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a b s t r a c t

A SAR complex image data compression algorithm based on quadtree coding (QC) in discrete wavelet
transform (DWT) domain (QC-DWT) is proposed. We show that QC-DWT achieves the best performance
for SAR complex image compression. Besides this, in this work, we observed a novel phenomenon that
QC-DWT outperforms the zerotree based wavelet coding algorithms, e.g., Consultative Committee for
Space Data Systems-Image Data Compression (CCSDS-IDC) and Set Partitioning in Hierarchical Trees
algorithm (SPIHT) for SAR complex image data, and there exists deficiency of CCSDS-IDC for SAR
complex image data compression. This is because the DWT coefficients of SAR complex image data
always have intrascale clustering characteristic and no interscale attenuation characteristic, which is
different from that of SAR amplitude images and other optical images.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synthetic aperture radar (SAR) has been widely used in remote
sensing for both civil and military applications. Unlike optical
image, SAR image data is always complex. For example, inter-
ference SAR can use the phase difference of two SAR complex
image data to obtain the elevation information and has been
widely applied in the environmental monitoring, mapping, and
other fields [1]. However, vast amounts of SAR complex image data
require transmission and storage resources, which raise the needs
for efficient SAR complex image data compression.

DWT based image coding is the representative coding algo-
rithm for SAR image data compression [2–4]. Image wavelet
coefficients often exhibit attenuation and clustering characteristics
[5]. Accordingly, two types of image coding algorithms are popular.
The first mainly uses the attenuation characteristic, such as Set
Partitioning in Hierarchical Trees algorithm (SPIHT) [6] and Con-
sultative Committee for Space Data Systems-Image Data Compres-
sion (CCSDS-IDC) [7], which have already been used for SAR
amplitude image data compression [4,7]. The second mainly uses
the clustering characteristic, such as quadtree coding (QC) [8],
which has also been used for SAR amplitude image compression
[3]. The wavelet image coding algorithms exploiting these two
characteristics show similar performance for SAR amplitude and
optical images [7,9].

For SAR complex image data compression, CCSDS-IDC based on
DWT (DWT-CCSDS), which exploits the wavelet attenuation charac-
teristic, exhibits poor performance for SAR complex image data due to
the lack of interscale attenuation property [2]. Based on this, DLWT-
CCSDS which combines directional lifting wavelet transform (DLWT)
with the zerotree based bit plane encode (BPE) algorithm of CCSDS-
IDC is proposed. It outperforms the DWT-CCSDS because DLWT can
concentrate the energy to low frequency, which is beneficial to
zerotree coding. However, for the test images, the K-term nonlinear
approximation of DLWT is not as good as that of DWT [2], which limits
further performance improvement based on DLWT for SAR complex
image data. On the other hand, although QC, which exploits the
intrascale clustering property, has already been used for SAR ampli-
tude image compression [3], it has not been used for SAR complex
image data compression.

In this work, to achieve a SAR complex image data compression
algorithm with high performance, we first analyze the DWT
coefficients’ intrascale and interscale characteristics of SAR complex
image data in Section 2. Then a QC based SAR complex image data
compression algorithm is proposed in Section 3. Experimental
results are shown in Section 4. Section 5 concludes this paper.

2. DWT coefficients characteristics analysis of SAR complex
image data

The SAR complex image data used in this work consists of
1024�1024 pixel with 16-bit per pixel, which is downloaded from
the U.S. Sandia National Laboratories [10]. Fig. 1 shows the real-parts of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.07.007
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: houxs@mail.xjtu.edu.cn (X. Hou).

Neurocomputing 148 (2015) 561–568

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.07.007
http://dx.doi.org/10.1016/j.neucom.2014.07.007
http://dx.doi.org/10.1016/j.neucom.2014.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.007&domain=pdf
mailto:houxs@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2014.07.007


the SAR complex images, and the imaginary-parts and amplitude
images are similar to the real-parts and thus are omitted. Here, we
adopt three-level 9/7 biorthogonal DWT and analyze the properties of
SAR complex image data wavelet coefficients from two aspects:
intrascale and interscale correlations.

