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Forecasting Treatment Outcomes Over Time
Using Alternating Deep Sequential Models

Feng Wu ®, Guoshuai Zhao

Abstract—Medical decision making often relies on accu-
rately forecasting future patient trajectories. Conventional
approaches for patient progression modeling often do not
explicitly model treatments when predicting patient trajec-
tories and outcomes. In this paper, we propose Alternat-
ing Transformer (AL-Transformer) to jointly model treat-
ment and clinical outcomes over time as alternating se-
quential models. We leverage causal convolution in the
self-attention mechanism of AL-Transformer to incorporate
local spatial information in the sequence, thus enhanc-
ing the model’s ability to capture local contextual informa-
tion of the sequence. Additionally, to predict the sparse
treatment, a constraint learned by a convolutional neural
network (CNN) is used to constrain the sparse treatment
output. Experimental results on two datasets from patients
with sepsis and respiratory failure extracted from the Med-
ical Information Mart for Intensive Care (MIMIC) database
demonstrate the effectiveness of the proposed approach,
outperforming existing state-of-the-art methods.

Index Terms—Machine learning, sequential models, time
series forecasting, treatment outcome prediction, clinical
decision making.

|. INTRODUCTION

REDICTING a patient’s future trajectory and their treat-
ment needs can provide valuable information for person-
alized healthcare and clinical decision making. A substantial
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body of research has focused on the development and ap-
plication of machine learning techniques in clinical outcome
prediction. [1], [2], [3], [4], [5]. Deep learning, in particular,
has emerged as a promising approach for automated extrac-
tion of complex data representations for end-to-end training.
Recurrent neural networks (RNN) models and their variants,
such as Long Short-Term Memory (LSTM), have demonstrated
promising performance in modeling sequences and time series
data [1], [3]. Transformers have more recently emerged as the
state-of-the-art technique to model sequence data with complex
temporal dependencies [5], [6], [7]. However, existing methods
in clinical outcome prediction or disease progression modeling
often do not model time-varying treatments when predicting
patient trajectories and outcomes [4], [5], [8], [9]. Other prior
works focused on predicting patients’ need for treatment with-
out modeling subsequent time-varying patient outcomes in a
long horizon sequential treatment setting [10], [11], [12], [13].
Predicting patient outcomes under dynamic treatment regimes
remain a challenging task, as treatments often depend on previ-
ous time-varying treatments and covariates.

We present a transformer-based architecture to jointly model
the time-varying treatments and outcomes over time as alternat-
ing sequential models. We predict the treatments and the corre-
sponding outcomes in alternating time steps sequentially, condi-
tioned on the patient’s past covariates and treatments. Our goal
is to forecast the future trajectory of a patient under the predicted
treatment sequence over time under the observational treatment
strategies. Sequential modeling of patient outcomes and time-
varying treatments using multivariate time series presents sev-
eral challenges. The complex inter-dependency between treat-
ment and outcome can be challenging to model, where treatment
decisions are often influenced by past treatments and patient
outcomes. In order to model the expected future trajectory of
a patient under the observational treatment policy, an accurate
sequential model for the time-varying treatment regime needs to
be learned from the observational data. Additionally, in a longi-
tudinal clinical setting, treatment variables are typically sparse
in time relative to the outcome variables. Temporal modeling
of these kinds of variables are challenging. For example, many
patient outcome variables, e.g. heart rate, blood pressure and
urine output, can be sampled hourly, but most of the treatments
and medications are sparse in time points. Such sparse treatment
data are difficult to model and predict.

To address the above challenges in forecasting future pa-
tient trajectories under the modeled observational policy, we
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propose an alternating sequential model ALternating Trans-
former (AL-Transformer) to simulate forward the future treat-
ments and outcomes of a patient, conditioned on the patient’s
past treatments and outcomes. Our approach uses an encoder to
encode a patient’s previous treatment and outcome sequences,
and predict the patient’s treatment outcome sequence at the cur-
rent time. The decoder in AL-Transformer subsequently takes
this predicted outcome sequence and the encodings of previ-
ous outcomes and treatments as input, to predict the treatment
sequence of current time. Considering the treatment variables
are sparse, we propose a sparsity constraint learned by a CNN
module to constrain the sparse treatment output. Furthermore, to
address the challenge of incorporating local context information
into the self-attention mechanism employed by the original
Transformer, we employ the causal convolutional self-attention
mechanism to more effectively model the temporal context
within the sequence.

