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Joint Hypergraph Learning for Tag-Based
Image Retrieval

Yaxiong Wang, Li Zhu, Xueming Qian , Member, IEEE, and Junwei Han

Abstract— As the image sharing websites like Flickr become
more and more popular, extensive scholars concentrate on tag-
based image retrieval. It is one of the important ways to find
images contributed by social users. In this research field, tag
information and diverse visual features have been investigated.
However, most existing methods use these visual features sepa-
rately or sequentially. In this paper, we propose a global and local
visual features fusion approach to learn the relevance of images
by hypergraph approach. A hypergraph is constructed first by
utilizing global, local visual features, and tag information. Then,
we propose a pseudo-relevance feedback mechanism to obtain
the pseudo-positive images. Finally, with the hypergraph and
pseudo relevance feedback, we adopt the hypergraph learning
algorithm to calculate the relevance score of each image to the
query. Experimental results demonstrate the effectiveness of the
proposed approach.

Index Terms— Tag-based image retrieval, hypergraph, feature
fusion, visual feature, pseudo relevance feedback.

I. INTRODUCTION

W ITH the development of social media based on
Web 2.0, huge amounts of images spring up every-

where on the Internet, which makes many online tasks such
as image retrieval [4]–[9], [22], [23], [32]–[34], [38]–[43],
image recommendation [72], [73] very challenging. The large-
scale web images demand the researchers to develop efficient
algorithms for more accurate indexing and retrieval. Compared
with content-based image retrieval (TBIR), tag-based image
search is more commonly used in social media [32], [50].
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In the last few decades, extensive efforts have been dedi-
cated to image relevance retrieval. However, many algorithms
can’t achieve satisfactory results for tag mismatch, noisy tags
and query ambiguity problems [50]. Thus, more and more
researchers attempt to utilize visual features and user relevance
feedback to improve the retrieval accuracy.

There are several visual features designed to express
images such as color feature [29], shape feature [36],
textural feature [37], edge feature [1], SIFT [16] and deep
feature [56], [60]. Different visual features describe different
aspects of an image. Therefore, some algorithms try to fuse
multiple visual features to improve the image retrieval preci-
sion [2], [4], [5], [33]. However, most existing methods usually
explore multiple visual features separately. For example,
Yang et al. [2] first construct a graph for every feature.
Then they apply random walk model to get a relevance score
according to each constructed graph. Finally, they re-rank the
images by the linear combination of the relevance scores of
different features. Zhang et al. [4] first select training samples,
then they apply multiple visual features by simpleMKL to train
the classification function for image ranking. Yang et al. [5]
learn the Mahalanobis matrix for different visual features and
calculate the distance of images by the Mahalanobis distance
of corresponding visual feature. Yu et al. [33] construct five
hypergraphs for five visual features, and integrate the visual
consistency constrains of these hypergraphs to learn a linear
model for ranking. Gao et al. [34] construct hypergraph
by local visual feature only and abandon the global visual
information of images. However, different visual features have
district emphasis on describing the content of an image,
therefore, separately or sequentially using these information
is suboptimal for social image retrieval.

Many TBIR algorithms are designed based on graph model
aiming at utilizing multiple visual features [2], [46]. Graph-
based approaches are based on the assumption that neigh-
boring images in a graph having close relevant scores. Usually,
a similarity graph is constructed first, where the vertex is
the image and edge weight is the similarity between vertices.
Then some link structure analysis technologies are employed
to exploit the vertex relations. However, the edge of conven-
tional graph only associates with two vertices, that is to say,
one edge in graph can only capture the relationship of two
vertices. Fortunately, hypergraph can overcome this limitation.
The hypergraph can be regarded as a generalization of the
graph. Compared to conventional graph, hypergraph can model
the relationship of more than two vertices and more complex
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Fig. 1. The framework of proposed method, PRF represents pseudo relevance feedback. Take image set with tag “airplane” as an example. Select the image
list in inverted file system and conduct our algorithm in this image list. We save each tag-sorted image list pair to form the sorted file system, which is directly
used in online retrieval.

relationship between objects [3]. Several papers have shown
the superiority of hypergraph [14]–[17].

Hypergraph not only takes pairwise relationship into consid-
eration, but also models the higher order relationship among
three or more vertices containing grouping information.
Hypergraph method is widely used in data mining and
information retrieval tasks [6], [7]. Cai et al. [9] first train
attribute ion classifiers, then construct hypergraph based on
these classifiers, finally they obtain the relevance score by
hypergraph learning. Jing et al. [10] request users’ relevance
feedback, then they propagate relevance of feedback images to
other images, finally a hypergraph is constructed based on the
k-nearest mechanism. Gao et al. [34] construct hypergraph by
tags and local visual feature, and get the final relevance score
of images by hypergraph learning. Yu et al. [33] construct
hypergraphs based on different visual features separately, then
learn a linear model for ranking by these hypergraphs.

In this paper, we propose a hypergraph-based approach to
simultaneously utilize different visual features and tags for
image relevance learning. Fig. 1 illustrates the schedule of our
framework. In our system, each image is represented by both
a global feature and a local feature, like color moment and
SIFT. Besides visual content, semantic information, i.e. the
tags associated with image are also employed in our method.

We construct a hypergraph for query tag, in which the
vertices denote the images for ranking and hyperedges are
subsets of these images. Our constructed hypergraph contains
semantic and visual hyperedges. The semantic hyperedge is
generated by the co-occurrence tags of query. Global and
local visual features are simultaneously utilized to construct
the visual hyperedges. In the learning process, we identify a
set of relevance scores of images by iteratively updating them
and the weights of hyperedges.

The contributions of this paper can be summarized as
follows:

1) We present a novel joint learning approach for tag
based web image retrieval (JHR), which utilizes the
global, local visual features and textual feature simul-
taneously. Compared to using global, local visual
feature or textual feature alone or separately, the joint
hypergraph learning approach can capture more reliable
relationships between images.

2) We propose a new pseudo relevance feedback mecha-
nism for tag-based image retrieval. First, we conduct
clustering on the co-occurrence tags. Then we assign

images to clusters. Finally, we estimate the relevance
between image and query by fusing the image cluster
relevance and image relevance to query. The introducing
of cluster relevance is an assistant for calculating image
initial relevance score, which is superior to using image
relevance only.

3) We build the inverted file system for tags in offline
part. All steps of our algorithm are conducted offline.
In online retrieval, we only match the query tag to
get the retrieval results, thus the online search is very
efficient.

