons and predict precise

ratings. Numerous experiments show that it is
meaningful to combine the two tasks together, be-
cause their learning processes promote each other.

• We combine product’s title in Encoder-Decoder
model to generate recommendation reasons, be-
cause it is simple and contains significant product-
related information. Meanwhile, we add user em-
bedding and item embedding to obtain a person-
alized recommendation reason.

• We have experimented on multiple benchmark
datasets to prove our multi-task learning model
and numerous experiments demonstrate that our
model achieves significant improvements over the
state-of-the-art models.

The rest of this paper is organized as follows. We start
with an overview of related work in Section 2. Section
3 presents the details of our model. Experimental setup
and results are given in Section 4 and 5. At last, Section
6 concludes this paper.

2 RELATED WORK
Explainable recommendation tries to help users under-
stand the recommendation results and make better and
faster decisions. It is a multi-task learning framework
which contains explanation of recommendation and rat-
ing prediction, so we will survey related work on these
two areas in this section.

2.1 Explanation of Recommendation
Explanation of recommendation helps users make better
decisions by utilizing straightaway explanations. As a
less explored direction in recommendation system, it can
be divided into four aspects, which are utilizing aspect
information extracted from review text [6], [13], incor-
porating knowledge graph [14]–[16], friend-to-friend di-
alogue explanations [10], [17], [18] and explanations do
not directly deal with texts [11], [12].

The first one is utilizing aspect information extracted
from review text to enable an interpretable represen-
tation. Hou et al. [6] propose an Aspect-based Ma-
trix Factorization model (AMF) combining two metrics
which are User Aspect Preference (UAP) and Item Aspect
Quality (IAQ) and they can quantitatively explain why
a user chooses an item by the two metrics. Wu et al.
[13] propose a context-aware user-item representation
learning model containing review-based feature learning
and interaction-based feature learning.

The second one is incorporating knowledge graph into
recommendation systems to offer explanations. Wang et
al. [14] contribute a new model named Knowledgeaware
Path Recurrent Network (KPRN) which can generate
path representations by composing the semantics of both
entities and relations. Xian et al. [15] propose a method
called Policy-Guided Path Reasoning (PGPR) which cou-
ples recommendation and interpretability by providing
actual paths in a knowledge graph. Ma et al. [16] propose
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a joint learning framework which can exploit knowledge
graphs to induce explainable rules from item associations
in the rule learning module and provide rule-guided
recommendations based on the rules in the recommen-
dation module. Xian et al. [19] propose a CoArse-to-
FinE neural symbolic reasoning approach (CAFE). It first
generates user profiles as coarse sketches of user behav-
iors, which subsequently guide a path-finding process
to derive reasoning paths for recommendations as fine-
grained predictions.

The third one is generating recommendation reasons to
make users feel as if they are receiving recommendations
from their friends. Li et al. [10] propose a deep learning
based framework named NRT which can simultaneously
predict precise ratings and generate abstractive tips.
Chen et al. [17] propose visually explainable recommen-
dation based on attentive neural networks to model the
user attention on images under the supervision of both
implicit feedback and textual reviews. Gao et al. [18]
develop a Deep Explicit Attentive Multi-View Learning
Model (DEAML) which utilizes an attentive multi-view
learning framework for rating prediction and formulates
personalized explanation generation as a constrained tree
node selection problem. Lin et al. [20] study the task of
explainable outfit recommendation and proposed a deep
learning-based framework, called NOR, which simul-
taneously gives outfit recommendations and generates
abstractive comments as explanations. Sun et al. [21]
propose a transfer learning based model for preference
prediction and review generation. They argued that these
two tasks are presented in dual form to inject the prob-
abilistic duality of the two tasks in the training stage.

The last one does not directly deal with text. For
example, the reciprocal explanation introduced by Klein-
erman et al. [11], directly takes the user’s preferences or
the attributes of the recommended user as explanations,
and concludes that the choice of reciprocal explanation
closely related to users’ cost for following the recommen-
dations. Park et al. [12] propose UniWalk, using a unified
graph structure to exploit ratings and social graph, which
takes similar users’ choices or similar items the user likes
as explanations. Tal et al. [22] propose a Dual Attention
Recommender with Items and Attributes (DARIA), a
novel approach able to combine two dependable neural
attention mechanisms to better justify its suggestions.
They utilize two self-attention components to describe
users by their most characteristic past activities and items
by their best depicting attributes.

Our work is most similar to Li et al. [10]’s work. By
combining neural rating regression and gated recurrent
neural networks together, their model can simultane-
ously predict precise ratings and generate abstractive
tips. Our work differs in three ways. First, we combine
user embedding, item embedding and item’s title into
our model to realize personalized reason generation.
Second, we adapt Encoder-Decoder model to map the
input into recommendation reason. Finally, we combine
these the two tasks in a different way.

2.2 Rating Prediction
Recommendation systems are mainly categorized into
collaborative filtering, content-based and hybrid recom-
mendation and we firstly discuss about collaborative
filtering. Collaborative filtering achieves great success
when LFM and MF were introduced in late 2000’s [8],
[9]. They always map users and items into latent factors
in one shared space and each dimension in latent factors
represents the degree of preference for implicit attributes.

Then a great deal of models are proposed to solve
data sparsity problem and cold start problem. Wang et
al. [23] propose a model named Collaborative Topic Re-
gression (CTR) which combines the merits of traditional
collaborative filtering and probabilistic topic modeling
by using item’s specifications. Ling et al. [24] propose
a model titled Ratings Meet Reviews (RMR) harnessing
the information of both ratings and reviews.

Recently, deep learning has been revolutionizing the
recommendation architectures dramatically [25]. This
kind of recommendation system is always based on
MLP, Autoencoder (AE), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), etc. MLP can
be used to add nonlinear transformation. He et al. [26]
ensemble MF and MLP under the Neural network-based
Collaborative Filtering (NCF) framework. Cheng et al.
[27] jointly train wide linear models and deep neural
networks to combine the benefits of memorization and
generalization.

In contrast to collaborative methods, content-based
systems can recommend new items to users without
any history, because they analyze items’ descriptions to
identify items that are of particular interest to users [3].
Content-based systems include the following steps: (1)
extract the attributes of items, (2) compare the attributes
of items with the preferences of users, (3) recommend
items with characteristics that fit users’ interests [28]. The
key purpose is to determine whether a user will like a
specific item. This task can be solved by using heuristic
methods [29] and classification algorithms [30].