Experimental results on two datasets from MIMIC-III [14],
a real-world intensive care database, demonstrate that the pro-
posed model outperforms the state-of-the-art baseline methods.
In particular, our proposed AL-Transformer architecture which
models time-varying treatments and outcomes as alternating
sequential process with sparsity constraints significantly out-
performed (with a reduction of 20.64% in mean absolute error)
the baseline Transformer approach which models treatments and
outcomes as multi-variate time series.

Our main contributions are summarized as follows.

e We introduce a CNN-based sparsity constraint that pre-
dicts the need for treatments in future time steps, a novel
approach that enhances the accuracy of handling sparse
medical treatment data.

® Our model adopts causal convolution in self-attention
to better capture local temporal dynamics, significantly
improving the prediction of patient outcomes at larger
temporal scales.

¢ The AL-Transformer we proposed is a new architecture
for simultaneously predicting patient treatments and out-
comes. Extensive experiments on the real-world dataset
demonstrate the superior performance over state-of-the-art
methods, with a significant reduction in prediction error.

Il. RELATED WORK

Treatment and Disease Progression Modeling: Prior works
have proposed machine learning models for disease progression
modeling and outcome prediction using multivariate clinical
time series [4], [8], [9], [15], [16]. For example, [16], [17]
used Gaussian Process based models for modeling clinical
time series data. These prior works, however, typically do not
account for time-varying treatments when modeling patient
trajectories. Furthermore, Gaussian Processes are difficult to
scale, and typically make strong assumptions on the model
structure. In contrast, our approach is more flexible, and can
update internal states of the model to predict trajectories of new
patients. Other prior works focused on treatment or physician
action prediction. For example, Ren et al. [10] used gradient
boosting to predict urgent need for intubation in ICU patients.

Recent works Interpole [11] and Treatment-RSPN [13] mod-
eled physician treatment decision dynamics using input-output
hidden Markov model (IOHMM), and Treatment-RSPN [13]
additionally also modeled response prediction, but these works
focused on one-step ahead prediction instead of long horizon
multi-step prediction. INPREM [18] proposed a Linear model
with random gate to measure the uncertainty of predicted treat-
ment. MED-BERT [19] utilized the per-trained model and large
language model to modeling the disease progression by text
records in EHR. To address the issue of sparsity and irregularity
in treatment sequences, STraTS [20] employs a self-supervised
Transformer architecture for modeling time series.

Treatment Effect and Counterfactual Prediction: Xuetal. [21]
developed a Bayesian nonparametric method for estimating
univariate treatment response curves from sparse observational
time series. Soleimani et al. [22] proposed a semi-parametric
Bayesian framework using Gaussian Processes (GPs) to model
treatment effects in multivariate longitudinal data and it uni-
fies response modeling for both discrete and continuously-
administered treatments. More recently, approaches for counter-
factual predictions have been proposed to predict treatment re-
sponse over time under target counterfactual treatment strategies
of interest [23], [24], [25], [26], [27]. Notably, G-Net [26] used
LSTM for counterfactual prediction of time-varying treatment
outcomes under alternative dynamic treatment strategies. [27]
proposed a Causal Transformer architecture for counterfactual
outcomes prediction; different from our method, they combined
3 subnetworks and time-varying covariates into the self-attention
structure. These methods rely on strict causal assumptions with
the primary goal of making unbiased estimates of treatment
effect under target counterfactual treatment strategies. Further-
more, these works do not focus on modeling sequential treat-
ments from observational data; instead, the focus of these prior
works is to model the outcomes under target counterfactual treat-
ment policies of interest. In contrast, our work simultaneously
predicts the treatments under observational dynamic treatment
policies and time-varying outcomes in alternating steps.

Deep learning methods: are being increasingly studied in
clinical healthcare applications and show better performance
than traditional machine learning models [1], [28], [29]. [1], [30]
presented the benchmark results for several clinical prediction
tasks such as mortality prediction, length of stay prediction, and
ICD-9 code group prediction using deep learning models. [28]
proposed a representation of patients’ entire raw EHR records
based on the Fast Healthcare Interoperability Resources (FHIR)
format and demonstrated that deep learning methods are capable
of accurately predicting multiple medical events. RNNs are
generally utilized [1], [31] to model the time-varying variables
on three clinically-relevant prediction tasks. [29] proposed a
novel model by adding a new gate in RNN to learn the joint rep-
resentation of heterogeneous temporal events. Attention mod-
els [4], [32] are also leveraged for clinical time-series modeling,
thereby dispensing recurrence entirely. [4] developed the SAnD
(Simply Attend and Diagnose) architecture, which employs a
masked, self-attention mechanism, and uses positional encoding
and dense interpolation strategies for incorporating temporal
order. [33], [34] utilized the contrastive learning in the clinical
time series.
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Ill. OUR MODEL