From a broader perspective, this paper exhibits a novel
method of utilizing multiple visual features to capture more
reliable relation between images for tag-based image retrieval
task. Different from using these features separately or sequen-
tially [2], [4], [5], [33], our proposed mechanism can effec-
tively achieve the fusion of multiple features.

The remainder of this paper is organized as follows.
In section II, we review the related work of the tag-based
image retrieval. In section III, we briefly introduce the hyper-
graph learning model. The system overview is illustrated
in section IV. We present the feature extraction in section V.
Section VI elaborates the details of each process in our system.
Experiments are shown in section VII, and discussions are
stated in Section VIII. Finally, conclusion and future work are
given in section IX.

II. RELATED WORK

Social image share websites like Flick usually ask the
users for several tags when they upload their sharing
images. The online retrieval can be conducted by key words
match. However, the retrieval results are not satisfactory
for the unreliable tags. Therefore, a series of methods are
proposed aiming at incorporating visual factors into image
ranking over the last decades. Hypergraph has shown its ascen-
dency in information retrieval task [14]–[17]. Many scholars
designed their algorithms based on hypergraph for image
retrieval. The following subsections present the existing works
related to the above two aspects respectively.

A. Image Visual Re-Ranking

The massive available images in internet make the retrieval
task challenging. There are lots of researches done on the tag
based image retrieval. Visual re-ranking is one of important
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methods to improve the retrieval results. The existing visual re-
ranking methods can be classified into three categories: clus-
tering based, classification based and graph based approaches.

Clustering based methods are based on the truth that
the relevant images to query share high visual similarity.
In clustering based methods, images in the initial list are first
grouped into different clusters and then sorted based on the
cluster conditional probability. Duan et al. [38] first cluster
the images by textual and visual features respectively and
then treat each cluster as a word (textual or visual). Finally,
the ranking problem is modeled as a multi-instance learning
problem in which the pseudo-positive samples are the top
ranked images and negative samples are randomly selected.
Tang et al. [39] propose an intent based search approach that
aims at solving the query ambiguity in TBIR. They ask the
user to click one query image, by which they capture the user’s
search intent. Then, the images from a group which is obtained
by text-based search are re-ranked based on both visual and
textual information.

The classification based image retrieval approach consists
of three steps in general: the positive and negative samples
from the initial retrieval list are selected first, then classifiers
are trained and finally the initial images are ranked according
to the scores from the trained classifier. Tian et al. [40]
propose a re-ranking method with user interaction, which
first selects images according to an active sample selec-
tion method and then asks the user to label them. Finally,
it learns a discriminative sub-manifold by the label informa-
tion. Lekshmi and John [55] first request a feedback image
from user and select positive images, then they train a
perceptron based on the selected samples. Instead of requiring
user’s effort, obtaining training samples by click informa-
tion is more practical. Several papers have shown that the
user’s click is a reliable clue for revealing images rele-
vant or not [2], [4], [5], [41]–[43]. Zhang et al. [4] treat the
click information as implicit relevant feedback and select the
top clicked images as the relevant samples. The re-ranking
processing is conducted by the learned simpleMKL model.
Xioufis et al. [43] also select the top clicked images as
relevance samples, then they extract multiple visual features
to train multiple classifiers. Finally, they fuse the results of
these classifiers to re-rank images. Yan and Hauptmann [44]
use conventional idea of pseudo-relevance feedback that treats
top ranked images as the pseudo-positives and bottom as the
pseudo-negatives.

In graph based methods, a graph is used to capture the
relations between images. The graph is constructed with
images or tags as nodes and the edges are weighted by
visual or textual likeness. Image re-ranking is performed
by graph learning algorithm. In these methods, the graph
construction plays the key role, since the relations and asso-
ciations of all nodes are represented by the graph. Jing and
Baluja [45] treat the re-ranking problem as random walk on an
affinity graph. The final retrieval list is obtained by the learned
weights of nodes. Hou et al. [47] first construct two graphs
based on semantic and visual information of images in initial
list. Then they apply random walk to get the relevance scores
by graph learning. Finally, they combine the semantic and

visual relevance scores to re-rank the images. Liu et al. [48]
generate two matrices based on visual information and “social
clue”. The final transition matrix is the combination of visual
matrix and “social clue” matrix. They apply random walk
to get the final relevance score. Instead of using only one
modality, many scholars integrate multi-modality to improve
the performance [2], [4], [5], [43], [46]. Yang et al. [2] first
construct a graph for every visual feature. Then, they model
the re-ranking as an optimization problem by the results of
multi-modality graph learning. Wang et al. [46] also construct
graph using multiple features, and the final relevance score is
learned by a joint optimization framework. Wang et al. [68]
design a semi-supervised multiple kernel learning approach
for image re-ranking and categorization, and multiple features
are made use of to enhance the generalization power of semi-
supervised learning.

B. Hypergraph Based Applications

Hypergraph has shown its effectiveness of higher-order
sample relationship modeling in many mechanism learning
tasks such as data mining and information retrieval [3], [34].
Yu et al. [35] propose an adaptive hypergraph learning method
for transduction image classification. Zhou et al. [3] propose
a general hypergraph framework that can be applied in clus-
tering, classification and embedding tasks. Liu et al. [58]
design a hash method based on hypergraph model, they first
utilize hypergraph to capture the relation of vertices and
generate the binary code by spectral hashing. Wang et al. [59]
propose a dimensionality reduction framework based on hyper-
graph. Fang et al. [60] utilize hypergraph designing a topic-
sensitive influencer mining approach for interest-based social
media networks. Wong and Lu [52] propose a 3-D object
description method. They denote the vertices the surface
patches of an object and the hyperedges represent the connec-
tion of the pair of boundary segments. Hong et al. [62]
construct hypergraph by k-nearest mechanism, then they
decompose the hypergraph Laplacian to obtain the fused
feature vector, by which they train an autoencoder network
for 3D pose recovery. Hong et al. [63] utilize hypergraph
Laplacian to preserve the local similarity to recover 3-D
human pose from silhouettes. Hong et al. [64] fuse multi-
view data to recognize 3D object, hypergraph is used to better
capture the connectivity among views. Hypergraph is also
employed in multi-label learning [14], image/video segmen-
tation [13], [69]–[71] and even music recommendation [53].

