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Abstract—In recent years, content based image retrieval has 

been concerned because of practical needs on Internet services, 

especially methods that can improve retrieving speed and 

accuracy. SIFT feature is a well-designed local feature. It has 

mature applications in feature matching and retrieval, while the 

raw SIFT feature is high dimensional, with high storage cost as 

well as computational cost in feature similarity measurement. 

Thus, we propose a hashing scheme for fast SIFT feature based 

image matching and retrieval. First, a training process of hashing 

function involves geometric and topological information is 

introduced; second, a geometry enhanced similarity evaluation 

that considers both the global and details of images in evaluation 

is explained. Compared with state-of-the-art methods, our method 

achieves better performances.  

 

Index Terms—CBIR, geometric information, GTPH, hashing, 

SIFT 

 

I. INTRODUCTION 

ITH the explosive increasing of multimedia data on 

the Internet, searching for the wanted information has 

become a problem for all users. An attractive domain in this 

issue is retrieving similar visual data. Efforts have been made 

to improve the accuracy and speed in image retrieval based on 

tags and surrounding texts significantly in industry, while 

Content Based Image Retrieval(CBIR) is limited used, because 

its accuracy with difficult and changeable background is not so 

satisfied. One solution to increase the searching speed in CBIR 

is by using hashing method to embed high-dimensional visual 

features of an image to lower dimension like Hamming space, 

as it is more efficient in similarity search [1].  

The aim of hashing is to learn binary representations of an 

existing dataset to make sure that the neighbourhood structure 

in original space is the same with that in Hamming space. 

Similarity evaluation in hashing methods means to find the 

nearest points with the query in Hamming space. For a good 

hashing method, the nearer in original space two points are, the 

smaller Hamming distance between binary codes they should 

have. However, because of the embedding and the limit of 

binary code length, a loss of original data is usually caused and 

many discrete points may share the same code and let the 

distances to the query be the same, which will lead to a decrease 

of accuracy in image retrieval. Thus, making less loss and 

distinguish the ranking of results is very important. 

In tour recommendation applications, users are usually asked 

to take a photo of a site and upload it from clients to the server 

to point out the place and get information [2, 3, 4, 5, 6], or share 

pictures on the Web [7]. Thus, there are a lot of duplicated 

images with complicated backgrounds. In this kind of pictures, 

objects usually have a common part with different view angles 

and scales, but they have common details. For example, when 

visitors taking pictures of an ancient gate while visiting, they 

usually stand at different distances and heights, but in all 

pictures there are the same gate. During retrieving this kind of 

images, details should be concerned, otherwise it will be very 

easy to mess around several similar objects, like tower tops in 

different ages with similar shapes. The global factor need to be 

concerned as well, because some architectures may share the 

same element. At the same time, noise pictures should be less 

appearing.  

Wanting to keep the distance relationship of data, some 

methods use label information and colour information into 

feature and estimation like [8, 9, 10], some methods involve 

topology of features into hashing function like TPH method [11, 

12]. When implementing CBIR methods in complex 

background pictures, we can find in practice that in many cases, 

a slightly changed architecture photo has a bigger Hamming 

distance with the original architecture picture than a patterned 

wrong picture has in our experiment process, since the latter 

contains a lot of easily-matched feature points.  

The aim of this paper is to improve the precision of the 

hashing method in this situation. SIFT descriptors are widely 

used in image matching and retrieval [13-26], so in this paper 

we will focus on these local features. However, the proposed 

method could be applied to other local features with scale and 

orientation invariance. SIFT is a local descriptor invariant to 

image scale, rotation and changes of illumination, while it is 
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robust to affine distortion to some extent. However, SIFT 

descriptors are computed with Euclidean distances to measure 

the similarity, which leads to long computational time and 

needs big storage. Thus, converting SIFT descriptors into bit 

streams is introduced to use Hamming distance instead of L2-

distance. An efficient way is using the median number as the 

classifier, introduced in [20] by Zhou et al. Others also tried to 

improve the SIFT detector, like PCA-SIFT[27] and SURF[14]. 

The former one gets better speed and the invariance to changes 

of illumination, while the latter one improves more, but both of 

them are weaker than SIFT when images change in scale and 

orientation or with blur.  

In the practical using of SIFT feature, we find out that adding 

geometric factor of SIFT descriptor can improve the 

performances of SIFT feature based image matching and 

retrieval, such as the spatial coding based approaches and their 

extensions presented in [2, 17, 21, 28, 29]. Thus, motivated by 

the successful of the geometric information in feature matching, 

we propose to add geometric and topological information into 

hashing embedding and similarity measurement to significantly 

improve the precision. We try to involve it into training process 

to make the hashed features not only preserve distance relation 

in Euclidean space, but also preserve the geometric relation to 

refine the embedded features. At the same time, similarity 

evaluation method is improved with the consideration of 

geometry from the aspects of changes of an object’s scale and 

orientation in similar pictures. 

The contributions of this paper are summarized as follows: 1) 

The proposed method has considered geometry and topology 

relation of SIFT features in hashing function training and 

feature matching, which keeps more information to improve the 

accuracy. 2) A geometry enhanced similarity evaluation 

method is proposed. It considers geometric information in a 

global aspect during the similarity evaluation to manage a better 

adaptation and precision, which can help selecting similar 

images from both view spot and content, as previous methods 

usually only count for correct matching pairs. 

 In the following sections, the related work is described in 

section II; the description of our method is in section III and IV; 

experiments and results are shown in section V; section VI is 

the conclusion. 
 

II. RELATED WORK 

Many methods have been proposed to involve different 

factors into LSH (Locality Sensitive Hashing) based methods 

[30] in CBIR. In this section, we give related methods in part A, 

and similarity evaluation methods in part B. Part C is about a 

few normal features. 

A. Related Hashing Methods 

Content Based Image retrieval (CBIR) has attracted 

significant attention due to the explosion of the information. 

One of the most traditional problems is the nearest neighbour 

(NN) search. Approximate nearest neighbour (ANN) search has 

taken place the traditional linear NN search method in many 

situations because of the weakness with computational 

complexity when there are a lot of data. Later, many measuring 

methods are proposed to accelerate in finding neighbours, as 

summarized by Wang et al. in [31], like Euclidean distances, 

Manhattan distances, Jaccard Coefficient, χ2 Distance and 

Hamming distance. Among all of these, Hamming distance is 

the fastest as well as the easiest to implement since it only needs 

to learn the number of positions that the corresponding bits are 

different in two data. With this reason, hashing involved 

methods are very popular in efficient ANN search [1].  

(a) Hashing involved methods 

The hashing involved methods can be divided into two 

categories: the data-independent and the data-dependent. 

Locality Sensitive Hashing (LSH) [30] method is one of the 

most well-known data-independent methods, as hashing 

functions use simple random projections [32, 33, 34]. In theory, 

the longer the code length is, the more of the similarity between 

data preserves. However, traditional LSH-related methods 

usually need multi-tables to keep a good distinction between 

data and deal with the collision. Moreover, data structure is 

ignored in finding hashing functions. 

Data-dependent methods like K-means locality sensitive 

hashing (KLSH) [35] and PCA-hashing (PCAH) [27] are 

proposed to make hashing functions more specified. Yu et al. 

use principal component analysis (PCA) to reduce dimensions 

and preserve the principal component of a given dataset [27]. 

