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Improved Continually Evolved Classifiers for
Few-Shot Class-Incremental Learning

Ye Wang , Guoshuai Zhao , Member, IEEE, and Xueming Qian , Member, IEEE

Abstract— Few-shot class-incremental learning (FSCIL) aims
to continually learn new classes using a few samples while
not forgetting the old classes. The scarcity of new training
data will seriously destroy the model’s stability and plasticity.
Continually Evolved Classifiers (CEC) (Zhang et al., 2021), a kind
of framework, maintains the stability by freezing the encoder
and achieves the plasticity by evolving the classifier along with a
pseudo incremental learning scheme. However, the performance
of CEC is limited due to 1) inequitable information gains
between classifier weights and test features, and 2) inefficient
learning task construction strategy. To address the first issue,
we propose a Knowledge-guided Relation Refinement Module
(KRRM) to update both the classifier weights and test features.
The main function of KRRM is achieved through cross-attention
to propagate the knowledge represented by old encoded data.
To address the second issue, we design a Pseudo Incremental
relation Refinement Learning (PIRL) that utilizes a novel hard
concepts mining strategy to mine hard concept tasks globally
and locally. By successfully addressing the two issues, our pro-
posed method, named Improved Continually Evolved Classifiers
(CEC+), extends the potential of CEC without introducing any
additional parameters. More precisely, extensive experiments on
CIFAR100, miniImageNet, and Caltech-UCSD Birds-200-2011,
demonstrate that our proposed method surpasses prior state-of-
the-art methods.

Index Terms— Lifelong learning, few-shot class-incremental
learning, image recognition, cross-attention mechanism.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have achieved remark-
able success on many vision tasks [1], [2], [3], [4].
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However, such a model is designed to process only pre-
defined classes, which limits it’s application on many practical
image recognition scenarios where the number of recognition
targets keeps growing. Especially, when classes of new coming
targets are different from the previous ones, this learning
paradigm is called Class-Incremental Learning (CIL) [5].
Despite the advance of current CIL methods [6], [7], the
success of these methods lies in the availability of sufficient
annotated training samples for new classes, which requires a
significant investment of time and effort. Additionally, in some
practical scenarios like identifying rare bird species, training
samples for new classes are scarce. Regarding such a challenge
scenario, few-shot class-incremental learning(FSCIL) is pro-
posed to explore efficient solutions to help the model learn new
classes with few annotated training samples incrementally.

FSCIL simulates real-world scenarios and sets up a series
of sequentially incoming learning sessions. The first session,
dubbed the base session, consists of lots of training samples.
In contrast, the following sessions, called incremental sessions,
only have a few training data for each class. In each session,
only the data of the current session is available while the model
needs to classify all encountered classes. The challenge lies in
that is the scarcity of new training data will seriously destroy
the model’s stability and plasticity.

To address these issues, most existing methods [1], [8], [9]
freeze the encoder in incremental sessions to maintain the
stability and design various modules or strategies to improve
the plasticity. For example, Continually Evolved Classifiers
(CEC) [1], a superior method, proposes an Adaption Module
(AM) that evolves the classifier by propagating the context
information between classifier weights, and equips a pseudo
incremental learning strategy (PIL) to learn the AM’s parame-
ters. However, the performance of CEC is still limited due to 1)
inequitable information gains between classifier weights and
test features, 2) inefficient learning task construction strategy.

To address the first issue, we propose a Knowledge-guided
Relation Refinement Module (KRRM) to update both the
classifier weights and test features by knowledge propaga-
tion. In incremental sessions, the frozen encoder inevitably
represents new classes weak. Despite updating the classifier
weights can help the classifier select representative features
for each test sample, poorly represented test samples still make
the relation between the classifier weights and the test features
not discriminative. To enable the classifier classify new classes
well, it’s optimal to update both the classifier weights and
test features. Considering that some general features of new
classes also exist in old classes. For example, the zebra has
a similar stripe type to the tiger and a similar body shape
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Fig. 1. Compared to the (a) baseline, (b) our proposed method makes more
discriminative decisions by using old knowledge to augment both classifier
weights and test features. SA:self-attention, CA:cross-attention, M refers to
memory used to store knowledge.

to the horse. We represent the old knowledge in the form of
prototypes for memory efficient and propose a Knowledge-
guided Relation Refinement Module (KRRM) to augment both
the classifier weights and test features by propagating the
knowledge, where the knowledge propagation is achieved by
cross-attention mechanism. By such a way, we can not only
help the classifier weights to select representative features
for each test sample, but also can utilize the general feature
existed in the old knowledge to augment the test feature, thus
making the relations between the classifier weights and test
features more discriminative. As shown in Figure 1, compared
to CEC, more discriminative decisions can be made with this
module conducted. Additionally, apart from the prototypes,
we also explore other old knowledge forms, such as train-
able prototypes or features. Interestingly, we find that though
there exists a trade-off between stability and plasticity under
different forms of old knowledge, both can achieve excellent
performance.