Hybrid recommendation systems usually combine col-
laborative filtering with content-based filtering to exploit
merits of both techniques. Xiao et al. [31] propose a
novel hybrid recommendation system which not only
makes full use of content-based and collaborative fil-
tering recommendation to solve the cold-start problem
but also improves the accuracy of recommendation by
selecting the nearest neighbor. Tzamousis et al. [32]
employ various machine-learning (ML) algorithms for
learning an efficient combination of a diverse set of
recommendation algorithms and select the best blending
for a given input. Hybrid recommendation systems can
take full advantages of a variety of recommendation
technologies and avoid their disadvantages.

2.3 Multi-Task Recommendation
Multi-task recommendation refers to the work that
considers both recommended tasks and explainability.
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Fig. 2: Our proposed multi-task learning model EMER for rating prediction and reason generation.

J3Rs [33] combines multi-layer perceptron and pointer-
generator networks for jointly learning the shared users’
and items’ latent factors, and uses an MTL approach for
predicting user ratings and review summary generation.
MT [34] combines matrix factorization, for rating predic-
tion, and adversarial sequence to sequence learning for
explanation generation. PETER [35], proposes a person-
alized Transformer for Explainable Recommendation, us-
ing IDs to predict the generation of words, and complete
the tasks of rating prediction and explaination at the
same time. NETE [36], is a tailored GRU for explainable
recommendation, and employ a MLP to capture inters-
actions between users and items.

3 OUR MODEL
Our model is a multi-task learning model, which consists
of reason generation and rating prediction. Then we
will introduce how we complete these two tasks in this
section.

3.1 Overview
Given a user ui from user pool U = {u1, u2, ..., um} and
an item vj from item pool V = {v1, v2, ..., vn}, the task
of our model is to simultaneously yield predicted rating
and generate recommendation reason for personalized
explainable recommendation. The rating prediction task
is to provide predicted ratings r̂i,j which means whether
a user ui will prefer an item vj . The reason generation
task is to generate a recommendation reason yi,j =
(y1i,j , y

2
i,j , ..., y

k
i,j) consisting of a sequence of words.

We need a dataset D = {U ,V, T ,R,Y}, where T is the
set of items’ titles, R is the set of ratings and Y is the
set of reasons. As shown in Figure 2, our model can be
divided into two core components, a rating prediction

part and a reason generation part. From the left part
of Figure 2, we can see that given user ui and item vj ,
our model obtains the predicted rating r̂i,j through MLP
[26]. The right part of Figure 2 depicts the process to
generate recommendation reasons and it contains two
major components, the encoder for user and item in-
formation and the decoder for reason generation. Based
on a bi-directional Long-Short Term Memory (BLSTM)
[37] in the lower right part of Figure 2, the encoder
extracts feature from user ui, item vj and item’s title
tj ∈ T . In the upper right part of Figure 2, attention
mechanism [38] and multi-layer LSTM are utilized in the
reason generation decoder to translate feature extracted
by encoder into a sequence of words as an explanation.

3.2 Rating Prediction
The aim of rating prediction is to model users’ pref-
erence on items based on their past interactions. Al-
though MF model has achieved great success in rating
prediction, but inner product, which simply combines
the multiplication of latent features linearly, may not
be sufficient to capture the complex structure of user
historical interaction data [26]. Meanwhile, it has been
proved that deep neural networks can generalize better
unseen feature combinations through low-dimensional
dense embeddings learned for the sparse features [27]. In
this paper, we utilize MLP to model interaction between
users and items and complete the rating prediction task.

As shown in the left part of Figure 2, we employ MLP
in this part to implement rating prediction. First, for a
user ui and an item vj , we can obtain their embeddings
pui
∈ Rku and qvj

∈ Rkv . Firstly, we concatenate these
two vectors together:

z0 = [pui , qvj ]. (1)
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After concatenating user embedding and item embed-
ding, we adapt a standard MLP to learn the interac-
tion between user and item latent features. MLP can
utilize nonlinear activation function and deep structure
to model high-order feature interaction and map the
concatenated vector z0 into a shared hidden space. We
can describe it as follows

z1 = ϕ(W1 · z0 + b1), (2)

where W1 ∈ Rkr×(ku+kv), b1 ∈ Rkr and ϕ denote the
weight matrix, bias vector, and activation function. For
activation function, we employ sigmoid here and other
choices including tanh have also been tested, but they
lead to unfavored performance. For better performance,
we can add more layers of non-linear transformations
into our model and get the final output zr.

Finally, we transform the final output zr into a real-
valued rating r̂i,j as follows

r̂i,j =Wr · zr + br, (3)

where Wr ∈ R1×kr and br ∈ R1.

3.3 Reason Generation
Generating reasons with only user embedding and item
embedding is one challenge, so we propose to combine
item’s title with user embedding and item embedding
to generate explanations. There is plenty of key infor-
mation in item’s title due to the nature of item’s title
which lies in how to describe an item. Consequently,
how to make full use of item’s title becomes the key
problem in our paper. Item’s title consists a sequence
of words and there is a certain sequence relationship
between these words. Encoder-Decoder model becomes
the most appropriated model [39], because it has made
a great achievement in sequence feature extraction and
text generation related tasks. Inspired by its performance,
we combine it in our model to model the generation
probability p(yij |ui, vj , tj , zr), where yij ∈ Y . Firstly, we
need to utilize the user and item encoder to model
user ui, item vj and item’s title tj . After obtaining the
sequence features extracted by encoder, we can base
our recommendation reasons on these features by the
decoder for reason generation.

3.3.1 The Encoder for User and Item Information
The encoder in Encoder-Decoder model encodes the in-
put sequence to get a semantic representation for decoder
to use, so we need to obtain the input sequence first. In
this paper, we set user ui, item vj and item’s title tj as
the input sequence. We set the items’ titles to the same
length, which can be represented as tj = (tj1, tj2, ..., tjl).
Then, we concatenate ui, vj and tj to compose X as
follows

X = (ui, vj , tj1, tj2, ..., tjl). (4)

The length of X can be T = l+2, where l is the length
of item’s title.