Later, Gong et al. improved PCAH by adding an orthogonal 

rotation matrix to refine the projection matrix to improve the 

accuracy of quantization and proposed it as iterative 

quantization (ITQ) [36]. This work gives an obvious 

improvement in large scale image retrieval. An advanced 

method called topology preserving hashing (TPH) [11, 12] is 

proposed after ITQ by Zhang et al. In this work, a 

neighbourhood distance difference matrix used for exploits the 

neighbourhood rankings and a topo-weighting matrix are 

presented to preserve the topology of given data in training 

process based on ITQ. Whereas, it is noticed that in cases of 

repetitive patterns, wrong matches occur, and in addition to 

descriptor similarity, geometric characteristics of the feature 

key points bring useful information in training and retrieval 

evaluation. 

However, these have limited outcome, since the low 

dimensional descriptor lacks some original information already 

in quantising. This information is not so important in a few 

pictures, but it is valuable in large-scale image retrieval. Chu et 

al. proposed in [37] that many noise images appear in result, 

and many efforts have been made to distinguish the key features 

from a large amount of noisy features in a rotation invariant way. 

Therefore, adding more elements into hashing function training 

becomes feasible.  

In the implementation of data-dependent methods, many 

efforts have been made to involve geometric information into 

different methods to work out different situations, as shape 

based coding is another simple way of carrying image 

information. For example, [38] proposed by Vyshali et al. 

shows a normalized scale contour coding to preserve shape 

description, but it is very limited in complex images. Zhang et 
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al. proposed [39] to make a geometry preserving visual phrases 

(GVP) to combine bag-of-visual-words method and spatial 

information. Scalable graph hashing (SGH) [40] proposed by 

Jiang et al. can approximate the whole graph without explicitly 

computing the similarity graph matrix and preserve the entire 

similarity information in the dataset. Many supervised and 

semi-supervised methods such as [41-45] involve tagged data 

in training process to capture more data variance and sematic 

neighbourhood as well. 

In addition, deep learning involved hashing function is 

proposed recently. Many methods are based on the characters 

of deep neural networks. [22] proposed by Lin et al. adds a 

latent-attribute layer in deep CNN to make a group of functions 

similar to hash, then uses traditional compare methods to 

retrieve in the smaller amount of results. Liong et al. propose 

deep hashing and supervised deep hashing based on back 

propagation in [24]. [23] by Xia et al. uses a supervised hashing 

method to learn a set of hashing functions with the back 

propagation in deep learning network. Li et al. proposed [25] to 

give a deep pairwise-supervised hashing (DPSH) for pairwise-

labelled situations. Lin et al. gave an unsupervised approach 

called DeepBit with criterions on binary codes in the loss 

functions. Liu et al. proposed [47] called Deep Supervised 

Hashing(DSH) with a pair of input images as well . A 

supervised semantics-preserving deep hashing (SSDH) is 

proposed with defining a loss function considering an objective 

function with classification error, and it need not pairwise or 

triplet inputs[47]. [48] explored unsupervised deep learning a 

little while developing supervised learning models. Meanwhile, 

some deep hashing methods aim at different situations were 

proposed. For example, [49] used deep hashing neural networks 

(DHNNs) in large scale remote sensing image retrieval. 

Nonetheless, because of the characteristics of deep learning, it 

is necessary to use hand-crafted hashing in some cases. Deep 

learning methods need advanced hardware to support the 

computation, and might be too energy-expensive. Their 

performance might be affected significantly depending on the 

complexity of image background. Moreover, the transferring 

ability of a model between datasets is not good, and adjusting 

the excessive parameters leads to a hard effort. 

(b) SIFT Feature Quantization Methods 

Some extension methods of Bag-of-Words (BoW) involve 

with geometric information are worth learning. Yang et al. 

considered scale and orientation as geometry constraint and 

involved a geometry difference of two visual word paths into 

visual synonyms detection in [18]. Yang et al. introduced 

hierarchical sparse coding in [50]. In [28], Zhao et al. used 

spatial layers of visual word (SLW) for image location 

estimation by involving one visual word and its spatial 

relationships with its neighbour visual words. In [20], Binary 

SIFT is proposed, as using the median of each data as the 

threshold to quantise every bit. [21] improves this with 

Geometry Fan Coding (GFC). It uses BoW to pick out a group 

of top results first, and then uses a geometric coding algorithm 

to decide correct matches. At last, with the similarity evaluation, 

top answers are picked as result. 

B. Similarity Evaluation Methods 

Since many search results share the same similarity value 

with the query, how to evaluate each pair of data and pictures 

becomes important.  

To distinguish features, most methods are developing the 

ways to separate dissimilar data that share the same Hamming 

distance with the query. For example, weighted hashing method 

[16] is proposed by Wang et al. to give every bit of a datum 

different weight in evaluation by a unified framework, so that 

similar coding data are distinguished. 

However, for most situations, the way to measure the 

similarity of images is calculating the correct matches in each 

picture with the query. The more, the better. In [13] and [20], 

two methods about deciding correct matches are proposed, 

basically to give a threshold to limit acceptable matches. The 

former one uses a distance ratio as threshold, and the latter uses 

a distance threshold to decide if they are correct. [21] improves 

[20] with an involvement of BoW at first and makes a geometry 

coding in retrieval. In practice, other strategies are added to 

regular the number of compare features, like saliency detection.  

C. Features in Image Matching 

There are basically two kinds of visual features: global 

features and local features. Global features like GIST and 

colour histogram are usually suitable in small images, or not 

concerning on the details or easy background; local features like 

SIFT[13], PCA-SIFT[27] and SURF[14] are better in detail 

preserving or the situation that salient objects are under partial 

occlusion.  

To get SIFT features, the first step is to use difference-of-

Gaussian (DoG) function to identify possible interest points and 

get their geometry information <x, y, scale, orientation>. x and 

y represent the position of feature point; scale is the describing 

scope of DOG scale-space; orientation is the peak value in the 

point’s histogram’s direction. Then, use Hessian matrix and 

histograms to localise key points. Theses interest points are 

finally described by the 128-dimension SIFT descriptor. PCA-

SIFT and SURF are based on SIFT feature. In PCA-SIFT 

feature extraction, PCA is used to normalise gradient patch 

instead of histograms in SIFT. SURF detector is based on 

Hessian matrix, and chooses to create a “stack” and filters the 

stack with a box filter instead of using pyramids in SIFT.  

As performance, while SURF gets least time cost and best 

robust to changes of illumination in experiment on the same 

dataset, SIFT finds most matches and is invariant to scale, 

rotation and blur [15]. 

III. GEOMETRY AND TOPOLOGY PRESERVING HASHING  

In this paper, we propose a method called geometry and 

topology preserving hashing (GTPH) for SIFT feature matching. 

We first give a system overview of our approach. Then, we give 

the corresponding models in training the GTPH, which is done 

offline. Later in section IV, we will describe a detailed online 

similarity measurement with geometric reinforcement. 
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A. System Overview 

The flowchart of the proposed GTPH is shown in Fig.1. It 

consists of the offline and online systems. First, a geometry and 

topology preserving hashing function is trained with the given 

dataset offline, and the dataset’s SIFT descriptors are hashed by 

it. The training process is described in part B, including four 

relation-preserving matrices. For a query image, first we carry 

out SIFT feature extraction, and then hash it online by the same 

hashing function that we trained offline. Last, we use our 

geometry enhanced similarity evaluating method to measure the 

similarity of the input query image and a dataset image, as 

represented in section IV.  
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Fig. 1. Flowchart of the proposed geometry and topology preserving 

hashing based image matching approach. 

B. Training Dataset Generation 

Hashing-based similarity search methods are popular in 

image retrieval with big data. In order to acquire effective 

hashing function, topology has been taken into consideration 

[11, 12]. Adding more elements into hashing function training 

can cover the shortage that the 128-dimension SIFT descriptor 

has lacks of information in quantising. Our GTPH approach for 

SIFT matching is described as following.  