To address the second issue, we design a Pseudo Incremen-
tal relation Refinement learning (PIRL) using a hard concept
mining strategy to construct more effective learning tasks.
To enable the ability of KRRM, it’s optimal to train it under
the incremental setting. However, the incremental classes only
include scarce training samples and the old data is not available
making such training impossible. When facing this difficulty,
the pseudo incremental learning (PIL) proposed by CEC
mimics the real incremental setting and constructs a series of
pseudo incremental tasks to learn their adaption module, where
each task consists of several pseudo base classes sampled
from the base session and pseudo new classes obtained by
rotating the pseudo base classes. However, this strategy is
contradictory and sub-optimal. The intrinsic reason is that the
sampled pseudo base classes only consists of few training
samples similar to real new classes, the constructed pseudo
incremental tasks actually only consist of several pseudo new
classes which do not match the real incremental setting,
thus compromising the model’s performance. To construct
more effective pseudo learning tasks, we propose the Pseudo
Incremental relation Refinement learning (PIRL). In contrast

to CEC, PIRL first samples several classes from the base
session as pseudo new classes and the remaining classes as
pseudo base classes. Each pseudo new class is composed of a
support set and a query set, which can be treated as the training
and test sets of real new class, respectively. The pseudo new
classes are then rotated and combined with rotated classes to
construct local learning tasks. By using the local learning tasks
to optimize the KRRM, the model’s plasticity is improved.
However, optimizing only the model’s plasticity can affect
its stability, so we next construct global learning tasks by
combining the pseudo old and new classes. By introducing
the information of base classes, impact of local learning tasks
on the model’s stability is mitigated. Furthermore, considering
that a delicately pre-trained model may still classify these tasks
well, we combine the query features and corresponding top-K
classifier weights to construct hard concept tasks from local
and global learning tasks.1 By using these hard concept tasks
to optimize the KRRM, the ability of the KRRM is enhanced.

By solving the two issues, our proposed method, dubbed
Improved Continually Evolved Classifiers (CEC+), success-
fully extends the potential of CEC without introducing any
additional parameters. We conduct extensive experiments
on three popular FSCIL benchmark datasets, CIFAR100,
miniImageNet, and Caltech-UCSD Birds-200-2011. The qual-
itative and quantitative results demonstrate CEC+ surpasses
prior state-of-the-art methods.

In summary, our main contributions are as follows:
• We propose Improved Continually Evolved Classifiers

(CEC+) that refines the relations between classifier
weights and test features by knowledge propagation.

• We propose a Knowledge-guided Relation Refinement
Module (KRRM) that utilizes cross-attention to adap-
tively mines valuable information from the stored knowl-
edge to augment classifier weights and test features.

• We design a Pseudo Incremental relation Refinement
Learning (PIRL) using hard concepts mining strategy
to mine hard concept tasks to augment the ability
of KRRM.

II. RELATED WORK

In this section, we first review several studies about few-
shot learning (FSL) and class-incremental learning (CIL)
as they present preliminary knowledge of our work. Then,
we briefly introduce the recent research focused on few-shot
class-incremental learning (FSCIL).

A. Few-Shot Learning

Few-shot learning (FSL) aims to learn a classifier to classify
new classes using a few samples. Current FSL can be catego-
rized into three parts: metric-based, optimization-based, and
hallucination-based. The metric-based methods measure the
relation between the support and query sets by leveraging fixed
metrics, learning transferable deep metrics, or Graph Neural

1In FSCIL, we often use the prototype given by the mean feature of
the training data to represent each class. As a result, the classifier weights
initialized by prototypes capture the concepts of their corresponding classes.
Furthermore, given that the top-K classifier weights of each query feature
tend to be highly similar, we regard them as hard concepts, and the tasks
constructed using these weights and query features as hard concept tasks.
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Networks. (1) Leveraging fixed metrics [10], [11], [12], [13].
For example, Vinyals et al. [10] propose a matching network
that leverages cosine to measure the relation. Snell et al. [11]
propose a prototypical network that calculates the prototype
feature by averaging features of the support set and demon-
strates that the Euclidean distance is better than the cosine
used in [10]. Zhu et al. [13] propose a method that projects
features into subspace and utilizes the Wasserstein distance
to perform relation measuring. (2) Learning transferable deep
metric [14], [15], [16]. Selecting an optimal metric is often
trivial and relies on the expert-knowledge, Sung et al. [14]
propose a classical method named relation network that uti-
lizes the MLP to learn the relation between prototypes and
query features automatically. Considering that the comparison
ability of relation network [14] is limited to the inherent local
connectivity of CNN, Wu et al. [15] propose a method that
utilizes a deformable feature extractor, self-correlation, and
cross-correlation to solve this problem. Compared with pre-
vious relation networks, Cao et al. [16] propose to introduce
more information, such as appearance and mutual informa-
tion, to model the relation between the query and support
samples. (3) Graph Neural Network [17], [18], [19], [20].
Unlike previous metric-based methods, Graph Neural Net-
work introduces the relation information to guide the label
propagation. For example, Yang et al. [17] propose a bi-
directional graph neural network that makes the relation and
features guide each other to make discriminative relation
measuring. Chen et al. [19] propose a method that intro-
duces class-level knowledge to calibrate the relation measured
by the instance-level graph. The optimization-based meth-
ods [21], [22], [23] focus on learning a good initial model
that can quickly adapt to new classes using a few samples.
For example, Finn et al. [21] propose a classical and famous
method named MAML, consisting of a meta-learner using
the support set and a fixed learning rate to conduct model
fast adaption. After the emergence of MAML, many MAML-
based works [24], [25], [26] are proposed. For example,
Rusu et al. [24] decouple the gradient-based adaptation pro-
cedure from the underlying high-dimensional space of model
parameters to a low-dimensional space to make the model
generalize to new tasks easier. Baik et al. [26] propose task-
and-layer-wise attenuation on the compromised initialization
to reduce the adverse effects of forcibly sharing the ini-
tialization in MAML. The hallucination or generation-based
methods focus on learning a generation model or module to
generate classification weights [27] or fake samples [28], [29].
For example, Dong et al. [27] propose to utilize the atten-
tion mechanism and fuse the information provided by both
support and query set to generate the classification weights
to classify query samples. Xu et al. [29] propose to use the
conditional variational autoencoder to generate more represen-
tative features, while Dong et al. [28] propose to generate the
adversarial images to improve the representation ability of the
model.