For image retrieval, many algorithms are designed based on
hypergraph technique. Liu et al. [7] propose a soft hypergraph,
which assigns each vertex to a hyperedge in a soft way.
The image retrieval task is formulated as the problem of hyper-
graph ranking. Zhu et al. [65] learn hash codes for mobile
image retrieval based on hypergraph, they utilize hypergraph
to model the high-order semantics of images. Zhu et al. [66]
construct a topic hypergraph and utilize the hypergraph Lapla-
cian to integrate the textual information into a unified frame-
work for content based image retrieval. Xie et al. [67] present a
dynamic hash method that constructs hash code by a dynamic
dictionary for online image retrieval. Jouili and Tabbone [51]
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design a hypergraph based on the graph representation of
image and transform the image retrieval task to the problem
of indexing graph. Huang et al. [6] construct the hypergraph
according to a probability value rather than the binary. An opti-
mization framework is applied to get the relevance score of
images. Cai et al. [9] select some general attributions and
train SVM classifier for each attribution. They construct hyper-
graph based on the scores from trained classifiers. The final
relevance score of image is obtained by hypergraph learning.
Jing et al. [10] first ask the user to mark an image as the
relevant feedback. With the visual assistant clues, they choose
other relevant images based on the feedback images. Then,
a hypergraph is constructed based on the labeled images
by k-nearest mechanism. Wang et al. [8] only consider the
visual and textual hybrid hyperedge and ignore single modality
hyperedge. They construct hyperedges for every visual word
and tag pair, which suffer from the enormous number of
hyperedges. Gao et al. [34] first remove the noisy tags of
images. Then they generate hyperedge by visual words and
the selected tags respectively. Re-ranking is conducted by
the score from hypergraph learning. Gao et al. [34] also
fuse different features by hypergraph model, however it has
considerable differences with this work. First, we fuse three
different features, i.e. the global, local and textual features to
improve the relevance, while [34] only take local and textual
features into consideration. Second, how to fuse the global
feature efficiently is an important problem and innovation
in our paper, while [34] doesn’t need to pay attention to this
problem. Third, [34] employ all the visual words to generate
the hyperedge without filtering, while we only choose the
higher frequency visual words in image cluster to generate
hyperedge. Fourth, our relevance feedback mechanism is
different from the [34]’s. In [34], the images are initially
ranked by the average Flickr Distance and they select the top
ranked images as the pseudo relevant images, while we rank
the images initially by fusing the cluster score and the average
google distance of images to query and top ranked images are
selected as the pseudo-relevant images. Fifth, [34] first remove
the noisy tags by a tag refinement algorithm, while we use the
original tags directly. Sixth, [34] select the tags for hyperedge
construction based on the TF-IDF (Term Frequency-Inverse
Document Frequency) value, while we select the tags with TF
value. Seventh, an inverted file system is finally built for fast
online retrieval in our paper, while [34] pays no attention to
the online retrieval.

However, most of the above literatures use only one visual
modality or use multiple visual modalities separately. In our
proposed method, we fuse the global, local visual and textual
features simultaneously by hypergraph model to improve the
retrieval performance.

III. ADAPTIVE HYPERGRAPH LEARNING MODEL

Before presenting our approach, we first briefly introduce
the hypergraph learning model.

A. Hypergraph Definition

Hypergraph is a generalization of traditional graph in which
the edges, called hyperedges, are arbitrary nonempty subsets of

the vertex set [11]. A hypergraph G = (V,E, ω) is composed
by a vertex set V, an edge set E, and the weights of edges ω.
Each edge e is given a weight ω(e). In image retrieval task,
the images to be sorted are the vertices and a hyperedge is a
subset of these images, as shown in Fig.1. A hypergraph G can
be represented by a |V| × |E| incident matrix H with entries
defined as follows:

h (ν, e) =
{

1 i f ν ∈ e

0 i f ν /∈ e.
(1)

where h(ν, e) = 1 indicates that the vertex v is associated
with edge e, otherwise h(ν, e) = 0.

The degree of a vertex ν ∈ V is defined as the sum of edge
weights associated with v:

d (ν) =
∑
e∈E

ω (e) h (ν, e) (2)

For a hyperedge e ∈ E, its hyperedge degree can be defined
as the number of vertices within the hyperedge:

δ (e) =
∑
ν∈V

h (ν, e) (3)

Let W denote diagonal matrix of the hyperedge weights:

W (i, j) =
{

ω (i) if i = j

0 if i �= j
(4)

B. Hypergraph Learning Model

For each tag, adaptive hypergraph learning based retrieval
is formulated as a regularization framework as follows:

arg
{
λRemp( f ) + �( f ) + μ�ω)

}
(5)

where λ,μ are the regularization parameters, f is the rele-
vance score vector that needs to be learned. �( f ) is the
normalized cost function, which is defined as:

�( f ) = 1

2

∑
e∈E

∑
u,v∈V

ω(e)h(u, e)h(v, e)

δ(e)

(
f (u)√
d(u)

− f (v)√
d(v)

)2

(6)

This term means that the relevance score of vertices in the
same hyperedge should be close.

For image retrieval task, the images in the same hyperedge
share similar group information. For example, images in a
hyperedge all contain a common tag. Thus, �( f ) makes the
relevance scores of these images close.

Remp( f ) is empirical loss:

Remp( f ) = || f − y||2 =
∑
u∈V

( f (u) − y(u))2 (7)

where y∈ R|V| and the component y(u), u ∈ V represents the
relevance level of image u to tag q. In this paper, we divide
the relevance level into two classes: relevant (with score 1)
and irrelevant (with score 0).

In the hypergraph learning based image retrieval, our aim
is to minimize the regularized loss function Eq. (5). Images
with larger f are more relevant to query. Thus, for a query
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tag q , we can sort the images by descending order according
to the learned relevance score f .

The empirical loss Remp( f ) guarantees that the final rele-
vance score f are not far away from the initial label informa-
tion y.

Ψ (ω) is an l2 norm regularizer on the weights, i.e. Ψ (ω) =
||ω||2ι2 . This strategy is popular to avoid overfitting [35].

C. Optimization Solution

For adaptive hypergraph learning, the scores of vertices f
and the weights of hyperedges ω are two parameters that need
to be learned. Let Dν and De denote the diagonal matrices
of vertex degree and the hyperedge degree respectively. Let


 =D
− 1

2
v H W D−1

e H T D
− 1

2
v , and � = I − 
, then the cost

function can be rewritten as:

�( f ) = f T � f (8)

where � is a positive semi-definite matrix called hypergraph
Laplacian.

Then the regularization framework can be rewritten as:

arg min
f,ω

{ f T � f + λ|| f − y||2 + μ
∑
e∈E

ω2(e)}

s.t.
∑
e∈E

ω (e) = 1 (9)

optimization problem as shown in Eq.(9) can be efficiently
solved by alternating optimization strategy [34].