Notation: We denote our dataset as D = R, A, an integrated
set of discrete or continuous-valued treatments and outcomes.
Given an ICUs visit indexed by ¢, each patient in our dataset has
the clinical data R; and A;. The patient response R; consists of
outcome variables I2; ; 1, ;¢ 2, ..., [% ,n. Bach outcome vari-
able R; ; , represents vital signs or clinical lab measurements,
e.g. heart rate, blood pressure, glucose, and urine output, where
1 indicates the patient ID, ¢ is the current time step and n is
the dimension of the outcome variables. Similarly, the treat-
ment A; consists of treatment variables A; ¢ 1, Ait 2, ..., Ai t.m-
Each treatment variable A; ; ,, represents a continuous-valued
medication or injection dosage, e.g. the amount of vasopressor
administered in the time step ¢. m is the number or dimension
of the treatment variables.

For each patient, our goal is to predict the next k£ outcomes
and treatments (R;i1, Ayy1), (Reyo, Aty2), . (Regr, Asyr)
based on the variables (Ry, A1), (R, A2), . ...(R¢, Ay) in previ-
ous time steps. To this end, we propose an alternating sequential
model AL-Transformer, and Fig. 1 shows the overview of its
model structure. In our proposed AL-Transformer, we propose
a sparsity constraint to constrain the sparse treatment output
and use the causal convolutional self-attention to enhance the
temporal modeling. This section describes the framework of
AL-Transformer at first, and then introduces the causal convolu-
tional self-attention and the sparsity constraint in detail. Finally,
the loss functions are presented.

A. Framework of AL-Transformer

We utilize the encoder and decoder modules of the AL-
Transformer to model patients’ time series of outcomes and
treatments, and alternate between them for prediction. As il-
lustrated in Fig. 2, the encoder module models the patient’s
previous outcomes and treatments while predicting the patient’s
outcomes at the current time step, and outputs the encoding of
previous outcomes and treatments. The decoder module takes
the outcome and treatment sequences at the current time step
and the encoded representations from the encoder module as

inputs, and predicts the treatment sequence at the current time
step. This process is then repeated by the encoder and decoder
modules for alternate prediction of outcomes and treatments.

The encoder predicts the sequence of patient ¢ at time ¢ based
on previous outcome and treatment of patient 7. Its input can be
defined as:

Xen =[Rig ® Ai1;.. i Riy1 ® Ay AW+ PE (D)

where @ indicates concatenation between vectors; W indi-
cates the weight matrix of input linear transformation; PFE
represents the position encoding. We employ the convolutional
self-attention operation on the encoder input:

XmP = LN(Xep + CA(Xen, Xen, Xen)) )

where LN indicates the layer normalization operation; C'A
indicates the causal convolutional self-attention operation.

The output of the convolutional self-attention is added to the
input using residual connection, and then layer normalization
is applied to obtain a temporary representation X “™P. Then,
the encoder performs a linear projection on X ™ to obtain the
representation of previous outcome and treatment:

Err = LN(FFN(XImP) 4 Xxiemp) 3)

where F'F'N indicates the linear feed-forward network. X ¢mp
is residually connected with the linearly transformed result, and
layer-normalized to get the final Encoding representations of
previous outcome and treatment sequence E'r 4.

In AL-Transformer, the encoder is used to encode the pa-
tient’s previous outcome and treatment and predict the patient’s
outcome sequence. The calculation process can be defined as:

Ry =EraWS “)

where R;; indicates the outcome sequence of patient 7 at time
t predicted by the encoder; E'r 4 indicates the encoding of
previous outcome and treatment sequences; W indicates the
weight matrix of linear layers.