In contrast to FSL methods that mainly focus on adapt-
ing to new classes, we also prioritize the stability of the
model.

B. Class-Incremental Learning

Class-incremental learning (CIL) aims to learn new classes
without forgetting previously learned classes. However, due
to the limitation in using old data, the model’s parameters
are overwritten by the data of new classes in incremental
sessions, which leads to the notorious catastrophic forgetting
problem. To address this issue, current CIL methods can
be roughly divided into three groups: regularization-based,
rehearsal-based, and isolation-based. (1) The regularization-
based methods [5], [30], [31], [32] constrain dramatic changes
in the model’s parameters to resist the catastrophic forget-
ting problem. For example, Li et al. [5] propose LwF, a
representative work that applies knowledge distillation on the
output, while Douillard et al. [30] distill the features of each
layer of the model to indirectly constrain the parameters’
change. (2) The rehearsal-based methods [33], [34], [35], [36]
replay old data to recall the memory of the model when
learning new classes. To select more representative old data,
various data sampling strategies are introduced or designed.
focus on designing various data sampling strategies to select
representative old data. For example, Rebuffi et al. [33]
propose a representative work named iCaRL that leverages the
herding strategy to select representative samples of each old
classes. Hu et al. [35] propose a curiosity-driven strategy that
selects representative samples by the uncertainty and novelty.
(3) The isolation-based methods [37], [38] focus on intro-
ducing additional parameters for the model to learn new
knowledge. For example, Yan et al. [37] propose a method
that extends the parameters of each layer for the model to
new classes.

Current CIL methods are train-based, and sufficient training
samples are available for these works to learn new classes.
However, these methods often fail when there are only limited
training samples available for new classes. Unlike CIL meth-
ods, our proposed method is train-free, which means it does
not require additional training during incremental sessions, and
can achieve excellent incremental performance with only a few
samples.

C. Few-Shot Class-Incremental Learning

Few-shot class-incremental learning (FSCIL) is first pro-
posed by Tao et al. [39] and aims to continually learn new
classes using a few samples while not forgetting the old
classes. Compared to CIL, FSCIL is more challenging due to
only limited number of training samples available in incremen-
tal sessions. As a result, this research topic has attracted the
attention of many researchers in recent years. The challenges
in FSCIL are that scarce training samples make the model
suffer from the notorious catastrophic forgetting problem
and make the relation measuring challenging in incremental
sessions. To mitigate the catastrophic forgetting problem,
some works propose to perform knowledge distillation on the
relation [40], or the semantic information [41]. Compared
with such a strategy, many works [1], [8], [9], [42] have
validated that freezing the encoder in incremental sessions
is an effective solution. To construct discriminative relations
between prototypes and test features, Zhu et al. [42] propose
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to utilize the old prototypes to update global prototypes and
use an MLP to perform relation measuring. Zhang et al. [1]
propose to propagate context information between old and
new prototypes to achieve the evolution of the global clas-
sifier. Hersche et al. [9] propose to solve this problem by
storing old features and replaying them with new features to
fine-tune a fully-connected layer to make the model output
discriminative representation. Considering that the learning
objective of previous methods is inconsistent with the objective
in real incremental sessions may compromise the perfor-
mance, Chi et al. [43] propose a meta-learning-based method
that mimics the multi-step incremental setting and constructs
pseudo incremental tasks to make the model learn to optimize
itself using a few training samples. Zhou et al. [44] argue
that previous methods make the updated model similar to the
old one unnecessary. To make the model compatible with new
classes, they propose to utilize MixUp [45] to squeeze the
embedding space of old classes and reserve the squeezed space
for new class adaption.

In this paper, we propose a method that improves CEC to the
new state-of-the-art performance by utilizing old knowledge
and cross-attention mechanism to achieve equitable informa-
tion gain for classifier weights and test features.

III. PROBLEM DESCRIPTION

Few-shot class-incremental learning aims to learn a clas-
sifier in phases to classify all encountered classes, where
the classes contained in different phases are disjoint and
the training samples for new classes are scarce. Let{
D0, . . . ,Di (i > 0)

}
denote the data streams, where D0 is

termed the base session, Di (i > 0) is termed the incremental
session. The label spaces of different sessions satisfy Ci

∩C j
=

∅(i ̸= j). Each session Di consists of a training set Di
train

and a test set Di
test . Specifically, sufficient annotated samples

available in D0
train while few training samples available in

Di
train(i > 0). For example, in the popular benchmark

dataset miniImageNet takes the incremental setting named
5-way-5-shot, which means Di

train(i > 0) consists of 5 new
classes, and each class only consists of 5 training samples.
For each session, only the training set of the current session is
available for model learning. In contrast, test sets of encoun-
tered classes are used to evaluate the model’s performance. For
example, in session i , only Di

train is available, while the model
is evaluated on

{
D0

test , . . . ,Di
test

}
. In this paper, we consider

this problem as an incremental relation measuring as CEC [1].
In FSCIL, scarce training samples lead to weak representation
for new classes, making this incremental relation measuring
problem challenging.

IV. METHOD

Our proposed method shares the similar learning framework
with CEC [1], but deviates CEC from two aspects. The first
aspect is that we replace the Adaption Module (AM) of CEC
with our proposed Knowledge-guided Relation Refinement
Module (KRRM). The second is that we replace the Pseudo
Incremental Learning (PIL) of CEC with our proposed Pseudo
Incremental relation Refinement Learning (PIRL). To explain

our proposed method, namely “Improved Continually Evolved
Classifiers (CEC+)”, we first provide a brief overview of the
CEC [1] in part IV-A, before presenting our proposed method
in part IV-B.