It will be very beneficial for many sequential feature
extraction tasks to access the context of the past as well as
the context of the future. Standard recurrent neural net-
works (RNN) processes sequences in time series, which
often ignores future context information [38]. Luckily, the
Bidirectional Recurrent Neural Networks (BRNN) can be
trained without the limitation because it is trained simul-
taneously in forward and backward direction [40]. LSTM
solves the gradient vanishing/exploding problems in
RNN. Consequently, we choose BLSTM in encoder part
and LSTM in decoder part.

Through BLSTM, we can transform input sequence X
from x1 to xT into output h from h1 to hT . In the positive
time direction, we can get the forward hidden states
{
−→
h 1,
−→
h 2, ...,

−→
h T }. Meanwhile, we can get the backward

states {
←−
h 1,
←−
h 2, ...,

←−
h T } from the negative time direction.

And then, we connect the hidden states of the corre-
sponding time to get hi = [

−→
h i,
←−
h i], which captures past

and future information. For the final forward outputs
{−→c T ,

−→
h T } and backward outputs {←−c 1,

←−
h 1}, we process

them as follows

cinitial = ϕ(Wc · ([−→c T ,
←−c 1]) + bc), (5)

hinitial = ϕ(Wh · ([
−→
h T ,
←−
h 1]) + bh), (6)

where Wc ∈ Rk×2×ke , bc ∈ Rk, Wh ∈ Rk×2×ke and bh ∈
Rk. ϕ is the activation function and here we use tanh.

3.3.2 The Decoder for Reason Generation
In this paper, we employ multi-layer LSTM as our de-
coder. First, we take [cinitial, hinitial] as the initial state for
the decoder. This is reasonable and useful because we can
generate explanations based on the output of the encoder
for user and item information. Just utilizing a fixed-
length vector brings us a bottleneck in our model, so
we combine attention mechanism to avoid this problem
[38].

We can define each conditional probability in decoder
as

p(yti,j |y1i,j , ...yt−1i,j , x1, ...xT ) = p(yti,j |yt−1i,j , st−1, h
∗
t ), (7)

where st−1 is the hidden state and h∗t is the context vector
for time t.

The context vector h∗t can be calculated as follows

eti = g(st−1, h) = V · tanh(W · hi + U · st−1 + b), (8)

ati =
exp(eti)∑T

k=1 exp(etk)
, (9)

h∗t =
T∑

k=1

atihi, (10)

where W ∈ Rka×2×ke , U ∈ Rka×k, b ∈ Rka and V ∈
R1×ka .
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TABLE 1: Dataset statistics.

Dataset #Users #Items #Interactions #Density #Words #Title Length

Movies and TV 115,522 29,667 1,039,619 0.030% 22,159 11
Electronics 192,365 61,820 1,642,882 0.014% 17,401 32

CD and Vinyl 72,111 49,872 864,572 0.024% 19,894 10
Home and Kitchen 66,516 28,130 549,506 0.029% 9,380 19

Yelp 9487 53266 149583 0.029% 19280 20

At each step, we will calculate weight ati for each hid-
den state in h and there will be a very large probability
that some states will always be the focus. To solve this
problem, we employ coverage mechanism [41], which
can be described as follows

ct =
t−1∑
t′=0

at′ , (11)

eti = g(st−1, h, ct) = V ·tanh(W ·hi+U ·st−1+Wc ·cti+b),
(12)

where Wc ∈ Rka×1 and in this paper, we set the matrix
elements of Wc as 1.

Then at each step, the input of multi-layer LSTM can
be represented as [yt−1, h

∗
t , zr]. zr is the feature of rating

prediction and we combine it here to combine the two
subtasks to get a better performance.

We add the final generative layer to map [st, h
∗
t+1] into

a vocabulary-size vector ot, which can be described as
follows

ot = ς(Wo · [st, h∗t+1] + bo), (13)

where Wo ∈ Rko×(k+2×ke), bo ∈ Rko and ς is the softmax
function.

3.4 Multi-task Learning
We formulate rating prediction as a regression problem
and the mean squared loss function is formulated as

Lr =
1

| χ |
∑

ui∈U,vj∈V
(r̂i,j − ri,j)2, (14)

where χ is the training set and ri,j is the ground truth
rating between user ui and item vj . This objective can
be understood as a penalized log likelihood under a
Gaussian model for each entry [39].

For reason generation, our loss function is divided into
two parts, which can be described as follows

Lt = − log p(w∗t ), (15)

Lcoverage =
∑
t

min(at, ct), (16)

where p(w∗t ) means the probability of the target word w∗t
based on ot. Then we add the two parts together

Lg = Lt + µLcoverage, (17)

where µ means the weight of coverage loss.
We integrate both subtasks, namely rating prediction

and reason generation, into a unified multi-task learning
framework and then final objective function to be mini-
mized is

L = λgLg + λrLr + λn ‖ θ ‖22, (18)

where θ is the set of parameters in our model. λr, λg and
λn are the weight proportion of each term.

4 EXPERIMENTAL SETUP
In this section we set up experiments aimed at assessing
the performance of rating prediction and reason gen-
eration. Here, the details of datasets, evaluation met-
rics, baseline descriptions and experimental settings are
given.

4.1 Datasets
We conduct our experiments on the Amazon e-commerce
datasets2 [42], [43]. To guarantee sufficient data, we
choose four larger collections of data from Amazon 5-
core and their corresponding meta data. 5-core means
each of the remaining users and items have 5 re-
views each. The datasets selected can be listed as fol-
lows: Movies and TV, Electronics, CD and Vinyl and
Home and Kitchen. It has been decipted that item’s title
plays an important role in our model, so we need to
preprocess these datasets to select items with titles. After
preprocessing, we show the statistics of our datasets
in Table 1. Taking Movies and TV for example, there
are 115,522 users and 29,667 items in this dataset after
preprocessing and the dataset is are very sparse which
can be seen from #Density. After filtering out the words
with low term frequency in the tips and titles, the words
left in each dataset can be found in #Words and the
length of titles of each dataset can be see from #Title
Length.

We divide each dataset after processing into three
subsets: 80%, 10%, and 10%, for training, validation,
and testing and utilize the validation dataset to tune all
parameters in our model.

2. http://jmcauley.ucsd.edu/data/amazon/index.html
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Considering the sensitivity of the algorithms to data,
we perform 10-fold cross validation on each dataset.
Moreover, we perform the same dataset input for each
algorithm for the sake of fair comparison.