To make the trained GTPH robust to the different 

applications, we need to generate a large scale SIFT point 

dataset. For example, a dataset of SIFT feature points selected 

from 5K images. The total number of selected SIFT feature 

points is 𝑛. 

The feature points in a dataset are defined as a dataset D′. 

We create a zero-centred matrix 𝐗128×𝑛 consisting of all of the 

𝑛 SIFT descriptors. Each column of 𝐗 is a 128d SIFT feature 

descriptor. Then, we randomly choose 𝑛𝑢𝑚 samples (i.e. the 

SIFT points) from D′. For each sample 𝑥𝑖  (𝑥𝑖 ∈ D′), we get its 

nearest 𝑘  neighbour points which are measured by the 

Euclidean distance of 128 dimensional SIFT feature descriptors, 

and 𝑙 points that are selected randomly from the points that are 

far from its nearest neighbours as well. These nearest points and 

non-neighbour points build up the neighbour set N𝑖 of 𝑥𝑖. 

The selected training samples and all their neighbours build 

up our training set which is defined as  T′ = {𝑥𝑖}𝑖=1
𝑛𝑢𝑚 ∪

{𝑁𝑖}𝑖=1
𝑛𝑢𝑚, 𝑥𝑖 ∈ D′, N𝑖 ⊂ D′ . The training set T′ makes up a 

training matrix 𝐓128×𝑡. It consists of t SIFT feature points, 𝑡 =
𝑛𝑢𝑚 × (1 + 𝑘 + 𝑙). The rows and columns of 𝐓 are ranked in 

the same order, which will be emphasised in our later 

description. 

In this paper the 𝑙  points are used for getting more 

robustness to train hashing function, and usually 𝑙 is less than 

𝑘 [11, 12]. In this paper, we set 𝑘 = 10 and 𝑙 = 1.  

C. Geometry and Topology Extraction and Regulation 

To involve geometry and topology information into hash 

training, we generate a matrix 𝐌 which takes the geometry 

and topology relationships among training samples at first. 

Then we build up four matrices: 𝚪𝑟 , 𝚪𝑠 , 𝐆𝑟 , and 𝐆𝑠 . More 

detailed explanations are given below. In the following, we will 

expound these four matrices, and build up the matrix 𝐌 in the 

end. When computing them, the order of columns and rows 

should be the same with T′s correspondingly. 

(a) Topology Preserving Matrices 

We define a similarity rank weighting matrix 𝚪𝑟 and Simi-

weighting matrix 𝚪𝑠, as that utilized in [11]. 

First, we build 𝑡 × 𝑡  matrix 𝚪𝑟 . 𝑥𝑖  is a training sample 

from the selected training sample set, 𝑥𝑖 ∈ D′, and 𝑖 ≤ 𝑛𝑢𝑚. 

We define  𝑑(𝑥𝑖 , 𝑥𝑗)  as the Euclidean distance between two 

SIFT point 𝑥𝑖  and 𝑥𝑗 . For every sample 𝑥𝑖  expressed as a 

128 × 1 SIFT descriptor matrix in the training sample set, the 

average Euclidean distance to 𝑥𝑖 is defined as 𝑑�̅�, calculated 

as in (1). 

𝑑�̅� = ∑ 𝑑(𝑥𝑖 , 𝑥𝑗) |𝑁𝑖|⁄𝑥𝑗∈N𝑖
, 1 ≤ 𝑗 ≤ |𝑁𝑖|       (1) 

where |𝑁𝑖| is the member number of 𝑁𝑖. 

For each corresponding neighbour point 𝑥𝑗 , Euclidean 

distance deviation 𝚪𝑟(𝑖, 𝑗) can be calculated as follows:  

𝚪𝑟(𝑖, 𝑗) = {
𝑑�̅� − 𝑑(𝑥𝑖 , 𝑥𝑗)       𝑥𝑗 ∈  𝑁𝑖

0                               𝑥𝑗 ∉ 𝑁𝑖
        (2) 

The nearer of 𝑥𝑗  to 𝑥𝑖 , the larger value 𝚪𝑟(𝑖, 𝑗) will get. 

Notice that in the ith row, only positions of 𝑥𝑗  (that belong to 

neighbour set 𝑁𝑖 ) have non-zero values, which makes the 

matrix very sparse. 

Setting 

Norm1(𝐗(𝑖, 𝑗)) = 2 ×
𝐗(𝑖, 𝑗) − 𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖

− 1 

Norm2(𝚪𝑠(𝑖, 𝑗)) = 2 × e{−𝑑2(𝑥𝑖,𝑥𝑗)/
2

} − 1 

where 𝑚𝑖𝑛𝑖 and 𝑚𝑎𝑥𝑖  are the minimum and maximum 

values of Euclidean distance deviation 𝚪𝑟(𝑖, 𝑗) in row i. 

Then, 𝚪𝑟(𝑖, 𝑗) can be normalized as follows: 

𝚪𝑟(𝑖, 𝑗) = Norm1(𝚪𝑟(𝑖, 𝑗))            (3) 

where 𝑚𝑖𝑛𝑖  and 𝑚𝑎𝑥𝑖  are the minimum and maximum 

values of Euclidean distance deviation 𝚪𝑟(𝑖, 𝑗) in row i. 

{
𝑚𝑖𝑛𝑖 = min

𝑗
𝚪𝐫(𝑖, 𝑗)

𝑚𝑎𝑥𝑖 = max
𝑗

𝚪𝐫(𝑖, 𝑗)
               (4) 

Thus, 𝚪𝑟(𝑖, 𝑗)  can represent the relative ranking of each 

sample point’s neighbours’ distances. 

Second, we build a 𝑡 × 𝑡  matrix 𝚪𝑠 . It is the Euclidean 

neighbourhood relationship preserving matrix as that utilized in 

[12] as follows: 

 𝚪𝑠(𝑖, 𝑗) = Norm2(𝚪𝑠(𝑖, 𝑗))            (5) 

where σ  is the average Euclidean distances of the 128-

dimension SIFT descriptors of the dataset. Mind that 𝑑�̅�  is 
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different with σ. σ is the average distance with each other; 𝑑𝑖 

is the average distance of the other SIFT points in Ni to 𝑥𝑖. A 

bigger absolute value of 𝚪𝑠 (𝑖, 𝑗)  means a bigger similarity 

between 𝑥𝑖 and 𝑥𝑗, as mentioned in [11, 12]. 

(b) Geometry Preserving Matrices 

Inspired by these two matrices 𝚪𝑟  and 𝚪𝑠 in topology 

preserved hashing, to involve geometric information in our 

hashing function training, we address two 𝑡 × 𝑡 matrices 𝐆𝑟 

and 𝐆𝑠 that can preserve the geometry ranking and similarity 

into hash training. 