A. Continually Evolved Classifiers

The main idea of CEC [1] is to update the old and new
classifiers by propagating the context information between
them, the main function is achieved by AM which is a
Transformer block. The learning framework of CEC consists
of three stages, the feature pre-training, the pseudo incremental
learning, and the classifier learning stages.

1) Feature Pre-Training: This stage is mainly used to learn
the parameters θe of the encoder. Let the θc denotes the
parameters of the fully connected layer, x ∈ D0

train denotes
the training data, Y ∈ C0 denotes ground truth. The θe and θc
is optimized by

θ∗e , θ∗c = arg min
θe,θc

LC E (P, Y ), (1)

where P denotes the prediction results and is computed by

P = softmax(s8(θc, f (x))). (2)

Here, s is the scale factor used to control the peakiness of
softmax distribution [46], 8 denotes the cosine classifier and
8(a, b) = a·b

||a||2||b||2
, f (x) refers to the embedding feature

of x .
2) Pseudo Incremental Learning: The PIL is used to learn

the parameters of the AM. PIL mimics the incremental setting
and constructs a series of pseudo-incremental tasks using data
sampled from the base session. Concretely, several classes
from the base session are first sampled as the pseudo base
classes. Then, the data of these sampled classes is rotated to
form the pseudo new classes. Notably, both the pseudo base
classes and pseudo new classes have a support set and a query
set denoted as {So, Qo} and {Sn, Qn}, respectively. Next, the
prototypes µo and µn are computed based on the class-wise
mean features of So and Sn , and used to initialize the old and
new classifiers. After that, the AM is applied to update µo and
µn . Finally, PIL uses the updated classifier to make predictions
for Qo and Qn , and computes the loss to optimize the AM.

3) Classifier Learning: After finishing the pseudo incre-
mental learning, CEC freezes the model to mitigate the
catastrophic forgetting problem. In each new incremental
session, CEC first uses the prototypes given by the class-
wise mean features of training data of new coming classes to
initialize a new classifier. Then, CEC applies the trained AM
and takes the parameters of old and new classifiers as input
to update all classifiers. In the inference stage, the updated
classifiers is deployed to make predictions for each test sample.

B. Improved Continually Evolved Classifiers

In CEC+, we also adopt the three-stage learning framework
to perform few-shot class-incremental learning. Unlike CEC,
our proposed method update both the classifier initialized by
prototypes and test features to construct more discriminative
relations. The main function is achieved by the Knowledge-
guided Relation Refinement Module (KRRM). Furthermore,
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Fig. 2. The learning scheme of our proposed method, where η∗ refers to linear layer, the knowledge ω is given by the prototypes of old data. Our proposed
training scheme mimics the real inference process using hard concept mining strategy to make the KRRM learn to refine the relation between prototypes and
query features by knowledge propagation.

we extend the PIL and propose the Pseudo Incremental relation
Refinement Learning (PIRL). We leave the detailed descrip-
tions about the KRRM and PIRL in part IV-C and IV-D,
respectively.

C. Knowledge-Guided Relation Refinement Module

The knowledge-guided relation refinement module (KRRM)
is used to refine the relations between classifier weights and
test features, which is achieved by knowledge propagation.
Concretely, let ζ represent the classifier weights or test features
for the sake of the following descriptions. In the knowledge
propagation process, to mine valuable information from ω, the
relation e between ζ and the knowledge ω represented by the
prototypes of old classes is first computed by

e = softmax(
η1(ζ ) · T (η2(ω))

√
d

), (3)

where η1 and η2 represent the linear transformation functions,
· represents the inner product, and T represents the transpose
operation. Then, the relation e is used to weight the ω

to suppress the unimportant and strengthen the important
information of ω for ζ , the formula is given by

ω′ = e · η3(ω), (4)

where ω′ refers to the weighted knowledge, η3 represents
the linear transformation function. In the end, based on the
computed ω′, ζ is augmented by

ζ̂ = η4(ζ + ω′), (5)

where η4 represents the linear transformation function. After
finishing the knowledge propagation process, the relation

between the updated classifier weights and test features is
measured by using Eq. (2).

Why the knowledge-guided relation refinement module
works. KRRM adaptively enhances the target by leveraging the
relation between the target and old knowledge. Specifically,
for new classes, this mechanism effectively enhances the
similarity information in same-class classifier weights and
test features, which is necessary for the model to make
more discriminative predictions and thus improves the model’s
plasticity to new classes. Although introducing a signifi-
cant amount of old knowledge into new classes may affect
the model’s classification ability on old classes to some
extent, subsequent experiments demonstrate that the benefits of
KRRM on model’s plasticity outweigh its impact on model’s
stability.

D. Pseudo Incremental Relation Refinement Learning

To learn the KRRM’s parameters, it’s optimal to train it
under the incremental setting. However, the scarcity of training
samples and the limitation of using old data make it difficult to
perform this learning process in incremental sessions. To solve
this problem, as shown in Figure 2, we mimic the incremental
setting and propose the pseudo incremental relation measuring
learning (PIRL) to borrow the treasure from the base session.
Concretely, PIRL consists of four steps, knowledge construc-
tion, initial learning task construction, hard concept mining,
and module optimization.

1) Knowledge Construction: To prepare for future knowl-
edge propagation, the knowledge ω is first extracted from
D0

train by using the trained encoder f (; θe). To reduce the
memory consumption, we use the combination of the mean

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on May 24,2024 at 05:46:24 UTC from IEEE Xplore.  Restrictions apply. 



1128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 2, FEBRUARY 2024

Algorithm 1 Pseudo Incremental Relation Refinement Learn-
ing

Require: Training data of base session D0
train , encoder

f (; θe), a randomly initialized KRRM. µ refers to the
prototypes of all classes contained in D0

train .
Ensure: A trained KRRM.