4.2 Evaluation Metrics
We use the following measures for evaluation on differ-
ent tasks.

RMSE: To evaluate the performance of all algorithms,
we calculate Root Mean Square Error (RMSE), which is
widely used for rating prediction in recommendation
systems. The lower RMSE score is, the better perfor-
mance is. Given a predicted rating R̂u,i and a ground-
truth rating Ru,i for user u and item i, the RMSE is
calculated as

RMSE =

√
1

N

∑
u,i

(R̂u,i −Ru,i)2, (19)

where N indicates the number of ratings between users
and items.

ROUGE: ROUGE score includes measures to auto-
matically determine the quality of text generation by
comparing it to ideal summaries created by humans3

[44]. So we apply it in our model to evaluate the quality
of the generated reasons. The measures in ROUGE count
the number of overlapping units such as n-gram, word
sequences, and word pairs between generated reasons
and the ground truth written by users. Take ROUGE-
N for example. Assuming that s̃u,i is the generated
reasons of length m and su,i is the ground-truth sentence
of length n between user u and item i. We sign the
overlapping n-grams between them as gramn. Then the
Precision, Recall and F-score can be calculated as follows

ROUGE −N(S) =

∑
u,i Count(gramn)∑

u,i Count(s)
, (20)

When s = su,i, we can get the recall of ROUGE-N.
When s = s̃u,i, we can get the precision of ROUGE-N.
After obtaining recall and precision of ROUGE-N, we
can use the equation of F-score to compute the F-score
of ROUGE-N. We can calculate other ROUGE scores in
the same way. In this paper, we use Recall, Precision, and
F-measure of ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-
SU4 to evaluate our model.

4.3 Baselines
To evaluate the performance of rating prediction and
reason generation, we compare our model with the
following methods.

MF: Matrix Factorization [9]. It is a classical model
and can characterize both items and users by vectors of
factors inferred from item rating patterns.

3. ROUGE-1.5.5.pl -n 4 -w 1.2 -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0

NNMF: Neural network matrix factorization [39]. It
replaces the inner product by a multi-layer feed-forward
neural network and optimizing the latent features for a
fixed network.

RMR: Ratings Meet Reviews [24]. It applys topic mod-
eling techniques on the review text and aligns the topics
with rating dimensions to improve prediction accuracy.

DeepCoNN: Deep Cooperative Neural Networks [45].
It consists of two parallel neural networks coupled in
the last layers for rating prediction. One of the networks
focuses on learning user behaviors exploiting reviews
written by the user, and the other one learns item prop-
erties from the reviews written for the item.

NRT: Neural Rating Regression with Abstractive Tips
Generation [10]. It is a deep learning based framework
which can simultaneously predict precise ratings and
generate abstractive tips with good linguistic quality
simulating user experience and feelings.

Re-VECF: Review-enhanced visually explainable col-
laborative filtering [17]. It is based on attentive neural
networks to model the user attention on images under
the supervision of both implicit feedback and textual
reviews.

J3Rs: Joint Multi-task Learning of Ratings and Re-
view Summaries for Explainable Recommendation [33].
It combines multi-layer perceptron and pointer-generator
network for jointly learning the shared users’ and items’
latent factors, and uses MTL approach for user ratings
prediction and review summary generation.

MT: Why I like it: Multi-task Learning for Recom-
mendation and Explanation [34]. It is a multi-task rec-
ommendation model, which jointly learns to perform
rating prediction and recommendation explanation by
combining matrix factorization, for rating prediction, and
adversarial sequence to sequence learning for explana-
tion generation.

For rating prediction, we compare our model EMER
with MF, NNMF, RMR, DeepCoNN, NRT, J3Rs and MT,
which including models for rating prediction.

For reason generation, we compare our model EMER
with RMR, NRT, Re-VECF, J3Rs and MT. Because RMR
is not specialized for reason generation and Re-VECF is
designed to combine visual features to provide visually
explainable recommendations. So we refine the two mod-
els to make them capable for reason generation.

RMR utilizes a topic modeling technique to model
review texts and achieves significant improvements in
rating prediction. It can generate topics for each item
and we choose the topic with the highest probability for
a given item. Then we choose top-50 words under this
topic for the item. Then we select all reviews for a given
user and all reviews for the item and remove reviews
whose all words do not appear in the other collection.
Finally, we choose one review with the highest degree of
similarity with the words selected from the remainder
reviews as the generated reason.

Re-VECF is designed to discover user visual prefer-
ence, with the supervision of implicit feedback as well
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as textual reviews. However, for the datasets we selected,
there is no means to model the user attention on images.
So we replace the image features with latent factors.

Since MT originally generates users’ comments, in
order to meet our needs, we use MT to generate tips,
and finally evaluate the results based on the original tips
in the dataset.

4.4 Experimental Settings
In data processing, we filter out the words less than 5 oc-
currences. The reason is that these low-frequency words
may be not commonly used. Learning the embeddings
of low-frequency words is difficult. Therefore, filtering
out low-frequency words in the data processing phase is
a common approach such as in references [38] and [46].

In reason generation, we use K to refer to the maxi-
mum length of the generated sentences. In the training
phase, we set K to be equal to the maximum length of
the tips used for training, in order to make the generated
sentence close to the target tip. Note that we require
each sentence to end with a special end-of-sentence
symbol ”〈EOS〉”, which enables the model to define a
distribution over sequences of all possible lengths as in
[46]. Then, in the testing phase, we generate the sentences
word by word. It indicates the generation is completed
when the end-of-sentence symbol “〈EOS〉” has been
generated. Through this way, we can generate sentences
with different lengths.

In model buiding, we firstly tuning the model parame-
ters through validation dataset, then set the dimension of
user embedding, item embedding, and word embedding
as 300. We set the number of hidden layers in rating
prediction as 2 and the dimension of hidden layer as
400. The number of LSTM layer in decoder for reason
generation is set as 2 and the dimension of it is set as
512. We set the weight parameters µ as 0.1, and λr and
λg in optimization objective as 1.

In training process, the batch size for mini-batch train-
ing is 200 and the learning rate in the beginning is 0.001.
We initialize all the optimization parameters according
to a uniform distribution in the range of (-0.01, 0.01),
and update them by Adam optimizer. When getting the
best experimental results on validation dataset, we halt
iteration.