2.1. Intrascale clustering characteristic of DWT coefficients

Fig. 2 shows the position distribution of significant DWT
coefficients for the real-part (the imaginary-part is similar and
omitted) and amplitude of Img2 with three levels DWT decom-
position where the largest 10% and 30% magnitude of DWT
coefficients are preserved as significant DWT coefficients. The
amplitude images are used as a comparison. Significant coeffi-
cients are shown in white and other coefficients are shown in
black. It is seen that DWT coefficients exhibit obvious intrascale
clustering along contours or in textured regions both for SAR
complex image data and amplitude image. Moreover, the DWT
coefficients clustering of SAR complex images are mainly distrib-
uted on small scale, while, the clustering for amplitude images
concentrates on DC and large scale.

When the largest 10% and 30% magnitude of DWT coefficients
are reserved, Table 1 shows the fractions of insignificant DWT
coefficient blocks of SAR complex image data in different block
sizes. There are plenty of 2�2 and 4�4 insignificant DWT
coefficient blocks. For example, there is an average 76.2% insignif-
icant 2�2 block of all 2�2 blocks when keep the largest 10%
magnitude of DWT coefficients. In the encoding procedure, these
insignificant DWT coefficient blocks can be encoded as one unit,
which saves many coding bits. So, more insignificant DWT coeffi-
cient blocks there are, better coding performance it will be.

2.2. Interscale attenuations characteristic of DWT coefficients

Fig. 3 gives the average DWT coefficients amplitude distribu-
tion of eight SAR complex images and amplitude images, where
DWT coefficients are scanned by the order of DC—HL3—LH3—HH3

—HL2—LH2—HH2—HL1—LH1—HH1 as shown in Fig. 4. It is seen
that they have opposite distribution. For SAR complex image data,
the large-amplitude DWT coefficients are mainly distributed on
small scale. While, the large-amplitude DWT coefficients of SAR
amplitude images are mainly distributed on DC and large scale and
amplitude attenuation is clear.

To quantify the attenuation property, the attenuation index
(AI): AI¼ ns=Ns is defined, where ns is the number of attenuated
wavelet coefficients on scale s, and Ns is the number of wavelet
coefficients on scale s. Here the attenuated wavelet coefficient on
small scale is the one that is less than the corresponding wavelet
coefficients on the nearest big scale. Table 2 shows the attenuation
of wavelet coefficients on each scale for SAR complex image data
and amplitude images. It can be seen that the average attenuation
index of SAR complex images is 0.2443 and 0.2208 on scale 1 and
scale 2, which are much less than that of SAR amplitude images.

The wavelet coefficient amplitude often decreases when the
scale decreases; but when the signal has a high-frequency oscilla-
tion, the attenuation property across scales is not obvious [11].
Fig. 5 shows the 128nd row data of real-part (the imaginary-part is
similar and omitted) and amplitude images of Img2. There exists
strong oscillation for the SAR complex image data, which leads to
large-amplitude coefficients in small scales and the attenuation of
wavelet coefficients decreased from large scale to small scale.
However, the amplitude of Img2 has no strong oscillation com-
pared with the SAR complex image data.

For zerotree based coding algorithm, such as CCSDS-IDC, SPIHT,
there are different coding symbol lengths for coefficients distrib-
uted in different scales [2,6,7], which means fewer bits are needed
for the significant DWT coefficient in the parent. The zerotree
based wavelet coding is most suitable for images with attenuation
property from large scale to small scale. However, the significant
DWT coefficients of SAR complex image data are mainly concen-
trated on small scale grandchildren coefficients, which means that
CCSDS-IDC [7], SPIHT [6] may not be suitable for SAR complex
image data. QC is a good choice because it utilizes the clustering
property of significant coefficients.