1: while not done do
2: ω← Extract knowledge from D0

train using f (; θe)

3: S, Q ← Sample the support set and the query set to
construct the pseudo incremental task

4: µpo
← Sample pseudo base prototypes from µ

5: Sr , Qr
← Rotate S and Q

6: f s(x), f q(x), f s(xr ), f q(xr )← Encode S, Q, Sr , Qr

using f (; θe)

7: µpi , µr
← Compute the mean features of f s(x) and

f s(xr )

8: W l
← Get the local classifier weights by concatenating

µpi , µr

9: W lk
← Use W l and Eq. (2) to classify Q and Qr , then

get the classifier weights of top-K predictions
10:

{
ω, f q(x), f q(xr ), W lk}

← Construct the local hard
concept task

11: W g
← Get the global classifier weights by concatenat-

ing µpo, µpi

12: W gk
← Use W g and Eq. (2) to classify Q, then get the

classifier weights of top-K predictions
13:

{
ω, f q(x), W gk}

← Construct the global hard concept
task

14: Llocal ← Compute the loss relevant to{
ω, f q(x), f q(xr ), W lk}

15: Lglobal ← Compute the loss relevant to{
ω, f q(x), W gk}

16: L ← Get the total objective by weighting Llocal and
Lglobal

17: optimize KRRM with L and SGD
18: end while

feature of each class contained in D0
train to represent the ω,

though other forms, such as some representative features or
trainable prototypes can represent ω.

2) Initial Learning Task Construction: In this step, we first
sample several classes from C0 as the pseudo new classes.
Then, for each sampled pseudo new class, we sample a few
data from D0

train to construct the support set S and the query
set Q, respectively. Because the form of {S, Q} is similar to the
incremental session, where the S can be treated as the training
set and Q can be test set in real incremental session, we call
{S, Q} the pseudo incremental task. Next, for each pseudo
incremental task, the prototypes of other classes are sampled
and treated as the pseudo base prototypes µpo. In the end,
PIRL uses the combination of {ω, S, Q, µpo} to construct a
series of initial learning tasks.

3) Hard Concept Mining: Because the data contained in
each initial learning task basically belongs to the base session,
the pre-trained model can classify these tasks well. Therefore,
directly using these initial learning tasks to optimize the

KRRM is helpless. To solve this problem, we design the
hard concept mining strategy to mine hard concept tasks from
local and global perspectives.

Hard Concept Mining-Local (HCM-L): Following CEC [1],
we first rotate the data of each pseudo incremental task.
Let Sr and Qr denote the rotated S and Q, respectively.
Then, we obtain the embedding features f s(x), f q(x), f s(xr ),
f q(xr ) by employing the encoder f (; θe) to encode the data
of S, Q, Sr , and Qr , respectively. Next, we compute the mean
feature of each class of f s(x) and treat them as the pseudo
new prototypes µpi . In the meantime, we compute the mean
features µr of f s(xr ). After that, the local classifier weights
W l is obtained by concatenating µpi and µr and used to make
prediction for f q(x) and f q(xr ) with Eq. (2). In the end, the
top-K classifier weights W lk which correspond to the top-K
predictions are indexed from µl and used to construct the local
hard concept task

{
ω, f q(x), f q(xr ), W lk}.

Hard Concept Mining-Global (HCM-G): We first get the
global classifier weights W g by concatenating µpi and the
pseudo base prototypes µpo. Then, W g is used to make
prediction for f q(x). Next, the top-K classifier weights W gk

which correspond to the top-K predictions are indexed from
W g . In the end, the combination of

{
ω, f q(x), W gk} is used

to construct the global hard concept task.
4) Module Optimization: To improve the model’s plasticity,

we utilize the constructed local hard concept tasks to optimize
the KRRM. Concretely, based on

{
ω, f q(x), f q(xr ), W lk},

the KRRM first uses ω and Eq. (3), (4), (5) to augment f q(x),
f q(xr ), and W lk , respectively. The corresponding augmented
results we denote as f̂ q(x), f̂ q(xr ), and Ŵ lk , respectively.
Then, the relation Pq between f̂ q(x) and Ŵ lk is measured
by using Eq. 2. In the meanwhile, the relation Pr between
f̂ q(xr ) and Ŵ lk is measured by using Eq. 2. With computed
Pq and Pr , the loss Llocal based on local hard concept tasks
is given by

Llocal = LC E (Pq , Y q)+ LC E (Pr , Y r ), (6)

where LC E refers to the cross-entropy loss function, Y q and
Y r refer to the relative label of the data of the query set and
the rotated query set, respectively.

Optimizing the model’s plasticity alone may affect its stabil-
ity. To address this issue, we utilize the constructed global hard
concept tasks to further optimize the KRRM to mitigate the
destabilizing effects. Concretely, based on

{
ω, f q(x), W gk},

the KRRM first uses ω and Eq. (3), (4), (5) to augment f q(x),
and W gk , respectively. The corresponding augmented results
we denote as f̂ q(x) and Ŵ gk , respectively. Then, the relation
Pq between f̂ q(x) and Ŵ gk is measured by using Eq. 2. With
computed Pq and Eq. 6, the loss Lglobal based on global hard
concept tasks is computed.