Unlike most time series forecasting methods that use previous
sequences of the same time series as input to predict future
sequences, AL-Transformer uses outcome results generated by
encoder with representation of previous outcome and treatment
to predict treatment sequences. Specifically, the decoder in
AL-Transformer uses the encoder’s predicted outcome R; ; as
input, and combines the encoding E'r 4 to predict the treatment
sequence of time ¢. The specific input of the decoder can be

defined as:
Xge = [Ri; .. s Ri )Wyl + PE (3)

where W™ indicates the weight matrix of input linear transfor-
mation.
The calculation process of the decoder can be defined as:

XYL Z [N(Xge + CA(X e, Xaer Xae)) (6
Xy = LN(Xg"™ + CA(XyS™™  Egr, Err))  (7)
Ep = LN(FFN(Xg") + Xg") ®)

Aiy = ERW 9)
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Fig. 2.  Overview of the AL-Transformer model. We visualize the information flow in the AL-Transformer model. In the middle, we depict the encoder

part of the model that uses observed variables to predict the outcome. In the right side, we describe the decoder that uses the representations
obtained from the encoder and new overall variables to predict the treatment outcome. In the left side, we show the Sparsity constraints.

where E'r indicates the output encoding of the decoder through
convolutional self-attention mechanism; Wdoe indicates the
weight matrix of the output layer. A; ; is the treatment sequence
predicted by the model at time ¢.

When the encoder and decoder in the AL-Transformer pre-
dict the patient’s outcome sequence and treatment sequence at
current time respectively, the predicted sequence can be used as
anew input to the encoder for prediction, so that the process can
be repeated continuously.

B. Causal Convolutional Self-Attention

In the AL-Transformer architecture, the self-attention mech-
anism used in the original Transformer model struggles with
handling long sequences of data. This is because in time series,
variables can evolve over time with equal or similar values due
to various underlying events. To effectively distinguish between
identical or similar points in a sequence, it is often necessary
to consider the local context of sequence points. However, the
scaled dot product self-attention mechanism used in the original
Transformer model calculates the similarity between the query
vector and key vector between sequence points, without con-
sidering the local context of each sequence point. As a result,
this self-attention mechanism is not effective in distinguish-
ing between identical or similar sequence points. To address
this issue, we improve the causal convolutional self-attention
mechanism proposed by Li et al. [35] and use it to replace the
self-attention mechanism in the Transformer. The causal convo-
lutional self-attention mechanism incorporates local information

from previous moments at each time point and can better handle
sequence points with similar semantics.

The causal convolutional self-attention mechanism integrates
local context information from the previous k& — 1 time steps
into the linear transformation result generated by the sequence
point, enhancing the model’s ability to capture the local shape
of sequences when computing similarity. In contrast, the tra-
ditional self-attention mechanism performs linear projection
on the input sequence S to obtain the query matrix @, the
key matrix K, and the value matrix V, which is equivalent
to using a convolution operation with a kernel size of 1 on
S. Since the causal convolution operation integrates only the
sequence information before the sequence point, it does not
destroy the temporal order relationship of the sequence. To
calculate the causal convolutional self-attention, an appropriate
padding length is first selected according to the size of the
convolution kernel used in the subsequent convolution operation
to pad the length of the input sequence. Then, the corresponding
one-dimensional convolution operation is performed to obtain
@, K, and V integrated with local spatial information, followed
by the scaled dot product self-attention calculation:

T

C. Sparsity Constraints

In clinical scenarios, the treatment sequence is sparser com-
pared to the outcome sequence, which makes it challenging to
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model both outcome and treatment simultaneously. To address
this issue and ensure that the treatment sequence predicted by
AL-Transformer maintains sparsity, a classification model is
proposed to constrain the output of the decoder. This model
serves as a sparsity constraint, which generates a probability
distribution for each treatment variable at the current time based
on the patient’s previous outcome and treatment. This allows the
model to determine whether the patient requires treatment at the
current time.

To construct the variable matrix H(t — 1) € R(+m)xw jp
the sparsity constraint, we first stack the patient’s outcome
and treatment sequences and then concatenate them along the
variable dimension. Here, n represents the number of variables
in the outcome sequence, m represents the number of variables
in the treatment sequence, and w represents the number of
time steps used in the prediction. Specifically, the outcome and
treatment data from the w time steps preceding time ¢ are used
to predict the probability distribution of each treatment variable.
The convolution operation on the variable matrix H (¢ — 1) can
be defined as:

Ht—1)=[Rit—w1 DA t—w_1; Rit—1® Aip1]  (11)
Convi(t —1) = H(t — 1). g1 0 Kenl +b  (12)
fi(t —1) = BN(Convj(t — 1)) (13)

Sikent(t —1) = max fit—1) (14)

where Conv (t — 1) indicates the k-th element in the i-th feature
map; [ indicates the kernel size of the convolutional layer;
Kenl € R(vtm)* indicates the size of filter; b indicates the
bias; BN indicates the batch normalization operation.