First, we shall have 𝐆𝑟 to keep the geometric ranking. The 

normalised distance between these two scales is 𝑑𝑠(𝑠𝑖 , 𝑠𝑗) and 

that between two orientations is 𝑑𝑜(𝑜𝑖 , 𝑜𝑗). That is, 

{
𝑑𝑠(𝑠𝑖 , 𝑠𝑗) = |𝑠𝑖 − 𝑠𝑗|/max(𝑠𝑖 , 𝑠𝑗)

𝑑𝑜(𝑜𝑖 , 𝑜𝑗) = |𝑜𝑖 − 𝑜𝑗|/max(𝑜𝑖 , 𝑜𝑗)
         (6) 

We compute the average scale difference 𝑠�̅� for point i in the 

training set as:  

𝑠�̅� = ∑ 𝑑𝑠(𝑠𝑖 , 𝑠𝑗) |N𝑖|⁄𝑥𝑗∈N𝑖
             (7) 

Next, scale deviation 𝐒𝑟(𝑖, 𝑗) is defined as:  

     𝐒𝑟(𝑖, 𝑗) = {
𝑠�̅� − 𝑑𝑠(𝑠𝑖 , 𝑠𝑗)       𝑥𝑗 ∈  N𝑖

0                  𝑥𝑗 ∉ N𝑖
      (8) 

The smaller 𝑑𝑠(𝑠𝑖 , 𝑠𝑗), the more similar 𝑠𝑗 is to 𝑠𝑖, which 

implies a smaller absolute value of 𝐒𝑟(𝑖, 𝑗). As a result, the 

contribution of the corresponding 𝑥𝑗 is going to be weighted 

more during training. Similarly to [11, 12], we normalized this 

score to the [0,1] interval as 

𝐒𝑟(𝑖, 𝑗) = 2 ×
𝐒𝑟(𝑖,𝑗)−𝑠𝑚𝑖𝑛𝑖

𝑠𝑚𝑎𝑥𝑖−𝑠𝑚𝑖𝑛𝑖
− 1, 

where 𝑠𝑚𝑖𝑛𝑖 = min
j

𝐒𝑟(𝑖, 𝑗) and 𝑠𝑚𝑎𝑥𝑖 = max
j

𝐒𝑟(𝑖, 𝑗).  

Similarly, we repeat the same procedure for orientation 

deviation by function (9) and (10): 

𝑜�̅� = ∑ 𝑑𝑜(𝑜𝑖 , 𝑜𝑗) |N𝑖|⁄𝑥𝑗∈N𝑖
           (9) 

   𝐎𝑟(𝑖, 𝑗) = {
𝑜�̅� − 𝑑𝑜(𝑜𝑖 , 𝑜𝑗)       𝑥𝑗 ∈  N𝑖

0                                𝑥𝑗 ∉ N𝑖
      (10) 

and we normalize 𝐎𝑟(𝑖, 𝑗) to take values on [0,1] as follows 

𝐎𝑟(𝑖, 𝑗) = Norm1(𝐎𝑟(𝑖, 𝑗))          (11) 

where 𝑜𝑚𝑖𝑛𝑖 = min
j

𝐎𝑟(𝑖, 𝑗) and 𝑜𝑚𝑎𝑥𝑖 = max
j

𝐎𝑟(𝑖, 𝑗). 

Then we merge the two matrices into the geometry rank 

weighting matrix:  

𝐆𝒓=
𝟏

𝟐
(𝐒𝑟 + 𝐎𝑟)              (12) 

Furthermore, we use the deviations to get similarity relation 

function 𝑮𝑠 as follows:     

𝐆𝑠 (𝑖, 𝑗) = exp {−
𝑑𝑠2(𝑥𝑖,𝑥𝑗)

σs
2 } + exp {−

𝑑𝑜2(𝑥𝑖,𝑥𝑗)

σo
2 } − 1   (13) 

where σ𝑠  is the average Euclidean distance of the scales of 

SIFT points in D′ . σo  is the average Euclidean distance of 

points’ orientations. A larger absolute value of 𝐆𝑠 (𝑖, 𝑗) means 

𝑥𝑗 is more different with 𝑥𝑖.  

(c) Geometry and Topology Preserving Matrix 

The above four matrices can enhance both the geometry and 

the topology relationship between training points. The last 

process in this part is to integrate the four matrices, as follows: 

𝐌 = 𝛽[(1 − 𝛾)𝚪𝑟 + 𝛾𝚪𝑠] + (1 − 𝛽)[(1 − 𝛾)𝐆𝑟 + 𝛾𝐆𝑠]     (14) 

where γ is the weight to balance the matrix 𝚪𝑟 and 𝐆𝑟 with 

neighbourhood relationship preserving matrix 𝚪𝑠  and 𝐆𝑠 , 

while β weights the importance of the 128-dimension feature’s 

topology information to the geometry information.𝛽, 𝛾 ∈ (0,1). 

To make it clearer, an overflow of the Geometry and 

Topology Extraction and Regulation is given as Algorithm.1. 

 
ALGORITHM 1. OVERFLOW OF THE GEOMETRY AND TOPOLOGY EXTRACTION 

AND REGULATION 

Input: matrix 𝐗128×𝑛, training matrix 𝐓128×𝑡 

Output: matrix 𝐌 

-Begin 

//Calculate Topology Preserving Matrices 

For every sample 𝑥𝑖 do 

For each corresponding neighbour point 𝑥𝑗 do 

calculate Euclidean distance deviation 𝑑(𝑥𝑖 , 𝑥𝑗) , 𝑑𝑠(𝑠𝑖 , 𝑠𝑗) , 

𝑑𝑜(𝑜𝑖 , 𝑜𝑗) 

calculate 𝑑�̅�, 𝑜�̅�, 𝑠�̅� 

calculate 𝚪𝑟(𝑖, 𝑗), 𝐒𝑟(𝑖, 𝑗) , 𝐎𝑟(𝑖, 𝑗) 

normalize 𝚪𝑟(𝑖, 𝑗), 𝐒𝑟(𝑖, 𝑗) , 𝐎𝑟(𝑖, 𝑗) 

calculate 𝐆𝒓  

calculate Euclidean neighbourhood relationship preserving matrix 𝚪𝑠 (𝑖, 𝑗), 

𝐆𝑠 

calculate 𝐌 

-End 

 

D. Hashing function Training 

A hashing function is to map descriptors into a lower 

dimension while making the most similar ones in original space 

still has a large possibility being similar in the lower dimension. 

Thus, the training consists of two steps: First, we use PCA to 

get the principal component of geometry and topology 

emphasised dataset. Second, we use singular value 

decomposition (SVD) to minimise the loss of quantisation. We 

describe them as follow. 

(a) Principal Component Extraction 

Follow PCA [36] method to solve an Eigen-decomposition 

of matrix A given by (15) (16). 

𝐆 = 𝐓 × (𝐌 + 𝐌T) × 𝐓T + 𝐗 × 𝐗T       (15) 

𝐀 = 𝐆 + 𝐆T               (16) 

where ×  represents matrix multiplication. 𝐗  is the matrix 

that is built up with all 128-dimensional descriptors of D′ in 

the dataset. 

G is a 128 × 128  matrix that can carry both of 

neighbourhood ranking and relationship information. From the 

first term 𝐓 × (𝐌 + 𝐌T) × 𝐓T  we can extract the principal 

components of descriptors that preserve geometry and topology 

relationship of the training set. The second term 𝐗 × 𝐗T is for 

preventing overfitting. G is not a symmetric matrix, thus we 

should process it as function (16). 

The 𝑚 largest eigenvalues of the decomposition construct a 

projection matrix 𝐖128×𝑚, where 𝑚 decides the bit number of 

hashing result. 

(b) Minimise the Loss of Quantisation 

For the hashing process, we want to find an optimal mapping 

𝐑𝑚×𝑚 that can transfer the original SIFT feature matrix 

𝐀128×𝑛 to a short binary matrix 𝐘𝑚×𝑛 . We have 
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𝐘𝑚×𝑛 = sgn(𝐑 × 𝐙)               (17) 

where sgn(·) is the symbolic function and 𝐙 = 𝐖𝐓 × 𝐀 . 

𝐘𝑚×𝑛 represents the hashed 𝐀.  Our target is to find an 

orthogonal matrix 𝐑𝑚×𝑚  that can minimise the quantisation 

loss 𝐐(𝐘, 𝐑) as follows: 

𝐐(𝐘, 𝐑) = ‖𝐘 − 𝐑 × 𝐙‖𝐅
𝟐             (18) 

where  ‖·‖F  is the Frobenius norm, 𝐑  is initialized as a 

random square matrix with an m×m size.  