First, we fix ω and optimize f . Differentiate costfunction
with respect to f , we can obtain:

� f + λ( f − y) = 0 (10)

Following some simple algebraic steps, we have:

f = 1

1 − ξ
(I − ξ
)−1 y (11)

where ξ = 1
1+λ .

Next, we fix f and optimize ω, and the equation becomes:

arg min
ω

{ f T � f + μ
∑
e∈E

ω2(e)}

s.t.
∑
e∈E

ω(e) = 1 (12)

This optimization problem can be solved by Lagrangian multi-
plier method. Update ω by the following equation:

ω(i) = 1

ne
− f T 
D−1

e 
T f

2neμ
+ f T 
i D−1

e (i, i)
T
i f

2μ
(13)

where ne denotes the number of hyperedge, 
 is defined as:


 = D
− 1

2
v H (14)

and 
i is the i -th column of 
.
The two steps above continue until convergence. When the

objective function reaches its optimal value, we get the final
score of the images to the query tag.

IV. SYSTEM OVERVIEW

In this section, we roughly show the main procedures of
our proposed method. As shown in Fig. 1, all parts in our
system can be conducted offline. We take query “airplane” as
an example to illustrate the main procedures in our system.
We first select the images with tag “airplane” as the dataset
to be sorted. Then, for each image, we extract its global
feature, local feature and textual feature. Third, a hypergraph
is constructed by fusing these three types of features. Next,
we obtain the initial label vector by pseudo relevance feedback.
Finally, we enter hypergraph incident matrix and initial label
vector into the hypergraph learning algorithm to obtain the
final relevance scores of images. Afterwards, we sort the
images by descending order according to the learned relevance
scores. We process all tags in dataset by above steps and store
the tag-ranked image list pairs to form the sorted inverted
file system. For online retrieval, when user issues a query,
we return the image list in the sorted inverted file system by
keywords matching.

V. FEATURE EXTRACTION

In this section, we introduce the visual feature and
textual feature extraction. In section V-A, we present visual
feature extraction and textual feature extraction is introduced
in section V-B.

A. Visual Feature Extraction

In our proposed method, global and local visual features
are fused to improve the retrieval accuracy. The following two
subsections introduce the two types of features we apply in this
paper.

1) Global Feature Extraction: In this paper, color and
texture features are selected as the global visual features.
Color feature is one of the most widely used visual features
in image retrieval, for its invariance with respect to image
scaling, rotation, and translation. Texture feature describes the
structure arrangement of surfaces and their relationship to the
environment, such as fruit skin, clouds, tree and fabric. For
each image in image set, we extract the 225-dimensional color
moment and 125-dimension texture feature. In our experiment,
we splice these two types of features into a 353-dimensional
vector and normalize it as the final global visual feature.

2) Local Feature Extraction: For the local visual feature,
we obtain it by BOW (bag-of-visual-words) model which is
trained based on local SIFT feature. We first extract local
SIFT descriptors of all images in data set. Then train a
visual vocabulary with o visual words by k-means clus-
tering. Thus, we can represent image by an o-D visual word
frequency vector. In our experiment, we use the hierarchical
k-means [35] to speed the clustering procedure. This paper,
we set o = 1000.

B. Textual Feature Extraction

In this paper, we treat the tags associated with image as its
textual feature. In order to express tag effectively, we employ
the word2vec model [32], [57].
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We train word vector model based on vocabulary of English
Wikipedia dataset [28] by word2vec algorithm. To generate
the word vectors well, we employ the skip-gram model. After
training finished, each tag can be represented by a 100-D
vector.

Besides training word vector, we also use the English
Wikipedia words to filter the tags and remove the tags of image
that are not in Wikipedia wordlist in our experiment.

VI. JOINT HYPERGRAPH LEARNING BASED

IMAGE RETRIEVAL

In this section, we elaborate our proposed method in detail.
In section VI-A, we introduce the semantic hypergraph
construction and present the visual hypergraph construction
by global and local features in section VI-B. Section VI-C
presents the pseudo relevance feedback method, and the
complexity analysis is given in Section VI-D. Appendix A
lists the main notations and definitions in this paper.

A. Semantic Hyperedge Construction

In this subsection, we elaborate the semantic hypergraph
construction, which is based on the co-occurrence tags of
query q. We choose tags at first and each selected tag generates
a semantic hyperedge.

We denote the image dataset with tag q by X =
{x1, x2, . . . , xn and n is the image number. Thus, for query q ,
we only need to conduct image search on X. We regard each
social image in image set X as a vertex in the hypergraph
G = (V,E, ω), V is the images in X, E is the hyperedge set
and ω is the hyperedge weight.

In the semantic hyperedge construction procedure, we first
choose co-occurrence tags with query q and the tags with
higher co-occurrence frequency are left for further hypergraph
construction.

Let T = t1, t2, . . . , tm be the co-occurrence tag set of
query q , from which we select the high frequency tags
for hyperedge construction. We denote the selected tag set
by T ∗ = {t1, t2, . . . , tm∗ , m∗ ≤ m. Then, each tag in T ∗ is
used to generate a hyperedge: the social images with the same
tags are connected. That is, a semantic hyperedge consists of
the images with a common tag in T ∗. Thus, we can obtain m∗
textual hyperedges.

Semantic hyperedge construction is based on the truth that
the tags with higher co-occurrence frequency with query q
is more possible to be relevant. For example, in NUS-Wide
dataset, there are 18,936 images containing tag “sky”, in which
8,525 images contain tag “clouds” and only 6 images contain
tag “tortoise”, so it is reasonable to believe that “clouds” is
more relevant to “sky” than “tortoise”. Therefore, we connect
the images with tag “clouds” in X to generate a hyperedge
while abandon the tag “tortoise”.

B. Visual Hyperedge Construction

In this subsection, we present our visual hypergraph
construction. We construct the first layer hypergraph by global
feature and the second layer is constructed based on the first
layer by local feature.

First of all, we cluster the image set X based on
global feature by mean-shift or k-means clustering approach.
Let B = {b1, b2, . . . , b|B| be the clustering results, where
bi , i ∈ [1, |B|] represents the i -th cluster and |B| represents
the number of clusters. Then, we generate hyperedge by
connecting the images within the same cluster, which is the
first layer visual hypergraph.

Next, we use the local feature, i.e. SIFT feature [16],
to construct the second layer hypergraph. We employ the BOW
to represent the images [17]–[20] beforehand.

We construct the second layer hypergraph based on the
BOW representation of images. Let I = {I1, I2, . . . , I|bi | be
the images in cluster bi ∈ B , we count the frequency of all
the visual words in cluster bi and only retain top K visual
words with highest frequency. Each term of the K visual
words generates a visual hyperedge. That is to say, the images
containing the same visual word forms a hyperedge and every
cluster can generate K hyperedges. Thus we obtain |B| × K
visual hyperedges in total.