In experiments, We mixed the originally divided
datasets, and performed 10-fold cross validation on
each dataset, then calculated average results. And to
strengthen the results, We performed Tukey’s HSD (Hon-
estly Significant Difference) test on each dataset. More-
over, to verify the validation of generated explanations,
we conducted human evaluation. We randomly selected
500 groups of ratings and explanations generated on our
test set to make a questionnaire, and 10 volunteers were
invited in this investigation. Volunteers are instructed to
give 1-5 points to the generated explanations according
to three criteria: (1) fluency, which refers to whether
the statement is fluent, whether there are semantic and

grammatical errors. (2) clarity: whether the sentence’s
meaning is clear; (3) rationality: whether the generated
sentence and the predicted rating have similar emotional
tendencies.

At last, our model is implemented in Tensorflow4. All
models are trained and tested on an NVIDIA 1080Ti
GPU. Our code is released on Github5.

5 RESULTS AND DISCUSSIONS

In this section, we first present our 10-fold cross valida-
tion experimental results on both rating prediction and
reason generation, and display the Tukey Test results.
Then we completely discuss the importance of multi-
task learning and the impact of different module in our
proposed model EMER. Finally, we will discuss about
the parameters in Eq. 18 which mean the weight of the
two tasks in our model.

5.1 Results on Rating Prediction

In this subsection, we evaluate our model for the task
of rating prediction. We compare our model with MF
[9], NNMF [39], RMR [24], DeepCoNN [45], NRT [10],
J3Rs [33], MT [34] and the rating prediction results of
our model and comparative models on all datasets are
given in Table 2.

It is obvious that in most cases, our model outper-
forms all baseline methods in terms of MAE and RMSE
metrics on all datasets. And our model achieves the
best performance on both MAE and RMSE metrics on
average, which can be seen from the last two columns
of Table 2. This is because we combine the feature
of rating prediction into reason generation. Under the
supervision of reason generation, we can obtain more
useful information in the feature of rating prediction, so
we can get a better result in rating predition. We also
performed a Tukey’s HSD test on each dataset. From
Table 3 We can see that EMER can get a significant
improvement on rating prediction most of time, and it
is not significant when our model perfroms little worse
than DeepCoNN.

From the results we can simultaneously see that mod-
els that utilize textual information (EMER, RMR, Deep-
CoNN, NRT, J3Rs) are generally superior to models with-
out this kind of information (MF, NNMF). It is logical
that textual information is complementary to ratings and
it can be utilized to improve the representation quality
of user’s preferences and item’s features. So we can
improve the accuracy of rating prediction through tex-
tual information and give user a better recommendation
result.

4. https://tensorflow.google.cn/
5. https://github.com/Anxbbq/EMER
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TABLE 2: Performance comparison on rating prediction.

Methods Movies and TV Electronics CDs and Vinyl Home and Kitchen Yelp AVERAGE

MF 1.064 1.142 0.987 1.055 0.995 1.049
NNMF 1.114 1.170 1.033 1.095 0.990 1.080
RMR 1.031 1.126 1.025 1.062 0.997 1.048

DeepCoNN 1.026 1.122 0.964 1.065 1.003 1.036
NRT 1.027 1.132 0.967 1.090 1.040 1.051
J3Rs 1.070 1.135 0.987 1.061 1.043 1.061
MT 1.364 1.421 1.255 1.488 1.232 1.352

EMER (Ours) 1.026 1.104 0.958 1.057 0.984 1.026

TABLE 3: Tukey’s HSD test on rating prediction (×10−2).

Method pair Mean-diff (X − Y )

X Y Movies and TV Electronics CDs and Vinyl Home and Kitchen Yelp

EMER MF 3.64* 2.88* 3.09* 2.43* 1.12*
EMER NNMF 6.20* 6.18* 5.00* 8.45* 1.00*
EMER RMR 0.52 0.03 2.19* 1.01* 1.56*
EMER DeepCoNN -0.79 0.17 -0.49 1.40* 2.57*
EMER NRT 0.07 3.08* 0.86* 3.54* 3.13*
EMER J3Rs 0.76 1.88* 1.84* 1.41* 4.56*
EMER MT 18.63* 27.99* 19.94* 42.94* 30.65*

The numbers are mean-diff between X and Y . Positive mean-diff means X performs better. “*” means that the difference is
statistically significant at α = 0.05.

TABLE 4: Performance comparison on reason generation on Movies and TV.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

RMR 13.01 3.43 5.01 2.09 0.39 0.66 12.98 3.25 5.13 5.79 0.08 1.31
NRT 10.49 13.06 10.82 2.00 2.41 2.02 10.26 12.75 10.57 4.24 6.21 4.1

Re-VECF 8.81 12.24 9.38 1.52 1.81 1.45 8.69 12.00 9.22 3.39 5.86 3.34
J3Rs 12.60 11.98 11.04 3.03 2.59 2.44 12.37 11.70 10.81 5.44 5.06 4.02
MT 9.59 13.01 10.18 1.75 2.26 1.79 9.40 12.78 9.97 3.77 6.19 3.81

EMER (Ours) 13.36 16.75 13.90 4.05 4.90 4.13 13.11 16.41 13.66 6.17 8.74 6.12

5.2 Results on Reason Generation

As a multi-task model, our model EMER solves not only
the rating prediction problem but also the reason gen-
eration problem which can encourage user to accept the
recommendation result. In this subsection, we evaluate
the second subtask, namely reason generation, of our
model by comparing the predicted reasons with the truly
posted ones. In order to capture more details of the
generated reasons based on our model, we report the
result of Recall, Precision, and F-measure (in percentage)
of ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-SU4.