Overall, the KRRM is optimized by

L =
∑

λ1Llocal + λ2Lglobal , (7)

where λ1 and λ2 are used to control the influences of Llocal
and Lglobal .
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V. EXPERIMENTS

A. Datasets

CIFAR100. CIFAR100 [48] consists of 60,000 images from
100 classes, where each class consists of 500 training images
and 100 test images. Following [39], we split this dataset
into 60 base classes and 40 incremental classes, where the
40 incremental classes are equally divided into eight incre-
mental sessions. Each incremental session takes the setting
5-way-5-shot, which means each incremental session consists
of 5 classes, and each class consists of 5 support images.
miniImageNet. miniImageNet is the subset of ImageNet [49].
This dataset consists of 100 classes, where each class consists
of 500 training images and 100 test images. Following [39],
we split this dataset into 60 base classes and 40 incremental
classes, where the 40 incremental classes are equally divided
into eight incremental sessions. Each incremental session takes
the setting 5-way-5-shot.
Caltech-UCSD Birds-200-2011. CUB200 [50] is a fine-
grained dataset containing 11,788 images from 200 classes,
where each class consists of approximately 30 training images
and 30 test images. Following [39], we split this dataset
into 100 base classes and 100 incremental classes, where the
100 incremental classes are equally divided into ten incre-
mental sessions. Each incremental session takes the setting
10-way-5-shot.

B. Implementation Details

Our work is implemented using PyTorch [51] library, we
employ ResNet18 as the backbone for all benchmark datasets.
Following CEC [1], we first pretrain the model with the
standard training paradigm, then perform pseudo incremental
relation learning to learn the parameter of the knowledge-
guided relation refinement module.

1) Pretraining: On CUB200, we pre-train the model for
50 epoch with a batch size of 128. We choose SGD as the
optimizer with a learning rate of 0.03, a weight decay of
0.0001, and a momentum of 0.9. We decay the learning rate
with a factor of 0.1 per 10 epochs. On miniImageNet and
CIFAR100, we pre-train the model 100 epoch with a batch
size of 64. We choose SGD as the optimizer with a learning
rate of 0.1, a weight decay of 0.0005, and a momentum of
0.9. We decay the learning rate with a factor of 0.1 per
40 epochs. Following Zhu et al. [42], random resized crop,
random horizontal flip, and color jitter are used to augment
the training data.

2) Pseudo Incremental Relation Refinement Learning:
We set the max training epoch to 50 and randomly sam-
ple 200 pseudo incremental tasks from D0

train using setting
25-way-1-shot in each epoch, i.e. , we randomly sample
25 classes, and sample 1 sample for each sampled class to
construct the support set and 15 samples for each sampled
class to construct the query set. We adopt the SGD as the
optimizer with an initial learning rate of 0.0002 and a weight
decay of 0.0001. We set both λ1 and λ2 to 1.

C. Baselines

To validate the effectiveness of our proposed method,
we compare our proposed method with some classical CIL

methods (iCaRL∗ [33], EEIL∗ [47], and NCM∗ [46]) and
previous FSCIL methods (TOPIC [39], SPPR [42], CEC [1],
F2M [8], C-FSCIL [9], MetaFSCIL [43] and FACT [44]).

The descriptions of these methods are presented as follows:
• iCaRL selects parts of representative old data by the

herding strategy [52] and replays the selected old data
in incremental sessions to mitigate the catastrophic for-
getting problems.

• EEIL extends iCaRL and proposes a balanced fine-tuning
strategy the samples equal number of training samples of
old and new classes to further finetune the model.

• NCM learns a unified classifier to balance the bias
between old and new data by incorporating cosine nor-
malization, less-forget constraint, and inter-class separa-
tion.

• TOPIC constrains the topology of feature space to miti-
gate the catastrophic forgetting problem.

• SPPR measures the relations between global prototypes
and test features by a MLP, where the global prototypes
is given by concatenating old and new prototypes and
updated by the relations with old prototypes.

• CEC propagates context information between old and
new classifiers initialized by prototypes to achieve the
evolution of classifiers.

• F2M fine-tunes the model in incremental sessions within
the base training objective’s flat local minima found
by adding random noise to the encoder’s parameters to
achieve the balance between stability and plasticity.

• C-FSCIL selects parts of old features and replay them
with new data to finetune the fully-connected layer to
update the outputs of the frozen encoder in the incre-
mental sessions.

• MetaFSCIL samples the pseudo incremental sequence
instead of the single pseudo incremental task to optimize
the model.

• FACT utilizes the MixUp [45] to squeeze the embedding
space of old classes and reserve for new classes.

D. Comparison Results

The results of the baseline methods and our proposed
method on three benchmark datasets are shown in Table I,
we can see that
• On three benchmark datasets for FSCIL, the classical

class-incremental learning methods iCaRL, EEIL, and
NCM show more significant performance degradation
than FSCIL methods, such as TOPIC, as the incremental
process proceeds.

• On three benchmark datasets, our proposed method
achieves the highest accuracy on each session compared
to other FSCIL methods.

• On CIFAR100 and miniImageNet, it can be seen from
the results of SPPR and SPPR† that method with high
performance on the first session seems to have a relatively
larger performance degradation on the following sessions.
Surprisingly, our proposed method achieves the highest
performance in the first session and relatively smaller
performance degradation in the following sessions. Partic-
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TABLE I

COMPARISON WITH STATE-OF-THE-ART METHODS ON CIFAR100, miniIMAGENET AND CUB200, † DENOTES OUR REPRODUCED RESULT, ∗ INDICATES
RESULTS COPIED FROM TOPIC. SINCE THE BEST PERFORMANCE OF SPPR ON CUB200 IS THE RESULT SHOWN IN THEIR PAPER, WE USE THEIR

PUBLICLY AVAILABLE RESULT DIRECTLY. OUR PROPOSED METHOD ACHIEVES THE BEST PERFORMANCE ON ALMOST ALL SESSIONS OF
EACH BENCHMARK DATASET

ularly, on CIFAR100, the accuracy of last session of our
proposed method surpasses SPPR† and CEC† by 9.89%
and 2.39% respectively. On miniImageNet, the accuracy
of the last session of our proposed method surpasses
SPPR† and CEC† by 9.96% and 1.45% respectively.