Img1 Img2 Img3 Img4 

Img5 Img6 Img7 Img8 

Fig. 1. Real-parts of the testing SAR complex image data.
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3. Quadtree coding for SAR complex image data

Since the wavelet coefficients exhibit clustering property, we
adopt QC to encode SAR complex image data. The basic idea is to

continuously divide the image into four parts, and check the
significance of each part. Before giving the QC, we define some
variables: (1) T: quantization level; (2) LSP: the list of significant
coefficients which is used to store the coordinate of significant

Table 1
The amount proportion of insignificant DWT coefficient blocks.

Images 10% 30%

2�2 4�4 8�8 16�16 32�32 2�2 4�4 8�8 16�16 32�32

Img1 0.773 0.579 0.321 0.088 0.045 0.452 0.246 0.088 0.022 0.009
Img2 0.777 0.594 0.325 0.076 0.032 0.443 0.226 0.079 0.023 0.010
Img3 0.779 0.614 0.372 0.114 0.045 0.456 0.257 0.097 0.025 0.009
Img4 0.756 0.551 0.313 0.123 0.077 0.425 0.210 0.094 0.040 0.008
Img5 0.756 0.553 0.322 0.322 0.149 0.435 0.257 0.126 0.042 0.024
Img6 0.749 0.544 0.337 0.183 0.158 0.431 0.247 0.136 0.067 0.048
Img7 0.756 0.556 0.340 0.232 0.103 0.421 0.223 0.116 0.052 0.042
Img8 0.753 0.557 0.332 0.171 0.132 0.423 0.229 0.130 0.056 0.043
Average 0.762 0.568 0.332 0.163 0.092 0.435 0.236 0.108 0.040 0.024

10% 30% 

Fig. 2. The position distribution of significant DWT coefficients. (a) Real-part image of Img2. (b) Amplitude image of Img2.
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coefficients; (3) LIB: the list used to store the up and bottom
coordinates of the significant blocks; (4) sτðk; TÞ: the significance of
block k compared with quantization level T (τ refers to the
coordinate set of wavelet coefficients in block k); use

sτðk; TÞ ¼
1; max jcði; jÞj� �

ZT
ði;jÞA τ

0; otherwise

8<
:

to represent the significance of the block k.
QC consists of five steps: initialization, quadtree splitting,

coefficient refining, updating and arithmetic coding. In the main
quadtree split step, at a quantization level T, for each block k in LSP
do: Output sτðk; TÞ; If sτðk; TÞ ¼ 1, divide block k into four parts and
judge whether it is the last partition or not. If there are only four
DWT coefficients, output the significance and sign of the DWT
coefficients and move its coordinate to LSP. Otherwise, make
coordinates of the four parts as new nodes and add them to the
LIB. Then, remove block k from LIB. At the last step, output the
above binary bits to the arithmetic coding without context
modeling.

The decoding algorithm is similar to the encoding algorithm
and thus omitted here. The efficiency of QC for SAR complex data
is given in the following section.

4. Experimental results and analysis

4.1. Coding performance of quadtree and zerotree coding for SAR
complex image data

We use amplitude peak signal-to-noise ratio (PSNR) and mean
phase error (MPE) [2] to measure the performance of coding
algorithms for SAR complex image data. Here, the real- and
imaginary-parts of SAR complex image data are encoded with
equal rate separately. Moreover, we adopt three-level 9/7 biortho-
gonal DWT decomposition in all experiments. QC based on DWT
(DWT-QC) and zerotree coding algorithm: DWT-CCSDS are used
for comparison. Since SPIHT algorithm shows similar performance
to that of DWT-CCSDS [2], we do not compare it with DWT-QC. As
DLWT aggregates the energy of coefficients to low frequency for
SAR complex image, DLWT-CCSDS outperforms DWT-CCSDS [2]. In
this work, DLWT-CCSDS and QC based on DLWT (DLWT-QC) are
also shown to compare the performance of QC and zerotree coding
algorithm in DLWT domain.