In this construction process, we select the images in the
first layer to construct the second layer hyperedge through the
local visual clues, i.e. BOW. From the process of the first
layer visual hyperedge construction, the images in the second
layer hyperedge are not only globally similar but also locally
similar.

We choose the high frequency BOWs based on the fact
that relevance images share highly visual similarity [54].
That is to say, there are some visual modalities appearing
repeatedly in relevant images. In turn, the images with high
frequency visual modality are more possible to be relevant.
In our method, the visual words are the instance of visual
modality. Thus, we tie the images sharing the high frequency
BOWs by hyperedges and assign these images similar scores
by hypergraph learning (see explanation of Eq. (6)).

C. Pseudo Relevance Feedback

Our pseudo relevance feedback mechanism consists of five
steps. 1) tag clustering, we cluster all the co-occurrence tags
of query q. 2) relevance of cluster to query, the relevance of
each cluster to the query is calculated. 3) semantic relevance,
we compute the semantic relevance score of image to query
in this step. 4) relevance of image to query, semantic relevance
and cluster relevance are fused as the relevance estimation of
image to query. 5) pseudo-relevance feedback, relevance level
of image is labeled according to its order determined by the
relevance estimation in step 4.

1) Tag Clustering: With the trained word vector, cosine
similarity is introduced to measure the similarity between tags:

stag(ti , t j ) = < vi , v j >

||vi || × ||v j || (15)

where vi is the word vector of tag ti and || · || represents the
vector norm. Thus, we can obtain the similarity matrix of tags.
We conduct clustering on the co-occurrence tag set T by AP-
clustering algorithm [27]. Similar tags can be assigned into
the same cluster. We choose AP-Cluster is mainly because
that AP-Clustering algorithm is not necessary to assign the
number of cluster center [32]. We denote the clustering results
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by C = {c1, c2, . . . , c|C |, where |C| is the cluster number we
obtain.

2) Relevance of Cluster to Query: We take a cluster c ∈ C
as an example to explain the relevance computing. Let T c =
{tc

1 , tc
2 , . . . , tc

|T c| represent the tags in cluster c. The relevance
between cluster c and the query q is defined as:

r = 1

|T c|
|T c |∑
i=1

log(1 + hc
i ) (16)

where hc
i is the tag tc

i co-occurrence frequency with query q .
Here we utilize the log transform to mitigate the big difference
between tag frequencies in dataset.

3) Semantic Relevance: We simply estimate the semantic
relevance of an image xi to the query tag q as the average
semantic similarity between q and all tags of image xi as
follows:

s (xi , q) = 1

|Ti |
∑
t∈Ti

G D (q, t) (17)

where Ti is the tag set of image xi , |Ti | is the number of tags
associated to xi andG D(q, t)is the Google distance of tag q
and tag t :

G D (q, t) = ex p(−max {log R (q) , log R (t)} − log R(q, t)

log G − min{log R (q) , log R(t)} )

(18)

where G is the total number of image in the dataset X , R(q, t)
represents the number of image tagged by query q and t
simultaneously.

4) Relevance of Image to Query: First, we assign the image
xi to a unique tag cluster that shares maximum tags with the
image.

Then, we determine relevance of tag q to image xi by the
linear combination of the corresponding cluster relevance and
the semantic relevance as follows:

F (xi , q) = αri + (1 − α) s (xi , q) (19)

where ri is relevance score of cluster which image xi belongs
to, it’s computed by Eq. (16). α ∈ [0, 1] is a constant.

5) Pseudo Relevance Feedback: Based on the relevance
score F , we sort all the web images that associate with the
tag q in descending order. In our pseudo relevance feedback
approach, the images in the top A are selected as the relevant
images (with their relevance level y is 1) and the left image
are considered as the irrelevant images (with their relevance
level y is 0).

When we obtain the label vector y by above steps and
the hypergraph by Section VI-A, B. Remp( f ) in Eq. (7)
and �( f ) in Eq. (6) can be specified. We can model our joint
hypergraph learning based image retrieval problem based on
Eq. (5). Next, we conduct the iteration algorithm introduced
in Section III-C. Then, we obtain the relevance score f of all
images containing tag q. Finally, we sort the images according
to learned f in descending order.

Thus, for each query tag, we can obtain its ranked image
list, and our algorithm doesn’t require user’s interaction with
the help of our pseudo-relevance feedback. Therefore, the

proposed algorithm can be conducted offline completely and
the inverted file system can be built offline.

For a tag �� in the dataset, we conduct our proposed algorithm
and rank the images with tag �� according to the learned
relevance score. Thus, we can obtain the corresponding ranked
image list �� for the tag ��. We traverse all the tag and save the
tag-ranked image list pair < t, l > to form the inverted file
system. The online retrieval will be very simple. When user
issues a query p, we obtain the corresponding image list ��p

by key words matching in our inverted file system and return
��p as the retrieval results.

D. Algorithm Complex Analysis

Our computational time cost is mainly from three parts:
hypergraph construction, hypergraph learning and our rele-
vance feedback mechanism. The time cost of hypergraph
construction is caused by the mean-shift clustering algorithm
applied in our first-layer hypergraph generation, whose
complexity is O(C1n2l), where n and C1 are the image(vertex)
number and iteration times of all points on average respec-
tively, l is the feature length. In mean-shift clustering,
the number of iterations C1is inversely proportional to the
bandwidth h. In the hypergraph learning process, we first fix
the weights of hyperedges ω and optimize the relevance score
f by Eq. (11), the complexity is O(C2n3), where C2 is the
number of iterations of hypergraph learning. We next fix f and
update the weights of hyperedges ω according to the Eq. (13),
whose complexity is O(nM2), then the total complexity of
update all hyperedge weights is O(C2nM3), where M is the
total number of hyperedge. The time cost of pseudo-relevance
feedback is mainly from the applied AP clustering algorithm,
whose complexity is O(C3n3), where C3 is the number of
iterations of AP clustering.

From the analysis above, the computational cost of our
proposed algorithm is O(C1n2l+(C2 +C3)n3+C2nM3), where
n and Mare the image (vertex) number and hyperedge number
respectively, C1,C2 and C3.are the number of iterations for
mean-shift clustering, hypergraph learning and AP clustering
respectively.