The evaluation results of our model and comparative
models, namely RMR [24], NRT [10] , Re-VECF [17], J3Rs
[33], MT [34] on the reason generation task are given in
Table 4, Table 5, Table 8 and Table 9. From the results we
can see that our model EMER generally achieves better

performance than other models. There are a few values
of our model on Recall is slightly lower than compared
methods, but the performance on F1-score which is
the weighted average of Precision and Recall is more
important. We also show the Tukey’HSD test results in
Table 11 and find that our EMER model has significant
improvement over other methods. Besides, on F1-score
of ROUGE-2, the EMER is little weaker than J3Rs on
Electronics and Home and Kitchen, but the deficiency
is in a low level at -0.0060 and -0.0074 shown in Table
11, and in ROUGE-1 and ROUGE-L, our model performs
significantly better than J3Rs. Our model’s better per-
formance is as expected because product aspects that
users are interested in may be directly aligned with the
product titles, and meanwhile, the relationship among
these features can be effectively captured by our encoder
for user and item information. Then through attention
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TABLE 5: Performance comparison on reason generation on Electronics.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

RMR 10.56 2.57 4.02 0.85 0.19 0.28 9.56 2.35 2.78 3.57 0.50 0.79
NRT 10.13 13.74 10.74 1.87 2.6 1.98 10.03 13.57 10.63 4.49 8.25 4.66

Re-VECF 11.05 16.73 12.15 2.23 3.48 2.42 10.97 16.55 12.05 4.47 9.52 4.83
J3Rs 17.71 15.59 14.33 5.40 4.43 4.00 17.45 13.86 14.09 8.55 7.53 5.61
MT 13.16 17.97 13.93 3.02 4.18 3.15 13.03 17.71 13.76 5.58 9.71 5.71

EMER (Ours) 15.05 17.59 14.74 3.70 4.21 3.45 14.84 17.29 14.51 6.59 9.04 5.83

TABLE 6: Results of User Study.

Methods Fluency Clarity Rationality

NRT 4.57 4.67 4.33
RMR 3.31 3.27 3.16

EMER (Ours) 4.81 4.89 4.35

TABLE 7: Tukey’s HSD Test on User Study.

Method pair Mean-diff (X − Y )

X Y Fluency Clarity Rationality

EMER NRT 0.2381* 0.2381* 0.0198
EMER RMR 1.5119* 1.6310* 1.1825*

The numbers are mean-diff between X and Y . Positive
mean-diff means X performs better. “*” means that the
difference is statistically significant at α = 0.05.

mechanism in decoder for reason generation, we can
identify the importance of every hidden state in encoder
in the modeling process. Meanwhile, fusing the feature of
rating prediction into reason generation can bring user’s
emotional tendency on this product and obtain better
result on reason generation.

For the reason generation task on Yelp as shown in
Table 10, the performance of our EMER model is lower
than others. We explored the utilized Yelp dataset, and
found the reason that our model requires the attribute
of product title since product titles generally have rich
fields, but the item titles in yelp dataset are very short.
We made a statistics and found that the average length
of item titles on Amazon is 9.8, while the average length
on Yelp is 2.4. At the same time, the compared methods
utilized the review comments but not the titles. So they
are not affected by the low informative title on Yelp.
Therefore, the generation performance of our model
on yelp is lower than other methods. Then we could
conclude that our model is more suitable to be applied
on the product recommendation which has informative
titles such as Movies and TV, Electronics, CD and Vinyl
and Home and Kitchen datasets, but for the business
recommendation such as Yelp dataset, we suggest other
methods for the generation task.

Additionally, from Table 6 we can see that the EMER
algorithm can get the highest average score in terms of
fluency, clarity and rationality with contrast to NRT and

RMR. We also utilize the Fleiss kappa method as the
inter-rater agreement and we got Fleiss Kappa coefficient
K = 0.256 which means it is a fair agreement. Table 7
shows our generated reasons have a significant improve-
ment on user evaluations most of time, which proves that
the explanation generated by our algorithm is generally
well in grammar and meaning in the eyes of users.

5.3 Multi-task Learning Analysis
To verify the effectiveness of the proposed multi-task
learning model on rating prediction and reason gen-
eration, we conduct experiments with individual task
of EMER on datasets it performs best during 10-cross
validation. The experimental results are shown in Table
13, Table 14 and Table 15.

From Table 13, we can see our model EMER(w/o rea-
son) (our model without reason generation) does poorly
without the supervision of reason generation. This is
because ratings and reasons have similar emotional ten-
dencies and the training process of the two tasks are
complementary. So it is beneficial to train them together
for rating prediction.

It is obvious that there is a little improvement from
Table 15. Due to the fact that we utilize Encoder-Decoder
model and attention mechanism, the user embedding
and item Embedding in encoder bring some personalized
information and item’s title plays an more important role
in reason generation. Finally, the feature of rating predic-
tion brings a small profit. In Table 14 our proposed model
has a slightly worse ROUGE score than the EMER(w/o
rating) and EMER(same) versions on the Electronics
dataset. We analyzed the statistical features of Electronics
and found it has a very low data density at 0.014%
and relatively long title length at 32 to make it more
sensitive to the model complexity. Generally, training a
deep model with a large number of parameters needs
more data. However, the Electronics dataset is sparse
and the length of the target title is much longer than
other datasets, so it cannot afford enough information
to train our deep model. Therefore, when we reduce the
model parameters by cutting off the rating part of EMER
and sharing the same embeddings for different tasks, the
lite models EMER(w/o rating) and EMER(same) could
achieve better performance than the full model EMER
on Electronics dataset.
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TABLE 8: Performance comparison on reason generation on CDs and Vinyl.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

RMR 11.69 3.43 5.01 1.29 0.31 0.45 10.45 2.64 4.27 4.36 0.67 1.01
NRT 8.22 10.28 8.49 1.32 1.64 1.34 8.05 10.05 8.31 3.27 4.77 3.12

Re-VECF 7.47 9.58 7.70 1.05 1.29 1.03 7.32 9.35 7.52 2.91 4.45 2.70
J3Rs 12.45 8.51 8.78 2.88 1.79 1.82 12.06 8.21 8.48 5.58 3.24 2.86
MT 8.16 10.81 8.65 1.20 1.58 1.24 7.80 10.57 8.47 3.26 5.17 3.26

EMER (Ours) 9.56 12.04 9.91 1.80 2.26 1.84 9.33 11.74 9.67 3.77 5.50 3.64

TABLE 9: Performance comparison on reason generation on Home and Kitchen.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

RMR 13.01 3.43 5.01 2.09 0.39 0.66 12.98 3.25 5.13 5.79 0.08 1.31
NRT 10.49 13.06 10.82 2.00 2.41 2.02 10.26 12.75 10.57 4.24 6.21 4.10

Re-VECF 8.81 12.24 9.38 1.52 1.81 1.45 8.69 12.00 9.22 3.39 5.86 3.34
J3Rs 12.60 11.98 11.04 3.03 2.59 2.44 12.37 11.70 10.81 5.44 5.06 4.02
MT 9.59 13.01 10.18 1.75 2.26 1.79 9.40 12.78 9.97 3.77 6.19 3.81