Tables 3 and 4 show amplitude PSNR and MPE of these coding
algorithms at the rates 4, 2 and 1 bpp (bit per pixel), respectively. It is
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Fig. 3. Average DWT coefficients amplitude distribution. (a) SAR complex image (b) SAR amplitude image.
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Fig. 4. DWT subbands and scanning order.

Table 2
The attenuation index on each scale.

Images SAR complex images SAR amplitude images

Scale1 Scale2 Scale1 Scale2

Img1 0.2578 0.2413 0.6697 0.6140
Img2 0.2512 0.2396 0.6626 0.5933
Img3 0.2454 0.2298 0.6599 0.5863
Img4 0.2465 0.2127 0.6591 0.5819
Img5 0.2408 0.2144 0.6578 0.5676
Img6 0.2394 0.2026 0.6616 0.5721
Img7 0.2368 0.2128 0.6640 0.5755
Img8 0.2367 0.2132 0.6649 0.5766
Average 0.2443 0.2208 0.6624 0.5834
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Fig. 5. The 128th row data of real-part image and amplitude image of Img2.
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seen that DWT-QC shows the best performance among all schemes.
Compared with DWT-CCSDS, DWT-QC improves PSNR up to 4.4, 3.69,
2.99 dB at 4, 2 and 1 bpp, and increases up to 0.110, 0.286, and 0.368
reductions at 4, 2 and 1 bpp in MPE, respectively. DWT-QC also
outperforms DLWT-CCSDS by achieving PSNR improvements up to
3.09, 2.88, 2.07 dB and MPE reduction up to 0.084, 0.197, 0.253 at 4, 2,
1 bpp, respectively. It is seen that DWT-QC still outperforms DLWT-QC
because the K-term nonlinear approximation of DLWT is not good as
that of DWT [2]. The coding algorithm exploiting clustering character-
istic outperforms coding algorithm using attenuation characteristic
both in DWT and DLWT domain for SAR complex image data
compression.

Fig. 6 shows the reconstructed amplitude images of SAR complex
image data at rate of 2 bpp for DWT-QC, DWT-CCSDS, DLWT-CCSDS
and DLWT-QC to compare the visual quality of coding algorithms. It
can be seen that DWT-QC achieves the best visual quality.

4.2. Significance coding analysis of quadtree and zerotree coding for
SAR complex image data

Here we use the number of significance coding bits on each bit
plane to explain the advantage of QC used for SAR complex image
data compression, where significance coding bits refer to bits used
to encode the significance of wavelet coefficients, like as the bits
spending on sτðk; TÞ for QC and Type P, Tran B, Tran D, Type C, Tran
G, Tran H and Type H for CCSDS-IDC. Here Types P, Type C and Type
H denote the significance of parent, children, and grandchildren
coefficients, respectively; Tran B and Tran D denote the significance
of the set of descendant coefficients in a block and families,
respectively; Tran G denotes the significance of the set of grand-
children coefficients and Tran H denotes the significance of the
further partition set of grandchildren coefficients in a family [7].
Fig. 7 shows the average significance coding bits on each bit plane
for the eight real-parts of SAR complex image data. It is seen that
DWT-QC shows the fewest significance coding bit clearly from bit
plane 4 to bit plane 10. At the same rate, QC can encode more

information of DWT coefficients due to the saving bits on bit plane
4 to 10. Compared with the zerotree coding algorithms using
attenuation characteristic, QC exploiting clustering characteristic is
more efficient for SAR complex image data coding.

4.3. Coding performance of SAR amplitude images

Table 5 gives PSNR of coding algorithms for SAR amplitude
images. QC still shows comparable performance for SAR amplitude
images as that for other schemes. For SAR amplitude images
coding, exploited clustering characteristic or attenuation charac-
teristic has no significant difference, which is different from that of
the SAR complex image data. This is due to the wavelet coefficients
of SAR amplitude images exhibits clustering characteristic and
attenuation characteristic.