VII. EXPERIMENTS

In order to demonstrate the effectiveness of our global
local joint hypergraph learning based image retrieval approach
(denoted by JHR1), we conduct experiments on the NUS-Wide
image set by utilizing following 20 tags as query: animal,
birds, boats, bridge, buildings, clouds, dancing, flowers, grass,
house, lake, moon, mountain, ocean, person, plane, plants,
reflection, sports and tower. We systematically make compar-
isons for the proposed JHR and following six tag-based image
retrieval approaches:

a) RR: Relevance-based ranking [22], an optimization
framework is applied to automatically re-rank images
based on visual and semantic information.

b) DR: Diverse ranking [23]. In this algorithm, the topic
coverage of each image is calculated. Then, apply the

1The code can be found in page: https://github.com/wangyxxjtu/JHR-Code.
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PageRank model based on the topic coverage to re-rank
the initial retrieval results.

c) GBR: Global-based semi-supervised learning [21].
Semi-supervised learning has been widely applied
in multimedia, such as image/object retrieval [25]–[27].
Here we adopt pseudo relevance feedback
in Section VI-C.

d) PHR: Probability Hypergraph ranking [6]. Hyperedge
adscription of a vertex is represented by a probability
value rather than binary, then an optimization framework
is applied to get the relevance scores of images.

e) HRPP: Hypersphere-based relevance preserving projec-
tion [61]. A hypersphere-based dimension-reduction
algorithm is proposed, and the reranking is conducted
by the new image features and estimated hypersphere
center.

f) MGFR: Multi-graph fusion ranking [54]. Greedy selec-
tion is conducted first based on seed images, and multi-
graph fusion mechanism is then applied to re-rank
image.

In our baseline approach, we set the parameter K as 3 and
set the hypergraph learning parameters λ = 1 and μ = 0.01.
Section VIII-B will discuss parameter K and discuss parameter
λ and μ in section VIII-C. We set α = 0.1, A = 100 respec-
tively and discuss these two parameters in Section VIII-G and
Section VIII-F respectively.

To make fair comparisons for seven methods, we use the
parameters that the corresponding paper suggests for RR [22],
DR [23], GBR [21] PHR [6], HRPP [61] and MGFR [54].

A. Dataset

In order to evaluate the performances of different
approaches, we conduct experiment on NUS-Wide dataset.
It contains 269648 images and 5018 unique tags from Flickr.
Furthermore, NUS-Wide provides six types of low-level visual
features including: color histogram (CH-64D), color correla-
tion histogram (CORR-73D), edge-detection histogram (EDH-
73D), block-wise color moments (CM-256D), and wavelet
textures (WT-128D). Thus, we can directly use these features
in our experiment.

B. Performance Evaluation

In the NUS-Wide dataset, each image is manually labeled
into two relevance levels for test tags: 1-relevant and
0-irrelevant. Thus, we can evaluate the seven comparison
methods objectively.

1) Criteria of Performance Evaluation: We use the
NDCG [32] and average precision under depth n (denoted
as AP@n) as the relevance performance evaluation which are
expressed as follows:

N DCG@n = 1

W

n∑
i=1

2rel i − 1

log(1+i)
(20)

AP@n = 1

n

n∑
i=1

⎛
⎝ i∑

j=1

rel j

i

⎞
⎠ (21)

Fig. 2. Top 10 retrieval results for query “lake”, red frame indicates the
irrelevant images. (a) RR. (b) DR. (c) GBR. (d) PHR. (e) HRPP. (f) MGFR.
(g) JHR.

where W is a normalization constant that is chosen so that the
optimal ranking’s NDCG score is 1, reli indicates the relevant
level of image xi to the query tag q, which is defined as:

reli =
{

1, i f xi i s relevant to q
0, i f xi i s irrelevant to q

(22)

2) Performance Analysis: Let MAP@n and MNDCG@n
denote the mean values of AP@n and NDCG@n for all the
20 query tags. The MNDCG@n and MAP@n with depth=1,
10, 20, 50 and 100 are shown in Fig. 4 and Fig. 5. For example,
the MNDCG@20 of seven methods are 0.4783, 0.609, 0.678,
0.709, 0.747, 0.713, and 0.789.

From Fig. 4 and Fig. 5, we can see that our JHR
method achieves better performance than all the six competing
methods. From Fig. 4, when the depth is 100, the MNDCG
of JHR can reach 0.774, while RR, DR, GBR, PHR, HRPP
and MGFR are 0.5102, 0.658, 0.682, 0.684, 0.702 and
0.689 respectively. MGFR can reach the same performance
of top 1 with our JHR. However, with the depth deepening,
our JHR performs much better than MGFR. This indicates that
our proposed joint retrieval method is effective. From Fig.5,
we can obtain the same conclusion.

Fig. 2 and Fig. 3 show the top 10 results for example
query lake and flowers for all the seven methods respectively.
The irrelevant results are marked by red frames. As shown
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Fig. 3. Top 10 retrieval results for query “flowers”, red frame indicates the
irrelevant images. (a) RR. (b) DRR. (c) GBR. (d) PHR. (e) HRPP. (f) MGFR.
(g) JHR.

Fig. 4. The MNDCG of all 7 ranking methods under different depths.

in Fig.2 and Fig.3, the top ranked images determined by RR,
DR GBR PHR, HRPP and MGFR all suffer from the lack of
accuracy, their retrieval results all contain irrelevant images
in top 10 retrieval results. From Fig.2 (a), we find that the
third, the fourth images, the ninth and the tenth images of
RR are irrelevant. The DR, GBR, PHR, HRPP and MGFR
methods also introduce the irrelevant images. While results of
our JHR method are all relevant.

VIII. DISCUSSION

In this section, we completely discuss the impact of different
parameters and the metric methods involved in our proposed

Fig. 5. The MAP of all 7 ranking methods under different depths.

Fig. 6. MNDCG of three methods.

Fig. 7. MAP of three methods.

JHR method. We will validate our visual feature fusion method
and discuss the number of visual words for the second hyper-
edge construction and the parameter in hypergraph learning.
For metric methods, we will discuss about the relevance of
image to query defined by Eq. (17). Besides parameters and
metric methods, clustering algorithms in our method are also
discussed in this section.

A. Discussion About the Visual Feature Fusion

In this subsection, we validate the proposed visual feature
fusion method in this paper. Let JHR-G and JHR-L denote our
method with only global and local visual features respectively.
Fig. 6 and Fig.7 show the MNDCG and MAP of different
methods respectively.

From Fig. 6 and Fig. 7, we can find that JHR performs much
better than JHR-G and JHR-L. This means that using global
and local features simultaneously is better than using any of
them alone and our proposed global-local fusion mechanism
is effective.
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Fig. 8. The MNDCG of JHR under K = {1, 3, 5, 7, 10, 15}.