• On CUB200, our proposed method outperforms the sec-
ond best method CEC† on each session, where the
accuracy of the last session of our proposed method
surpasses CEC† by 2.56%.

The results demonstrate that our proposed method sets new
state-of-the-art performance.

E. Ablation Study

Our proposed method relies on the knowledge-guided rela-
tion refinement module (KRRM) to refine the relation between
the classifier weights and test features and pseudo incremental
relation refinement learning (PIRL) to mine hard concept tasks
from local and global perspectives to learn the parameters of
KRRM. To validate the effectiveness of KRRM and PIRL,
we use the performance given by the pre-trained model as
the baseline and conduct several ablation studies on CUB200.
From Table II, we can see that
• Compared to the baseline, though using using only

hard concept mining-global (HCM-G) slightly drops the
performance in the first five sessions, it improves the
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TABLE II
ABLATION STUDIES ON CUB-200-2011 USING 10-WAY-5-SHOT WITH RESNET18, WHERE PIRL IS THE PSEUDO INCREMENTAL RELATION REFINE-

MENT LEARNING, KRRM IS THE KNOWLEDGE-GUIDED RELATION REFINEMENT MODULE, HCM-G/HCM-L REFERS TO THE GLOBAL/LOCAL
HARD CONCEPT MINING

performance in the last six sessions by a relatively larger
margin. The primary reason is that applying HCM-G
enhances the model’s plasticity to new classes at the
expense of stability on old classes. In the initial few
sessions, the benefit brought by HCM-G is suppressed
due to the dominance of old class test data. However,
as the learning process progressed and more new class test
data is introduced, the advantage of HCM-G gradually
became apparent, leading to its superior performance over
the baseline in the last six sessions.

• Compared to the baseline, using using only hard concept
mining-local (HCM-L) improves the performance on each
session. Particularly, the accuracy of the last session given
by HCM-L outperforms the baseline by 1.23%.

• Compared to using only HCM-G or HCM-L, the com-
bination of HCM-G and HCM-L achieves better perfor-
mance across all sessions. Particularly, the accuracy of
the last session given by the combination of HCM-G and
HCM-L outperforms that given by HCM-L by 0.67%.

• Compared to the baseline, using only KRRM improves
the performance on the first session by 0.43% and the
performance on the last session by 0.81%.

• Compared to using only the KRRM, though using
HCM-G to train the KRRM slightly drops the per-
formance on the first five sessions, it improves the
performance on the last six sessions by a relatively larger
margin. Particularly, the accuracy of the last session given
by the combination of KRRM and HCM-G outperforms
that given by KRRM by 0.83%.

• Compared to using only the KRRM, though using
HCM-L to train the KRRM slightly drops the per-
formance on the first seven sessions, it improves the
performance on the last four sessions by a relatively larger
margin. Particularly, the accuracy of the last session given
by the combination of KRRM and HCM-L outperforms
that given by KRRM by 0.61%.

• Compared to previous configurations, using PIRL, con-
sisting of HCM-L and HCM-G, to learn the parameters
of the KRRM almost achieves the highest performance
on each incremental session.

In summary, the results demonstrate the effectiveness of PIRL
and KRRM.

Fig. 3. Analysis on (a) different performance measures, and (b) the influence
of top-K.

F. Analysis

1) Performance Measure: To explore the ability of new
class adaption and forgetting resistance of our proposed
method, we report the accuracy of base and new classes as well
as the average accuracy on CUB200 and compare with two
previous state-of-the-art methods, CEC† [1] and FACT [44].
As shown in Figure 3(a), our proposed method outperforms
FACT by a margin of 2.15% and CEC by a margin of
1.02% on base classes. On new classes, our proposed method
outperforms FACT by a margin of 5.09% and CEC by a margin
of 3.93%. As for the average accuracy, our proposed method
outperforms FACT by a margin of 3.34% and CEC by a margin
of 1.91%. The results demonstrate that our proposed method
has better new class adaption and forgetting resistance abilities
than CEC and FACT.

2) Top-K: In this paper, we use the top-K setting to
mine hard concept tasks. To explore the influence of top-
K, we report the accuracy of new classes on CUB200 given
by different top-K settings. As we can see from Figure 3(b),
when top-K is set to 2, the accuracy is 45.27%. However, the
accuracy drops significantly by 1.38% when we set top-K to 5.
Interestingly, the model’s performance keeps improving when
we increase the value of top-K from 5 to 20 and achieves the
highest accuracy 45.59% when the value of top-K is set to 20.
In contrast, the model’s performance keeps decreasing when
we increase the value of top-K from 20 to 100 (refers to not
using the top-K setting) and gets the lowest accuracy 43.85%
when the value of top-K is set to 100. In summary, using
top-K can improve the model’s performance in new classes.
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Fig. 4. The influence of Llocal and Lglobal on old and new classes.

Fig. 5. The influence of task sampling setting on CUB200. Our proposed
method prefers to a large way and a small shot.

Particularly, setting the value of top-K to 20 is an optimal
choice.

3) The Influences of Llocal and Lglobal : To further explore
the influence of Llocal and Lglobal on old and new classes
on CUB200, we first fix λ2 to 1 and change λ1 among
{0, 0.5, 1, 1.5}, then we fix the optimal λ1 and change
λ2 among {0, 0.5, 1, 1.5}. As we can see from Figure 4,
increasing λ1 to a relatively larger value significantly improves
the performance on new classes but slightly decreases the
performance on old classes. When λ2 is increased to a rela-
tively larger value, we observe an improvement in performance
for both old and new classes. The results validate that Llocal
improves the model’s stability at the expense of the model’s
stability while Lglobal can mitigate the influence of the Llocal
on the model’s stability.