Then, we utilize an iterating procedure to get the 

optimized  𝐑𝑚×𝑚  as follows: 1) use the 𝐑  to update  𝐘 =

sgn(𝐑 × 𝐙). 2) use a SVD decomposition to solve 𝐙 × 𝐘T, lead 

to matrices 𝐔, 𝚺 and 𝐕 as [12]. 3) update 𝐑 = 𝐕 × 𝐔T. 4) if 

𝐐 not convergent then continue the steps 1)~3). Otherwise, 

when 𝐐  satisfies the convergence condition, then stop the 

iteration and we denote 𝐏 = 𝐖 × 𝐑T. 

(c) Hash Feature Generation 

Assume that the SIFT feature matrix of an image is denoted 

as 𝐈𝐧𝐩𝐮𝐭, then its hashing representation is as  

𝑓(𝐈𝐧𝐩𝐮𝐭) = sgn(𝐏T × 𝐈𝐧𝐩𝐮𝐭)          (19) 

where sgn(·) is the symbolic function and 𝐏 = 𝐖 × 𝐑𝐓 . 

𝑓(𝐈𝐧𝐩𝐮𝐭) means the corresponding output binary descriptors 

in columns as a matrix.   

IV. GEOMETRY ENHANCED SIMILARITY EVALUATION 

In this section, the steps of our similarity evaluation is given. 

For the SIFT feature matching based on our hashing method, 

we involve geometry information into the similarity evaluation 

step. We shall have Hamming Distance Score, Scale Score and 

Orientation Score to get a final score for each image. We are 

going to describe the online process step by step in the 

following. 

A. SIFT Feature Hashing 

SIFT features of the dataset images should be extracted 

offline. For a query image, first, we shall extract its SIFT 

features and get geometry information. Second, with the same 

hashing function, we input the query’s features as matrix 

𝐈𝐧𝐩𝐮𝐭, and then get binary descriptors of query’s feature points. 

B. SIFT Feature Matching 

Let us define the SIFT feature points in the query image as a 

set 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛} , and those of the ith image in the 

retrieving dataset as 𝑃𝑖 = {𝑝1, 𝑝2, … , 𝑝𝑧}, i={1,2, … , 𝐼}, i is the 

total number of dataset images and 𝑧 is the number of feature 

points in image 𝑃𝑖 . H(𝑞, 𝑝)  denotes the hamming distance 

between two feature points 𝑞 and 𝑝. 

 

A feature point 𝑞𝑘 in query 𝑄 is deemed to be a reliable 

match to a point 𝑝𝑗 in the retrieving dataset according to the 

following ration criterion. In image 𝑃𝑖 , 𝑝𝑗  and 𝑝𝑙  are the 

closest and the second-closest feature points to 𝑞𝑘  in 

Hamming space, which leads to H(𝑞𝑘, 𝑝𝑗) < H(𝑞𝑘, 𝑝𝑙) . The 

ratio 
𝐇(𝑞𝑘,𝑝𝑙)

𝐇(𝑞𝑘,𝑝𝑗)
 decides whether the match is reliable. The ratio 

criterion was originally proposed in [13], where also the impact 

of r on matching has been studied. When 
𝐇(𝑞𝑘,𝑝𝑙)

𝐇(𝑞𝑘,𝑝𝑗)
≥ 𝑟, 𝑞𝑘 and 

𝑝𝑗 are defined as a reliable match. We chose 𝑟 = 1.05 in our 

experiments. 

C. Geometric Enhanced Similarity Measurement 

Here we calculate the matching score of an input query image 

with dataset images by a geometric enhanced similarity 

measurement approach. In our similarity measurement 

approach, the average hamming distance and geometric score 

are fused in the similarity measurement. 

(a) Hamming Distance Score 

Hamming distance score (HDS) of 𝑃𝑖 is defined as  

𝐻𝐷𝑆𝑖 =
∑ 𝑚𝑖𝑛 𝐇(𝑞𝑘,𝑝𝑗)𝜔

𝑘=1

𝜔
  , 𝑘 ∈ [1, 𝜔], 𝑗 ∈ [1, 𝑧]  (20) 

where 𝑧 is the number of feature points in query, and 𝜔 is the 

number of reliable-matched feature points number. Obviously, 

𝜔 ≤ 𝑛. Every 𝑝𝑗 and 𝑞𝑘 are reliable matches. 

(b) Geometric Score 

According to the description of SIFT feature, similar feature 

points should have similar 128 × 1 descriptors regardless of 

position, orientation, scale and luminance. Whether being 

hashed or not, considering about feature points of similar 

objects or salient spots, they should have steady scale ratios and 

rotation degrees with reliable matched pairs. A matched pair of 

feature points’ scale ratio should be 1, as well as orientation 

variance should be 0, if they are exactly the same in two pictures. 

If one point’s surrounding area is enlarged equably, its scale and 

its neighbour points’ scales should get larger with a same ratio 

according to [13]. If the point and its surrounding area are 

rotated with a same degree, their orientations should have 

similar difference values comparing to the original image.  

If the ratios or difference values are not the same, there can 

be two possible situations. One is that the view changes with 

the same spot, such as the front view and an oblique view of a 

building-they have same architectural elements and similar 

details with shearing, but are not geometrically the same. 

Another possible situation is that the ‘reliable matched pairs’ 

are still not the correct ones, even though they are more reliable 

to be correct in possibility. The latter situation will absolutely 

decrease the accuracy of retrieval and matching.  

Therefore, if an image’s feature points have more steady 

geometric information with matched points in query, we can 

safely assume they are more similar to the query from both 

content and view spot than images with wavy ones. 

Thus, we propose Geometric Score to help improving 

similarity evaluation. It consists of Scale Score and Orientation 

Score, representing the geometric difference in general between 

pictures and the query. 

A scale score (SS) between image Pi and query Q is defined 

based on the reliable matches as function (21).  

SS𝑖 = ∑ 𝑣𝜔
𝑘=1 (|

𝑠(𝑞𝑘)

𝑠(𝑝𝑗)
− 1|) , 𝑘 ∈ [1, 𝜔], 𝑗 ∈ [1, 𝑧]   (21) 

where 𝑠(𝑞𝑘) and 𝑠(𝑝𝑗) are the scales of 𝑝𝑗 and 𝑞𝑘. 𝑣(𝑥)  is 

the variance of 𝑥, which is determined as follows: 
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v(𝑥) =
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1 .            (22) 

where 𝑥𝑖 is the samples in and �̅� is the average value of 𝑥. 

The variance of the whole picture is calculated to evaluate the 

scale ratios’ fluctuation. 

Orientation score (OS) between image Pi and query Q is 

defined as function (23).  

OS𝑖 = ∑ 𝑣𝜔
𝑘=1 (|𝑜(𝑞𝑘) − 𝑜(𝑝𝑗)|) , 𝑘 ∈ [1, 𝜔], 𝑗 ∈ [1, 𝑧] (23)              

where 𝑜(𝑞𝑘) and 𝑜(𝑝𝑗) are the orientations of 𝑝𝑗 and 𝑞𝑘. 

(c) Geometry Enhanced Similarity Evaluation 

After matching with images, because of the various score 

scales resulted by different queries, all Hamming Distance 

Scores, Scale Scores and Orientation Scores need to be resized 

as function (24) (25).  