EMER (Ours) 13.36 16.75 13.90 4.05 4.90 4.13 13.11 16.41 13.66 6.17 8.74 6.12

TABLE 10: Performance comparison on reason generation on Yelp.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

RMR 7.55 7.63 7.50 0.46 0.31 0.38 7.35 6.65 7.01 2.31 1.98 2.16
NRT 7.62 6.86 6.86 0.42 0.36 0.39 7.28 6.45 6.84 2.24 1.82 2.01

Re-VECF 7.19 8.24 7.68 0.21 0.32 0.25 6.87 7.81 7.31 1.93 1.88 1.91
J3Rs 9.41 10.41 9.89 2.21 2.15 2.18 8.83 9.75 9.27 3.59 3.74 3.67
MT 11.76 6.47 8.35 0.79 0.45 0.57 10.48 5.52 7.23 3.68 1.58 2.22

EMER (Ours) 9.03 7.19 8.00 0.50 0.37 0.43 8.53 6.78 7.56 2.64 1.70 2.07

We list some examples of generated reasons and their
corresponding predicted ratings of EMER and NRT in
Table 12. We can see that EMER predicted ratings are
more closed to the real ratings. What’s more, our pre-
dicted ratings shows the consistent sentiment with gen-
erated reasons. For example, when we generate ”i don’t
believe this album is a great live album” for an item,
its corresponding rating is a medium 3.74, but when we
generate ”a great recording of the best symphony of the
20th century”, its corresponding rating become higher
at 4.87. Moreover, the explanations we generate tend
to have richer meanings, for example, ”a true story of
passion and faith” generated by EMER is more specific
by pointing out the theme ”passion and faith” of the
story than ”a true story of a great story” generated by
NRT.

5.4 The Necessity of Coverage Mechanism

In order to explore the effectiveness of coverage mech-
anism in our model, we perform experiments without
coverage mechanism and test the performance on rat-
ing prediction and reason generation without coverage

mechanism. Table 13, Table 14 and Table 15 show some
of those results.

As we can observe from Table 13, coverage mechanism
always brings benefit to our model in rating prediction.
For instance, our model EMER performs better in terms
of MAE and RMSE metrics on all datasets comparing
with EMER(w/o cover) (our model without coverage
mechanism). Although coverage mechanism plays a ma-
jor role in reason generation, it can also brings a balance
between the two tasks. So through coverage mechanism,
we can get a better performance in rating prediction.

As presented in Table 14 and Table 15, EMER which
combines coverage mechanism outperforms EMER(w/o
cover). Thus we conclude that the coverage mechanism is
helpful for the reason generation task. This is reasonable
due to the very nature of coverage mechanism. Coverage
mechanism will bring punishment when the decoder
always pays attention to several words in encoder. We
can pay attention to each element in encoder in the
process of reason generation and then get a better result.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 24,2022 at 04:46:35 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3146178, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE 11: Tukey’s HSD Test on reason generation (×10−2).

Method pair Mean-diff (X − Y )

Movies and TV Electronics CDs and Vinyl Home and Kitchen

X Y 1 2 L 1 2 L 1 2 L 1 2 L

EMER RMR 8.15* 3.52* 9.75* 10.37* 2.53* 12.55* 4.85* 1.67* 7.39* 8.56* 1.89* 11.90*
EMER NRT 3.28* 1.96* 3.21* 5.01* 1.11* 6.25* 1.99* 0.57* 2.55* 3.16* 0.35* 5.52*
EMER Re-VECF 4.79* 2.73* 5.66* 4.48* 0.63* 4.68* 2.40* 1.10* 1.10* 4.41* 1.14* 7.36*
EMER J3Rs 3.21* 1.82* 2.41* 1.82* -0.60* 1.27* 1.59* 0.35* 1.04* 2.74* -0.74* 1.32*
EMER MT 4.57* 2.50* 5.37* 3.04* 0.58* 3.42* 1.87* 0.60* 1.78* 5.43* 0.96* 8.33*

The numbers are mean-diff between X and Y on F1 score of ROUGE 1, ROUGE 2, ROUGE L. Positive mean-diff means X
performs better. “*” means that the difference is statistically significant at α = 0.05.

TABLE 12: Examples of the predicted ratings by EMER and NRT, the generated reason by EMER and NRT.

Samples Methods Generated Reason Prediction Predicted Rating

1 NRT a true story of a great story 4.86 5.0EMER a true story of passion and faith 4.98

2 NRT a classic album from the masters of the 90’s 4.72 4.0EMER a classic album from the greatest female singer of the 90 ’s 4.34

3 NRT the best of the best of the best 4.00 2.0EMER i don’t believe this album is a great live album 3.74

4 NRT a great album , but not the best 4.43 4.0EMER a great recording of the best symphony of the 20th century 4.32

TABLE 13: Comparing effect of different part in EMER
on rating prediction.

Electronics Home and Kitchen

MAE RMSE MAE RMSE

EMER(w/o reason) 0.935 1.184 0.826 1.100
EMER(w/o cover) 0.837 1.102 0.711 1.046

EMER(same) 0.827 1.104 0.743 1.048
EMER(w/o embedding) 0.827 1.102 0.727 1.034

EMER 0.826 1.101 0.716 1.044

5.5 Combining User Embedding and Item Embed-
ding for Personalized Reason Generation

We further examine whether it is useful to combine user
embedding and item embedding in reason generation.
Table 13, Table 14 and Table 15 report the performance
on rating prediction and reason generation.

We can see that the performance of rating predic-
tion is very similar under both EMER and EMER(w/o
embedding) (reason generation of our model without
user embedding and item embedding) through Table 13.
This is because the performance of rating prediction is
mainly affected by MLP and the supervision of reason
generation. User embedding and item embedding in the
encoder will not have significant impact on it.

It can be observed that EMER with user embedding
and item embedding in reason generation achieves bet-
ter prediction accuracy than EMER(w/o embedding)
through Table 14 and Table 15. This proves that incor-

porating user embedding and item embedding in reason
generation can provide more semantic information for
understanding user review behaviors. When combining
user embedding and item embedding in reason gen-
eration, we can obtain personalized recommendation
reasons for user.