4) Sampling Setting: To explore the influence of pseudo
incremental task sampling setting on average accuracy,
we experiment with different combinations of the number of
ways and shots. As we can see from Figure 5, when we fix
the number of ways, we find that setting the number of shots
to a small value achieves better performance than setting the
number of shots to a large value. In contrast, when fixing
the number of shots, we find that using a large number of
ways results in better performance than using a small number
of ways. Particularly, using the setting of 5-way-20-shot to
sample pseudo incremental tasks yields the worst performance,
while using the setting of 25-way-1-shot to sample pseudo
incremental tasks leads to the best performance. The main
reason may step from that larger way makes the task harder
compared to smaller way, and a small shot provides limited

Fig. 6. Module comparison with CEC. PIL (Pseudo Incremental Learning)
and AM (Adaption Module) are proposed by CEC. PIRL (Pseudo Incremen-
tal relation Refinement Learning) and KRRM (Knowledge-guided Relation
Refinement Module) are proposed by us. Each module proposed by us is
more effective than CEC.

TABLE III
THE INFLUENCE OF DIFFERENT FORMS OF OLD KNOWLEDGE, WHERE F-

PROTOTYPE AND T-PROTOTYPE REPRESENT FIXED AND TRAINABLE
PROTOTYPES, RESPECTIVELY

prior information, which forces the KRRM to learn stronger
relation refinement ability compared to larger shot.

5) Module Comparison With CEC: In this paper, we boost
CEC from two aspects. Firstly, we improve the AM and
propose the Knowledge-guided Relation Refinement Module
(KRRM) to update the classifier weights and test features by
cross-attention mechanism. Secondly, we extend the PIL and
propose the Pseudo Incremental relation Refinement Learning
(PIRL) using the hard concept mining strategy to mine hard
concept task. To validate whether both of them are more
effective than CEC, we use the combination of PIL and
AM as the baseline. As shown in Figure 6, compared with
to the baseline, the combination of PIL and our proposed
KRRM achieves better performance in each session. Moreover,
using our proposed PIRL to learn the parameters of AM
also achieves better performance in each session compared
to the baseline. Although the performance of the combination
of PIRL and KRRM drops slightly in the first four sessions
compared to the combination of PIRL and AM, it exhibits
a relatively larger improvement in the following sessions.
Overall, these results demonstrate that our proposed KRRM
and PIRL are more effective than AM and PIL proposed by
CEC.

6) Knowledge Form: To investigate the influence of differ-
ent knowledge forms, we change the knowledge form among
fixed prototypes, trainable prototypes, and features, where the
feature selection strategy is referenced to [33], and the number
of selected features is is set to 5 as in [40]. As we can see
from Table III, using the form of fixed prototypes achieves
the highest accuracy of 45.59% on new classes. Compared
with the form of fixed prototypes, using trainable prototypes
achieves better performance on the base classes but drops
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Fig. 7. t-SNE [53] visualization of data embeddings and classifier weights
updated by CEC and our proposed method on CIFAR100, where five old
classes (0-4) and four new classes (5-8) are randomly selected. Compared to
CEC, our proposed method constructs more discriminative relations between
the classifier weights and test features.

the performance on new classes. Compared with the form of
fixed prototypes or trainable prototypes, representing the old
knowledge in the form of features consumes more memory
but can achieve a balance between the performance given by
the fixed prototypes and trainable prototypes.

7) Visualization of Adaption: To further observe our pro-
posed method’s new class adaption ability, we use t-SNE
[53] to embed test features and classifier weights updated by
our proposed method and CEC to low dimensions and plot.
The results in Figure 7. From Figure 7(a), we can observe
that the classifier weights updated by CEC for some new
classes, such as class 6 and class 8, are located far away
from the corresponding clusters composed of the test features.
This infers to that the relations established by CEC may
only offer discriminative information for some of the new
classes. In contrast, the relative positions of classifier weights
and test features updated by our proposed method are more
harmonious, as shown in Figure 7(b). The results demonstrate
that our proposed method achieves better plasticity than CEC.

VI. CONCLUSION

In this paper, we propose the Improved Continually Evolved
Classifiers (CEC+) to boost CEC by addressing its two short-
comings: 1) inequitable information gains between classifier
weights and test features, and 2) inefficient learning task
construction strategy. To address the first issue, we propose
a Knowledge-guided Relation Refinement Module (KRRM),
which updates both the classifier weights and test features
through knowledge propagation. To tackle the second issue,
we propose a Pseudo Incremental relation Refinement Learn-
ing (PIRL) scheme, which constructs hard concept tasks by
combining query features and corresponding Top-K classi-
fier weights. Comprehensive experiments on three widely
used few-shot class-incremental learning benchmark datasets
demonstrate that our proposed approach achieves state-of-the-
art performance, and the proposed modules are more effective
than those of CEC.

Practical incremental learning scenarios are often complex
and diverse. Alongside the challenge of insufficient samples
for new classes, dirty data may also exist in the incoming
data, such as distorted data, which have a severe impact on the
model’s plasticity and stability. Relying on humans to remove
such dirty data will consumes substantial time and effort.

Therefore, designing an incremental learning method capable
of achieving continual learning with few samples and dirty
data is crucial for efficient model evolution. In recent years,
some researchers have proposed effective methods [54], [55]
for incremental image quality assessment, producing quality
assessment results close to human-level, which provides a
good foundation for cleaning dirty data. Hence, in future work,
we will explore how to integrate existing incremental image
quality assessment methods with the approach proposed in this
paper to achieve efficient model evolution.
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