SS𝑖
′ = 2 ×

SS𝑖−min(SS)

max(SS)−min(SS)
            (24) 

OS𝑖
′ = 2 ×

OS𝑖−min(OS)

max(OS)−min(OS)
            (25) 

An integrated score presented as SCORE𝑖 is given to image 

Pi in the dataset as function (26).  

SCORE𝑖 = HDS𝒊 + 𝑏 × SS𝒊
′ + 𝑐 × OS𝑖

′ , 𝑏, 𝑐 ≥ 0  (26) 

where parameters b and c are utilized to balance the weights of 

HDS, SS and OS. In the case that b=0 and c=0, it is the 

commonly utilized hamming distance based similarity 

measurement, while b≠ 0 or c≠0 corresponds to our proposed 

geometry enhanced hamming distance based similarity 

evaluation approach. Their impacts to the final matching based 

image retrieval are discussed in section V. 

Finally, in our matching based image retrieval approach, we 

rank the dataset images according to their SCORE𝑖  in the 

dataset. The smaller value SCORE𝑖  is, the image is more 

similar to the query. Adding scale score and orientation score 

can balance the general performance of a query, because it gets 

off some noise images as their geometric information is 

different. The experiment results are presented in section VII. 

V. EXPERIMENTATION AND RESULTS 

To express the accuracy of our method, we implement 

experiments on Oxford Building benchmark dataset [17] and 

Geo-Tagged Large Scale Dataset (GOLD) mentioned in [18].  

Precision comparison are made among SIFT matching [13], 

Binary SIFT [20] (in short bSIFT), GFC[21], SGH[40], 

ITQ[36], TPH[11, 12] and our method. We use the mean 

precision as the criteria to compare method [26]. The ground 

truth is labelled manually. 

A. Dataset Processing  

Oxford Building benchmark dataset consists of 5062 photos 

of Oxford landmarks images provided by “Flickr”, grouped by 

11 landmarks. GOLD dataset is more complex and noisy than 

Oxford Building dataset. We use it to show the performance and 

discuss a few parameters in hash training. 

(a) Oxford Building benchmark dataset 

In our experiments, we randomly selected 29 queries in 3 

manually selected groups based on the 11 landmarks in Oxford 

Building benchmark dataset and manually choose 11 ground 

truth sets. 

In training process, 1000 feature points are randomly 

selected from all feature points in Oxford building benchmark 

dataset as the training set. γ is 0.2 and α is 1. Each training 

point’s 10 nearest neighbour feature points are chosen in 

Euclidean space, and 1 non-neighbour random feature point is 

added to increase adaptability, leading to k=10 and l=1.  

For each landmark, we try to separate them into 3 image 

sets- “detail”, “normal”, and “general”. “Normal” set contains 

images with an obvious spot and an obvious background, like 

what normal camera man get when we take photo of a cathedral 

or a gate; “detail” images have a part of the spot, like a window 

or half of a gate; “general” is the pictures far from the spot like 

bird’s-eye view, or with irrelevant background like a lot of trees 

and extra buildings. According to practical experience, “detail” 

and “normal” pictures should be better as queries, but it is 

possible that users want to search for “general” pictures. We 

also use this grouping way to make sure the queries are fair to 

some extent.  

(b) GOLD Dataset 

GOLD contains more than 227 thousand images covers 80 

different places from Flickr, Baidu and Google. It is designed 

as a test set for GPS location estimation and place of interest 

recognition, and images are further processed to 200×200 pixel 

size in [19]. We use the processed latter one as the dataset. 

There are not only images about the architectures themselves, 

but also a lot of travelling photos, including those with tourists, 

selfies and scenes. It is much more complex than the Oxford 

Building benchmark dataset.  

In this experiment, we use the trained hashing function in 

Oxford Building dataset. 20 queries are randomly chosen from 

a few sites picked by hand. We mainly choose images contain 

obvious sites without more than 1 person, including Angkor 

Wat, Great Hall of the People, Colosseum, Easter Island statue, 

Arc de Triomphe, etc. Due to the complexity of GOLD, we 

choose correct images by hand. 

Parameter b and c are set as 0, which means that the 

geometry enhanced similarity evaluation part is not added, to 

prove the role of geometric factor in training process.  

B. Evaluation Criterion 

We use the mean precision [26] at top K of queries as the 

criteria to compare performance which is defined as: 

𝑃@K =
1

𝑇
 ∑    𝑅𝑖 𝐾⁄ 𝑇

𝑖=1           (27) 

where 𝑅 is the number of correct images in top 𝐾 images of 

the evaluation result. In our experiment, we use 𝐾 =
2, 5, 10, 15, 20, 25, 30.  

C. Compared Methods 

Original SIFT matching, GFC, SGH, ITQ and TPH methods 

are used as comparisons. We have parameter discussion as well 

in section F. 

Original SIFT descriptors are used to see the loss of hashing. 

SIFT uses the average Euclidean distance of matched pairs 

instead of Hamming distance to measure the similarity.  
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Binary SIFT uses the median as the hashing rule, and the 

matches’ Hamming distances under a threshold are considered 

as correct matches. GFC adds a coding involves with position, 

scale and orientation of SIFT features. First, we need to use 

BoW to get top 500 pictures. Then we use GFC on these images. 

With spatial verification, acceptable matches can be picked out. 

𝛼 is 5 and 𝜏 is 2, as [11] recommends.  

SGH involves a whole graph matrix; ITQ improves the way 

to get hashing function with PCA methods; TPH involves 

topology consideration. For SGH and ITQ, we uses the 

recommended parameters in [40] and [36]. TPH is in the same 

parameter values with our methods. All training feature points 

are chosen in the same way with ours if necessary. 

D. Objective Performance Comparison 

In order to show the effectiveness of different hashing 

approach, we systematically evaluate the SIFT, binary SIFT 

(bSIFT), GFC, SGH, ITQ, TPH and GTPH on Oxford Building 

benchmark dataset. TABLE 1 is the comparison of methods 

with normal similarity evaluation in 128 bit, i.e. we set m=128, 

which means we want the embedded descriptors to be 128 bits 

long. It can be seen from TABLE 1 that our trained hashing 

function can make an obvious promotion in top 30 precision, 

comparing to the state-of-art methods. It can be seen in TABLE 

1 that our method goes to 0.845 for precision at top 2, but other 

methods reach 0.689 at most. GTPH method keeps both 

geometry and topology information in hashing function training. 

From TABLE 1, we find that the top 2 performance of our 

approach is very close to the raw SIFT matching. 

 
TABLE 1. OXFORD BUILDING BENCHMARK DATASET, 128 BITS, TOP 30’S MEAN 

PRECISION COMPARISON BETWEEN SIFT, BINARY SIFT, SGH, ITQ, TPH AND GTPH. 

Top SIFT bSIFT GFC SGH ITQ TPH GTPH 

2 0.862 0.340 0.623 0.672 0.689 0.672 0.845 

5 0.724 0.140 0.435 0.421 0.441 0.386 0.635 

10 0.593 0.100 0.291 0.303 0.352 0.272 0.500 

15 0.538 0.140 0.232 0.232 0.290 0.230 0.432 

20 0.488 0.120 0.175 0.195 0.241 0.186 0.369 

25 0.432 0.110 0.159 0.23 0.200 0.23 0.315 

30 0.383 0.130 0.150 0.147 0.183 0.145 0.290 

 
TABLE 2. GOLD DATASET, 128 BITS, TOP 30’S MEAN PRECISION COMPARISON 

BETWEEN SGH, ITQ, TPH AND GTPH. 