5. Conclusions

In this work, we have proposed DWT-QC for SAR complex
image data compression. Experimental results have shown that,
for SAR complex image data, DWT-QC can achieve higher perfor-
mance than zerotree coding algorithms. For SAR amplitude image
data, QC achieves similar performance compared with zerotree
coding algorithms. We also find CCSDS-IDC suffers low efficiency
for SAR complex image data compression. This is because, for SAR
complex image data, clustering characteristic exists in wavelet
coefficients, while attenuation characteristic is lost.

This study has also clarified an inaccurate common sense: the
wavelet image coding algorithms exploiting clustering property
and attenuation property have a similar performance [7,9]. Since
the attenuation property may lose due to lack of the smooth
constraint and the clustering property of image geometrical
structure always exists, for designing image coding algorithm with
DWT, considering clustering property may be the first choice to

Table 3
Comparisons of coding performance in amplitude PSNR (dB).

Imgs 4 bpp 2 bpp 1 bpp

DWT-QC DWT-CCSDS DLWT-CCSDS DLWT-QC DWT-QC DWT-CCSDS DLWT-CCSDS DLWT-QC DWT-QC DWT-CCSDS DLWT-CCSDS DLWT-QC

Img1 86.30 82.68 84.05 84.33 75.11 71.95 73.15 73.43 69.22 66.32 67.54 67.98
Img2 91.05 87.54 88.54 89.38 80.31 76.62 77.43 78.15 74.23 71.24 72.16 72.83
Img3 82.85 78.98 79.87 80.20 71.15 68.69 68.89 72.34 65.05 63.45 63.47 67.55
Img4 86.76 82.88 84.13 84.55 75.37 72.21 73.40 73.85 69.68 67.27 68.43 68.71
Img5 88.86 84.46 85.78 86.53 76.98 74.51 74.61 75.12 71.00 69.25 69.33 69.74
Img6 90.34 86.98 87.65 88.53 78.75 75.43 76.09 76.90 72.91 70.13 70.88 71.58
Img7 87.82 84.00 84.92 85.48 76.31 73.65 74.16 74.56 70.59 68.96 69.10 69.52
Img8 82.05 78.16 78.96 79.65 70.28 67.52 68.00 68.43 64.60 62.81 62.84 63.31

Table 4
Comparisons of coding performance in MPE (Radian).

Imgs 4 bpp 2 bpp 1 bpp

DWT-QC DWT-CCSDS DLWT-CCSDS DLWT-QC DWT-QC DWT-CCSDS DLWT-CCSDS DLWT-QC DWT-QC DWT-CCSDS DLWT-CCSDS DLWT-QC

Img1 0.231 0.309 0.258 0.267 0.733 0.917 0.829 0.835 1.189 1.468 1.322 1.286
Img2 0.216 0.326 0.276 0.238 0.701 0.970 0.856 0.808 1.171 1.496 1.368 1.318
Img3 0.197 0.294 0.281 0.279 0.664 0.931 0.861 0.469 1.131 1.418 1.349 0.647
Img4 0.188 0.262 0.226 0.229 0.629 0.829 0.761 0.753 1.112 1.374 1.262 1.250
Img5 0.191 0.283 0.266 0.265 0.621 0.848 0.809 0.782 1.030 1.342 1.280 1.225
Img6 0.190 0.288 0.262 0.246 0.601 0.887 0.781 0.759 1.033 1.401 1.253 1.201
Img7 0.178 0.245 0.228 0.230 0.594 0.790 0.762 0.749 1.046 1.330 1.230 1.216
Img8 0.192 0.261 0.247 0.246 0.595 0.789 0.783 0.751 1.006 1.300 1.259 1.207
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Fig. 6. Visual comparison of amplitude of Img2. (a) Original amplitude of Img2. (b) DWT-QC at 2 bpp (c) DWT-CCSDS at 2 bpp. (d) DLWT-CCSDS at 2 bpp (e) DLWT-QC at
2 bpp.
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cover a wider range of images compared with considering
attenuation property.
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