We can also find that the JHR-G performs better than
JHR-L. This is because that the global visual feature contains
more information and is more reliable than the local visual
words.

What needs to be mentioned is that the JHR-L method
is very similar to the approach proposed in reference [34].
Gao et al. [34] first revise the tags, then they employ
selected tags and the visual words to generate hyperedges.
The re-ranking is conducted by the hypergraph learning. If we
skip the tag refinement step and replace the pseudo-relevance
feedback with ours, the JHR-L is equivalent to the method
in [34].

B. Discussion About the Number of Visual Words in Second
Layer Hyperedge Construction

In this part, we will discuss the parameter K in the second
layer visual hyperedge construction. The parameter K repre-
sents the number of high frequency visual words that we select
to generate the second layer hyperedge. The other parameters
are the same as in Section VII.

Fig. 8 shows the MNDCG@n, and we can observe that
under K = 1, 3, the MNDCG@1 can reach 0.8. In Fig.8,
the MNDCG of K = 1 performs best under depth 1, 10, 20,
when the depth is over 20, MAP of K = 3 is the best. With
the depth deepening, JHR with K = 3 performs better than
the others.

As we expressed in Section VI-B, the high frequency
visual words are the instance of visual modalities appearing
repeatedly among relevant images. From Fig. 8, we can see
that there are 3 visual modalities shared by relevant images
on average. Too lower K will miss the true visual modality
and too higher will introduce the false visual modality, both
situations will drop the performance.

C. Discussions About Weight λ and μ Selection

In this part, we discuss the impact of the regularization
parameter λ and μ, set the other parameters be the same as
in Section VII.

Fig. 9 and Fig. 10 show the MNDCG@20 performance
curves with respect to the variation of λ and μ respectively.
In Fig. 9, we fix μ = 0.01 and vary λ from 1 to 1000 and
In Fig. 10, we fix λtobe1 and vary μ from 0.0001 to 0.1. From
Fig. 9 and Fig. 10, we can see that our method outperforms

Fig. 9. The MNDCG of JHR under λ = {1, 20, 50, 100, 200, 500, 1000}.

Fig. 10. The MNDCG of JHR under μ = {0.0001, 0.001, 0.01, 0.02,
0.05, 0.1}.

the comparison methods when λ and μ vary in a wide range
and compared with parameter λ, μ have smaller effect on the
experiment results.

D. Discussion About the Clustering Algorithm

In our algorithm, both the construction of first layer
hypergraph and the pseudo relevance feedback use clustering
algorithm. In this part, we discuss the impact of different
clustering algorithms.

1) Clustering Algorithm in First Layer Hypergraph
Construction: We choose the mean-shift clustering algorithm
for the first layer visual hypergraph construction by global
visual feature and the images in the same cluster form a
hyperedge, see Section VI-B for details.

In this part, we conduct experiments using AP and k-means
clustering algorithms and discuss the performance difference.

In Fig. 11, Global-A denotes the JHR with applying
AP-clustering algorithm [27], Global-K denotes the JHR with
applying k-means clustering and Global-M is the JHR with
mean-shift clustering. From Fig. 11, Global-M outperforms
Global-A and Global-K. Under different depths, the perfor-
mances of JHR with three different clustering algorithms are
close.

In our method, we map the visual similar images into
the same group by clustering and give them close score
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Fig. 11. The MNDCG of JHR applying different clustering algorithms
in visual hypergraph construction.

Fig. 12. The MNDCG of JHR applying different clustering algorithms in tag
clustering.

by hypergraph learning. From Fig. 11, although JHR with
mean-shift cluster is the best, the other two situations, JHR
with AP cluster and K-means, also perform much better
than the competing methods and are close to the JHR with
mean-shift.

2) Clustering Algorithm in Pseudo-Relevance Feedback:
In our pseudo feedback mechanism, we choose the AP clus-
tering algorithm to cluster the co-occurrence tags of query q
and estimate the relevance between image and query q based
on these tag clusters, see Section VI-C for details.

In this part, we also apply mean-shift and k-means clus-
tering for comparing. Fig. 12 shows the MNDCG of JHR with
different clustering algorithms in pseudo relevance feedback.
Tag-A, Tag-M, Tag-K denote the JHR with AP-clustering,
mean-shift and k-means clustering for tag clustering in pseudo
relevance feedback respectively.

From Fig. 12, we can observe that Tag-M and Tag-
A perform better than Tag-K, Tag-M and Tag-A are very
competitive.

In the relevance feedback, we choose the clustering
algorithm to give a baseline score of images in the same
cluster. From Fig. 12, we can find that performances of JHR
with different clustering algorithms are close.

From the above discussion, we find that our JHR with
different clustering algorithms all perform similarly and much
better than the comparison methods. This means that our
clustering idea is the key rather than the clustering algorithm
we apply.

TABLE I

THE PERFORMANCES OF DIFFERENT MEASURES IN EQ. (17)

Fig. 13. performance under A = {20, 50, 100, 200 400, 800}.

E. Discuss the Relevance Measure of Image to Query

We use Eq. (17) to measure the similarity between query
q and image xi and s(xi , q) measures the semantic similarity
between image xi itself and q , which is calculated based on
Google Distance.

In this part, we compare the impact on performance of JHR
with different similarity measures. We choose the Gaussian
kernel measure and cosine similarity for comparing. The simi-
larity based on Gaussian kernel can be written as:

sG(xi , q) = 1

|T i |
∑
t∈Ti

exp(−||vq − vt ||2
2σ 2 ) (23)

where vq and vt are the word vectors of query q and tag t ,
Ti is the tag set of image xi and || · || is the vector norm, |T i |
is the number of tags in Ti , σ is a constant, we simply set it
as 0.5.

The cosine similarity is defined as:

sc (xi , q) = 1

|T i |
∑
t∈Ti

< vq , vt >

||vq ||||vt || (24)

where vt is the word vector of tag t .
Table 1 shows the performance comparison and we

can observe that the Google distance and Gaussian kernel
perform better than the cosine similarity, the former two are
very competitive. Under the measure of average NDCG20,
Gaussian kernel is better, while under average AP@20, Google
distance is more outstanding.

F. Discussion About the Parameter A

In this subsection, we discuss the impact of parameter
A,which deermines the number of pseudo-relevant images
in our pseudo relevance feedback method. Please see
Section VI-C for details.

Fig.13 shows the MAP@20 and MNDCG@20 for
different A. We can see from Fig. 13 that the MAP and
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Fig. 14. performance under α = {0, 0.1, 0.2, 0.5, 0.8, 1}.