Top SGH ITQ TPH GTPH 

2 0.900 0.900 0.867 0.933 

5 0.733 0.760 0.707 0.787 

10 0.627 0.673 0.600 0.667 

15 0.547 0.587 0.529 0.591 

20 0.493 0.533 0.477 0.540 

25 0.451 0.491 0.429 0.499 

30 0.420 0.458 0.407 0.458 

 

 
Fig.2. Top 30’s mean precision comparison between SGH, ITQ, TPH and our 

GTPH method in Oxford Building dataset. The approaches are all with 32 bits 

and in our GTPH we set b=0.3 c=0.5 
Due to GOLD dataset is far larger than Oxford Building 

dataset, it is computational intensive for SIFT feature matching. 

We provide the comparison for SGH, ITQ, TPH, and GTPH in 

TABLE 2, since they are all data-dependent hash training 

methods. From it, we can see that GTPH performs better than 

SGH, ITQ and TPH. It reaches 0.933 at Top 2, even the dataset 

is more complicated than Oxford Building benchmark dataset, 

while ITQ is 0.900, TPH is 0.867 and SGH is 0.900.  

 
Fig. 2 shows the mean precision comparison in 32 bits (i.e. 

m=32) in Oxford Building dataset for the GFC, SGH, ITQ, TPH 

and GTPH based hashing approaches. From the comparisons, 

we find that GTPH outperforms the other approaches. When 

looking at top 30 results in pictures, we can see that some noise 

pictures are wiped out or pushed backward by our GTPH, and 

correct results in top 10 rank better than ITQ and TPH. 

E. Subjective Performance Comparison 

To show the hash feature matching based performances of 

ITQ, TPH and GTPH under different bits, we give three 

examples and provide their corresponding retrieval results. Two 

typical queries with four groups of results in Oxford Building 

benchmark dataset are shown in Fig.3, as well as a query in 

GOLD dataset. The first image of each line is both the query 

and the first result, showing the correctness of each experiment 

implementation. The top line of each group is the ITQ’s result, 

the middle is TPH’s, and the lowest one is our method’s. Fig.3(a) 

and (b) are the results using 128-bit hash representation; Fig. 

3(c) and (d) are the results of 32-bit. Fig.3 (e) is an image of 

Angkor Wat, with 32-bit, and Fig.3(f) is with 128-bit. In Fig.3, 

the incorrect results are marked in red.  

By comparing Fig.3(a) and (c), Fig.3(b) and (d), and Fig.3(e) 

and (f), we find that by assigning the hash code more bits, better 

matching performances are achieved. For the same input image, 

our GTPH based image matching gets fundamental 

improvements over ITP and TPH. 

In Fig.3(a), the false matching image numbers on the top 10 

of ITQ, TPH and GTPH are 3, 4 and 0, when the hash codes are 

with 128 bits. While we only assign 32 bits for them, the 

corresponding correct matching numbers in top 10 are 3, 3, and  
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(a) Oxford Building benchmark dataset, 128 bits 

 
(b) Oxford Building benchmark dataset, 128 bits 

 
(c) Oxford Building benchmark dataset, 32 bits 

 
(d) Oxford Building benchmark dataset, 32 bits 

 
(e) Angkor Wat, GOLD dataset, 32bits 

 
(f) Angkor Wat, GOLD dataset, 128bits 

Fig. 3. Top 10 retrieval results of ITQ, TPH and our GTPH method. The 

first is the query and the most similar result. Incorrect images are marked in red. 

5. In Fig.3(b), the correct answers in top 10 are 2, 2 and 5 in 

ITQ, TPH and GTPH. Similarly for the case in Fig.3(b) and (d), 

and in Fig.3(e) and (f), our GTPH based approach can find more 

correct matchings even with short hash codes. 

Some noise pictures can be easily recognized in these result, 

like the 3rd of ITQ result in Fig.3(a) also appears in TPH in 

Fig.3(a) and (b). They are likely to be considered as similar 

images since they have too many repeated local feature points 

with a pattern, so that after hashing, in similarity calculating, 

there is more possibility for a query feature point to find a 

wrong one with a small Hamming distance. Adding geometry 

factor in hashing function training can separate principal 

features, and adding it in similarity evaluation adds global 

geometry information, which has made the retrieving focus on 

both global and local. From a local view, the feature points of 

the top of Angkor Wat may be similar to the heads of three 

people, but from a global aspect, features in these situations 

have different scale and orientation. Geometry score can 

eliminate the impact of noise matchings which makes the 

Hamming distance score higher than correct answers. This 

means, firstly noise pictures are tried to be pushed back by 

average Hamming distance; secondly they get smaller 

geometric score. Thus, results get much better.  
 

F. Discussion  

In this section, parameters 𝛽, b, c, relation between n and t 

are discussed. The parameter 𝛽 denotes whether to utilize the 

geometric information in hashing function training. b and c are 

the corresponding factors of scale and orientation of geometric 

information in geometry enhanced similarity measurement. The 

results are shown in Fig.4, Fig.5, and Fig. 6. For GTPH, the 

algorithm complexity is the same with TPH as O(N), and the 

computing speed is slower as it involves more information, the 

precision improvement makes it worth. 

(a) Geometry Parameters 

We choose 𝛽=0.2, 𝛽=0.4, 𝛽=0.8, and a few b and c values 

to show the performance in Fig.4 and Fig.5. 

In Fig.4, GTPH gives a steady good performance, though 

fluctuating with parameters. In Fig.4(a), when b=0 and c=0, it 

is equal to not adding geometry information. It can be seen that 

when change b to 0.3 and keep c=0, the performance rises a 

little bit, while change c to 0.3 and keep b=0, it rises more. It 

means that either part of our geometry information is effective.  

Comparing the first and the fourth histogram of Fig.4(a), where 

the latter one is with b=0.3 and c=0.3, an obvious raise can be 

seen. It can also be found in Fig.4(b) that even the hashing 

representation uses shorter bit length, the geometry information 

works, as the fourth histogram in b=0.3 and c=0.5 performs best. 

The orientation of a SIFT feature is more sensitive than the 

scale, as the histogram peak of a point is easier to change than 

the scope, thus c is more sensitive than b. The values of these 

parameters are a little bit controversial and need to be adjusted 

by an amount of queries. 

Different 𝛽 ’s performance is shown in Fig.5, b=0, c=0. 

Overall, the best among three is 𝛽 = 0.4, which goes for 0.800 

at top 2. The result shows neither too big nor too small of 𝛽 is 

recommended, since 𝛽 represents the geometry information’s 

impact in hashing function training. When it is too small, it will 

be the same with TPH, and when it is too big, it will not preserve 

enough data information. 

(b) Dataset Parameters 

We have also discussed the parameter n and t’s relation, and 

have experiment in GOLD dataset as in Fig. 6, with t=10%, t 

=2%, t=1%, and t=0.8% of n in 𝛽=0.8. 

From Fig. 6, we show the impact of the amount of the 

training dataset 𝐗128×𝑛  in part B, section III. We cut off a 

certain percentage of each picture’s feature points randomly 

and trained the hashing function with the same 𝐓128×𝑡. In part 

A of section V, 𝐗128×𝑛 is 118 times as large as 𝐓128×𝑡, which 

means 𝑡 = 0.8% of n. The other values are designed to 10%, 2% 

and 1%.  
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It can be seen that the size of training dataset does impact 

the precision in GOLD dataset. Basically, the more features 

involved in a dataset, the more robustness it will get, so it can 

be seen that 𝑡 = 0.8% works, where 𝐗128×𝑛  consists of all 

feature points in Oxford Building benchmark dataset. It may be 

difficult to pick out enough principle useful feature points in 

training. Thus, making 𝐗128×𝑛  a little smaller to 𝑡 = 1% 

performs better than 𝑡 = 0.8%, which means we need not to use 

all of the features in dataset D′. When 𝑡 = 2% and 𝑡 = 10%, 

the precisions get down. It is possible that a smaller n makes the 

robustness down, and the closer t and n are, the easier to get features 

share the same neighbour set and keeps the topology and geometry 

relationship in training, leading to an unsteady raise in precision. As 

for time costs, obviously a smaller n saves time, but in the same 

programming condition, 𝑡 = 2% costs 6703s, three times of time of 

𝑡 = 10%, and 𝑡 = 2% costs about 13914s, because of the computing 

of 𝐌  need to traverse every feature in D′ a few times. The 

convergence in III.D.(b) is nearly the same when m=32, for 

194.82s in 𝑡 = 10%, 113.03s in 𝑡 = 2%, and 373.77s in 𝑡 = 1%. 
Optimising programme can make it more efficient, but the choosing of 

n and t need to be considered in practice.  