5.6 Discussion about the Usage of User Embedding
and Item Embedding
Due to the fact that we use user embedding and item
embedding in both rating prediction and reason genera-
tion, we test the performance of our model EMER when
we use the same user embedding and item embedding
in these two submodels. We can see experimental results
from Table 13, Table 14 and Table 15.

From Table 13, we can find out that when we use
different embeddings in both tasks, EMER outperforms
EMER(same) (our model with the same user embedding
and item embedding) on both datasets in terms of MAE
and RMSE metrics. This is due the fact that different user
embedding and item embedding have larger parameter
space and can learn different features in both tasks.
Through different embeddings in the two tasks, we can
obtain more useful feature aimed at rating prediction and
get a better result in rating prediction.

However, the performance in reason generation on
different datasets gives us two different results. We can
see from Table 15 that the performance of EMER(same)
is poor, but obtain the opposite conclusion from Table 14.
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TABLE 14: Comparing effect of different part in EMER on reason generation on Electronics.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

EMER(w/o rating) 16.78 16.98 15.33 4.58 4.27 3.88 16.50 16.62 15.04 7.93 8.02 6.15
EMER(w/o cover) 14.99 17.72 14.80 3.63 4.07 3.40 14.81 17.45 14.60 6.56 8.92 5.97

EMER(same) 15.40 18.41 15.36 3.81 4.41 3.62 15.19 18.10 15.12 6.73 9.37 6.19
EMER(w/o embedding) 14.21 15.82 13.21 3.40 3.39 2.85 14.07 15.59 13.05 6.20 7.57 4.82

EMER 15.07 17.78 14.84 3.62 4.07 3.35 14.88 17.48 14.61 6.54 8.88 5.81

TABLE 15: Comparing effect of different part in EMER on reason generation on Home and Kitchen.

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

EMER(w/o rating) 14.21 17.01 14.34 3.83 4.42 3.76 14.07 16.79 14.17 6.32 8.14 5.85
EMER(w/o cover) 15.03 15.29 13.86 4.02 3.89 3.54 14.83 15.03 13.65 6.81 6.88 5.42

EMER(same) 13.98 17.22 14.26 3.70 4.30 3.63 13.84 17.00 14.11 6.10 8.34 5.78
EMER(w/o embedding) 11.42 16.06 12.27 2.44 3.37 2.59 11.36 15.93 12.20 4.50 8.11 4.79

EMER 14.20 17.40 14.49 3.83 4.60 3.85 14.04 17.16 14.32 6.20 8.48 5.96

TABLE 16: Comparing effect of different parameter settings on reason generation on Home and Kitchen.

λr
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4

R P F1 R P F1 R P F1 R P F1

0.0 14.21 17.01 14.34 3.83 4.42 3.76 14.07 16.79 14.17 6.32 8.14 5.85
0.5 14.70 16.44 14.26 4.02 4.25 3.73 14.54 16.21 14.08 6.56 7.81 5.73
1.0 14.20 17.40 14.49 3.83 4.60 3.85 14.04 17.16 14.32 6.20 8.48 5.96
1.5 13.61 17.16 14.09 3.53 4.46 3.66 13.81 16.95 13.94 5.94 8.47 5.83
2.0 14.20 17.21 14.38 3.76 4.40 3.71 14.07 16.99 14.23 6.19 8.31 5.82

This is because the difference between the two datasets,
namely Electronics and Home and Kitchen. Items in
Electronics are always well-known and most people have
the same similar view to them, so there is no need to
utilize different embeddings to obtain more information.
But for Home and Kitchen, We can not get enough per-
sonalized information and emotional information from
the user embedding and item embedding in rating pre-
diction, so we can get a better result when we use
different embeddings in the two tasks.

5.7 The Effectiveness of Item’s Title
To verify the effectiveness of combining item’s title into
encoder, we visualize the relationship between each ele-
ment in sequence X which contains item’s title and each
word in generated reason through attention mechanism.
In Figure 3, the transverse axes represents sequence X
and the vertical axis represents the generated reason.
All little boxes with different colors means different
correlations between the two sequences. The brighter the
color, the higher the correlation between two elements
in the two sequence. From Figure 3, we can clearly see
that there is a strong correlation between knife, henckels
in sequence X and knives in generated reason, that
is reasonable because Peter Henckels created a famous
brand ZWILLING which sell knives, cookers, etc.. Con-
sequently, it is quite useful to combine item’s title into

Fig. 3: Visualization of attention mechanism.

the encoder for user and item information. This also
proves that attention mechanism plays an important role
in generating recommendation reasons.

5.8 Discussion on the Hyperparameters in Multi-task
Learning
In this subsection, we mainly discuss about the param-
eter λg and λr in Eq. 18. From Eq. 18 we can know
parameter λg and λr mean a balance between loss in
reason generation and loss in rating prediction. We fix
λg as 1 and tune λr from 0.0 to 2.0. we can see that our
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Fig. 4: Comparing effect of different parameter settings
on rating prediction on Home and Kitchen.

model gets the best result on Home and Kitchen when
we set λr as 1 in Table 16 and Figure 4. In other word,
when we set both λg and λr as 1, we can keep a good
balance between the two tasks and obtain the best result
in both tasks. This is because the two tasks in our model
are mutually reinforcing and there exists no competition
between them. There is no need to set different weights
to make one of these tasks dominant. And we set 1 as
the final values for both λg and λr and this is used in
our all other experiments.

6 CONCLUSION AND FUTURE WORK
Accuracy and explanation are both important for rec-
ommendation systems. So we identify two main tasks:
rating prediction for providing recommendation results
and reason generation for providing straightaway expla-
nations. To tackle the two problems, we propose a multi-
task learning model named EMER which can simultane-
ously implement reason generation and rating predic-
tion. The model combines an Encoder-Decoder model
and a MLP model. Numerous experiments show that it is
meaningful to combine the two tasks together, because
their learning processes promote each other. Item’s ti-
tle contains significant product-related information and
plays an important role in grabbing users attention, so
we fuse it in our model to get more useful information.
Experimental results on benchmark datasets show that
EMER achieves better performance than the state-of-the-
art models on both tasks of rating prediction and reason
generation.

In the future, we will incorporate more information
into the recommendation system, such as external knowl-
edge graph, so as to make the recommendation results
more accurate. Besides, we will exploit the graph reason-
ing on the knowledge graph to make the explaination
more personalized.
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