MNDCG exhibit the coincident tendency and the MAP
performs more smoothly when the Avaries from 20 to 800.
If A = 20, which means we only mark the top 20 images as
the relevant and the left are the irrelevant, the performance is
not that good. This may be too many truly relevant images
are marked as irrelevant, the case of A = 50 can validate this
explanation. When A = 100 and 200, the poor performance
maybe because the top 100 and 200 introduce many irrelevant
images that we mark as the relevant. when A is over 200,
we can see that the MAP and MNDCG are consistent growth,
this because we mark the most images as the correct relevant
level.

It seems that the MNDCG experiences a sharp shock
when A = 100, in fact, it only changes less than 0.006,
which is acceptable. Thus, the whole performances shown
in Fig.13 change smoothly.

G. Discussion About the Parameter α

In this part, we discuss the performance of JHR under
different α. In Eq. (19), parameter α is the weight of image
cluster score in pseudo relevance feedback. Fig. 14 shows the
performance under different α.

In Fig. 14, the average NDCG and AP show the coincident
tendency. We can find that the if α = 1, which means that
we mark images only based on the relevance score of cluster
that the image belong to (the first term in Eq.(19)) and pay
no attention to the relevance score of image itself to the tag
(the second term in Eq.(19)). In this case, the performance
is the worst. This is because the relevance score of cluster
in Eq. (19) aims at giving a baseline score of images in the
same cluster and is only the assistant of relevance score of
image itself. While α = 0 only focus on the relevance score of
image itself to the tag, it also doesn’t achieve the best perfor-
mance. This reveals that the introducing of cluster relevance
score cluster makes sense. We also observe that performance
under α = 0.1, 0.2, 0.5 are very close and α = 0.1 performs
best.

From the above discussions, we can see that our proposed
method not only outperforms the comparing methods but
exhibit relatively smooth change under different learning
parameters, clustering methods and the metric methods. This
means that our feature fusing mechanism is the key rather than
the parameters and processing methods we apply

Fig. 15. The performance of two learning algorithms.

H. Discussion About the Learning Algorithm

Reference [35] also proposes an adaptively hypergraph
learning algorithm. In this subsection, we conduct experiment
to discuss the performance difference.

Fig.15 shows the MNDCG of two learning algorithms,
where JHR-A is JHR with the learning algorithm proposed
by [35]. From Fig. 15, the adaptive learning algorithm applied
in this paper performs much better than the learning algorithm
in [35]. This may be because:

1) The algorithm proposed by [35] is designed for classi-
fication task. While the learning algorithm in our paper
is a learning to rank framework. The algorithm in [35]
has greater demands on the labels. However, the image
labels in our paper are marked by the pseudo-relevance
feedback algorithm and are not the ground truth actually.

2) The images labeled as irrelevant are from more than one
class. As introduced in our pseudo-relevance feedback
algorithm, only a small part of images are labeled as
relevant. The images labeled as irrelevant contains many
noisy images, and these images are dissimilar with each
other. Regarding these image as one class (the irrelevant)
may confuse the learning procedure.

As a result, the learning algorithm in [35] exhibits poor
performance. For example, the MNDCG@1 of JHR-A is
only 0.6, while JHR can reach 0.8. And JHR is much
more outstanding than JHR-A when the depth varies from
1 to 100. From the theoretical analysis and experiment results,
the learning algorithm applied in this paper is more appropriate
for our ranking task.

I. Discussion About the Deep Feature

In this paper, we employ the traditional features, i.e. color
moment and texture feature, as the global features to represent
images. While deep feature is widely used recently. In this
subsection, we extract the 4096-D deep feature using FC-layer
of pre-trained VGG-16 network, and conduct experiments to
investigate the performance difference between traditional and
deep features.

Fig. 16 shows the experiment results, where JHR-D and
JHR-T are JHR with deep feature and traditional feature
respectively, JHR-Gt and JHR-Gd represents JHR with only
(global) traditional and deep features respectively while
ignoring the local feature, JHR-L represents JHR with only
local feature.
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Fig. 16. The MNDCG of five methods.

TABLE II

THE TIME COST OF ALL METHODS (UNIT: SECOND)

Fig. 16 shows the MNDCG of five methods. There are three
important observations from Fig. 16:

1) JHR-D and JHR-Gd perform better than JHR-T and
JHR-Gt respectively, which means that deep feature is
better than traditional feature in our JHR algorithm.

2) JHR-T is more outstanding than JHR-GD. This reveals
that although deep feature performs better than the
traditional, only utilizing it alone can’t reach the perfor-
mance of utilizing traditional global and local features
simultaneously, which indicates the high efficiency of
our feature fusion mechanism.

3) The most important observation is that JHR-D performs
much better than JHR-Gd, JHR-L, and JHR-T is better
than JHR-Gt and JHR-L. This indicates that the whether
it’s traditional feature or deep feature, using global and
local features simultaneously is better than using any of
them alone.

From above discussion, we can obtain two conclusions:
1) our feature fusion mechanism is the key instead of the
feature we apply. 2) deep feature can also be used in our
algorithm and can improve our performance further.

J. On the Response Time Comparison

In this subsection, we give the response time comparison
for all the methods. We conduct all the test queries using
Matlab R2015b on Windows 10 (X64) system with Intel Xeon
E5 CPU and 32G memory. The results are shown in Table 2.

In order to finish the hypergraph learning on all the test tags,
the necessary time is around 10 hours. In fact, the hypergraph
construction and learning can be conducted offline, this is

TABLE III

NOTATIONS AND DEFINITIONS

because we design the pseudo-relevance feedback algorithm
to replace the user interaction and our algorithm can be
conducted automatically and offline. The online retrieval is
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only a key word matching process. Therefore, the time cost
is accepted. The time cost mentioned above is counted by
conducting proposed algorithm on the test tags sequentially.
In fact, the learning process of each tag is independent and
the program can be designed parallel, therefore the time cost
can be further reduced.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a new joint re-ranking method
for social image retrieval, in which we simultaneously utilize
global, local visual features and textual feature to improve the
retrieval accuracy. Experiment results on NUS-Wide dataset
show that combing the global and local visual features is much
better than using any of them alone and also more efficient
than the comparison methods. The discussions in experiment
show that our method has lighter dependence on the learning
parameters, clustering methods and the metric methods we
apply.

However, in our method, we only consider the relevance of
result and ignore the diversity. In our future work, we will
investigate the diversity by multiple visual features.

APPENDIX A
NOTATIONS AND DEFINITIONS

See Table III.
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