 

(c) Effect of Geometry Enhancement 

We have done the experiment in 128 bits in Oxford Building 

benchmark dataset, and the mean precision results are shown in 

TABLE 3 and Fig.7. 

TABLE 3 is given to show the effect of each part of GTPH. 

TPH method preserves the topology information. GTPH 

without geometry enhanced similarity evaluation, leading to 

b=0 and c=0, performs better than TPH shows that adding 

geometry information in hashing function training works. The 

third column is TPH with geometry enhanced similarity 

evaluation. As it performs better than TPH, the precision of top 

2 can reach 0.707. When geometry enhanced similarity is also 

added, b=0.3 and c=0.3, the mean precision can reach 0.845 at 

top 2. 

To shows the geometry enhancement similarity evaluation 

is not only effective in GTPH, but also useful for other methods, 

we give out Fig.7. “With” means the data with geometry 

enhanced similarity evaluation, with b=0.3 and c=0.3; “without” 

means without that, leading to b=0, c=0. Obviously, every 

method has a great improvement. GTPH is better than TPH, and 

the performance of front result, like top 2, is even close to the 

SIFT matching precision. Even though ITQ seems good, it is 

while keeping the content information need parameter adjusting. 

When we adjust the parameters in TPH and GTPH, it is quite 

possible that the precision will be better than ITQ for our 

information preserving, according to the result in [11]. 

Enhancing geometry information makes the hashed features 

get better classification. By geometry enhanced similarity, this 

classification is adjusted due to the global character of images. 

The unity of these two steps makes GTPH stands out. 

 
(a) m = 128 Top 30’s mean precision comparison in different parameters 

 
(b) m = 32 Top 30’s mean precision comparison in different parameters 

Fig.4. mean precision comparison in different parameters 

 
Fig.5. GOLD dataset, 32 bits, top 30’s mean precision comparison 

in different parameters 

 
Fig.6. GOLD dataset, 32 bits, top 30’s mean precision comparison in 

different parameters 
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TABLE 3. 128 BITS, TOP 30’S MEAN PRECISION COMPARISON BETWEEN TPH AND 

GTPH  

Top K TPH 

(without) 

TPH 

(with)  

GTPH 

(without) 

GTPH 

(with) 

2 0.672 0.707 0.776 0.845 

5 0.386 0.483 0.552 0.635 

10 0.272 0.352 0.417 0.500 

15 0.230 0.278 0.345 0.432 

20 0.186 0.240 0.298 0.369 

25 0.163 0.208 0.258 0.315 

30 0.145 0.190 0.234 0.290 

 

VI. CONCLUSION 

This paper proposes Geometry and Topology Preserving 

Hashing method to acquire a hashing function considers both of 

geometry and topology of feature points, and then ameliorate 

the similarity evaluation to deal with the problem of inaccuracy 

in image retrieval. This method improves the shortcoming of 

only considering distance relationship of feature points’ 

topology in training and the limitation of implementing in 

complex background dataset by measuring from a global aspect 

using local features to protect both of local and global features 

of an image, especially in tour recommendation situation. A 

significant improvement in precision with a comparison 

between SIFT, Binary SIFT, GFC, SGH, ITQ, TPH and our 

GTPH, along with the comparison of different factor values in 

Oxford Building benchmark dataset and GOLD are shown in 

experiment part.  

In future work, we will further explore salient detection to 

improve retrieval performance. 
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Appendix A: Notations and Definitions 

The Symbol Meaning 

𝑛 The total number of selected 

feature points from image dataset. 

D′ The feature points set of the 

image dataset. 

𝐗128×𝑛 Matrix consisting of all of the n 

SIFT descriptors. 

𝑛𝑢𝑚 The randomly chosen sample 

number. 

 𝑥𝑖 A chosen sample. 

𝑘 The number of nearest neighbor 

points of a sample. 

𝑙 The number of non-neighbor 

points of a sample. 

N𝑖 The nearest points and non-

neighbour points. 

T′ The training set. 

t A training sample. 

𝐓 The training matrix. 

 

𝐌 

A matrix that takes the 

geometry and topology 

relationships among training 

samples. 

𝚪𝑟 Similarity rank weighting 

matrix. 

𝚪𝑠 Simi-weighting matrix. 

𝐆𝑟 Geometry rank weighting matrix. 

𝐆𝑠 Geometric similarity relation 

matrix. 

𝑑�̅� The average Euclidean distance 

to 𝑥𝑖. 

 

σ 

The average Euclidean 

distances of the descriptors of the 

dataset. 

 

𝑑𝑠(𝑠𝑖 , 𝑠𝑗) 

The normalised distance between 

the two scales of 𝑥𝑖  and 𝑥𝑗. 

 

𝑑𝑜(𝑜𝑖 , 𝑜𝑗) 

The normalised distance 

between the two orientations of 𝑥𝑖 

and 𝑥𝑗. 

𝑠�̅� Average scale difference. 

𝑜�̅� Average orientation difference. 

𝐒𝑟 Scale deviation. 

𝐎𝑟 Orientation deviation. 

 

σ𝑠 

Average Euclidean distance of the 

scales of SIFT points in D′ 

 

σo 

Average Euclidean distance of 

the orientations of SIFT points in 

D′ 

 

γ 

The weight to balance the 

matrix 𝚪𝑟 and 𝐆𝑟 with 

neighbourhood relationship 

preserving matrix 𝚪𝑠 and 𝐆𝑠, 

 

β 

The weight for the importance 

of the 128-dimension feature’s 

topology information to the 

geometry information. 

 

A 

An eigen-decomposition of 

matrix. 

𝐖 Project matrix. 

 

𝐑 

An optimal mapping that can 

transfer the features. 

𝐘𝑚×𝑛 The short binary matrix, the 

hashed 𝐗. 

𝐐(𝐘, 𝐑) Tthe quantisation loss. 

𝐔, 𝐒 and 𝐕 Result matrices of SVD 

decomposition. 

𝐈𝐧𝐩𝐮𝐭 The input feature matrix. 

𝑄 The feature point set in the 

query image. 

𝑃𝑖 The ith retrieval image’s feature 

set. 

H(𝑞, 𝑝) The hamming distance between 

two feature points 𝑞 and 𝑝. 

𝑟 A threshold. 

𝐻𝐷𝑆𝑖  Hamming distance score (HDS) 

of Pi. 

𝐼 Number of retrieving images. 

𝑧 The number of feature points in 

image 𝑃𝑖. 

𝜔 The number of reliable-

matched feature points number. 

SS𝑖  A scale score between image Pi 

and query Q. 

OS𝑖  A orientation score between 

image Pi and query Q. 

b Weight balance parameter. 

c Weight balance parameter. 

SCORE𝑖 Evaluation score of image Pi. 

 