After obtaining the final feature S(¢ — 1) through concatenat-
ing the feature maps obtained from convolution operations with
different kernel widths and applying a linear transformation, the
final treatment probability distribution P(t) is computed. Since
the treatment sequence at each time point consists of multiple
variables, we apply a threshold thr to each element P;; . in
the probability distribution P(t) for each treatment variable c.
If P;; . is greater than thr, it indicates that patient ¢ needs
treatment at time ¢ for the corresponding treatment variable c.
We have a discussion about how to determine the thresholds in
the Section V. To penalize unnecessary treatments, we calculate
the penalty coefficient I} for treatment variable c as follows:

1 it Py, >=thr
Lige = {o it Py < thr (1%
Finally, the final penalty coefficient can be defined as:
Ly =Lig1®@...@Lim (16)

where m indicates the number of variables in the treatment
sequence.

Once the punishment coefficient of the treatment sequence has
been obtained at time ¢, it can be used to constrain the predicted
treatment data outputted by the decoder. The resulting treatment
data at time ¢ is defined as follows:

A;,t = Ii,t o Ai,t )

where [; indicates the penalty coefficients matrix; A; indi-
cates the treatment sequence predicted by the decoder in AL-
Transformer at time ¢.

D. Loss Function

We train the alternating prediction model using two loss
functions. 1) A Binary Cross Entropy (BCE) loss function
that computes the loss between the probability distribution P,
predicted by the sparsity constraints model and the label of
each treatment variable. 2) The Mean Squared Error (MSE) loss
between the predicted value and the true value.

The BCE loss can be defined as:

Lpes= ), —llologPy+(1—1y)log(1—P,)] (18)

oe(i,t,c)

where P;; . indicates the probability distribution of the treat-
ment variable ¢ of patient ¢ at time ¢ predicted by the sparsity
constraints; [; ; . indicates the real situation of the treatment
variable c of patient ¢ at time .

The MSE loss of the outcome and the treatment sequence can
be defined as:

Lﬁ[SE’ = Z Z Z (Ri,t,m - yi]?t,m)Q
[ t m

LﬁSE - Z Z Z (Ai,t,n - yﬁt,n)z
7 t m

where R; ; ., indicates the value of the variable m predicted by
AL-Transformer at time ¢; yftvm indicates the real value of the
variable m in the outcome sequence at time ¢; A; ; ,, indicates
the value of variable n predicted by AL-Transformer at time
t; yZT +m indicates the true value of variable s at time ¢ in the
treatment sequence.

And the total loss L; can be defined as:

19)

(20)

Ly=L% g+ Lisp + Lece 21

It is worth noting that in computing the MSE loss value for the
treatment sequence, we used the treatment sequence output by
the AL-Transformer in training without the sparsity constraint.

IV. EXPERIMENT
A. Data

The Medical Information Mart for Intensive Care (MIMIC)
database [14] is a large, freely-available database comprising
deidentified data for patients admitted to intensive care units at
the Beth Israel Deaconess Medical Center (BIDMC). MIMIC-IIT
contains data associated with over forty thousand ICU patients
between 2001 and 2012. It includes information such as de-
mographics, vital sign measurements, laboratory test results,
procedures, medications, caregiver notes, imaging reports, and
mortality. For the task of treatment-outcome prediction, we ex-
tract two datasets for patients with sepsis and respiratory failure
respectively from the MIMIC database. At each hour, if there
are multiple measured physiological or clinical variables, mea-
surements within that hour are averaged. Sepsis dataset contains
data from 13,418 patients with sepsis according to the sepsis 3
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criteria [36] and each patient has 47 outcome variables and 2
treatment variables corresponding to the hourly vasopressor and
fluids amount. Data during the first 72-hours of each patient’s
ICU stay are extracted. Respiratory failure dataset consists of
5,783 patients who have been on mechanical ventilator for at
least 24 hours in the ICUs. Each patient has 22 outcome variables
and 3 treatment variables corresponding to ventilator settings.
Data for each patient up to 48 hours are extracted. We divide the
patients into 8:1:1, as training set, validation set and test set. In
the comparison experiment, we adopt two prediction strategies,
using the first 12 hours of data to predict the next 12 hours, and
using the first 24 hours of data to predict the next 24 hours. The
details of the variables information in two sub-dataset are shown
in the Appendix.

For each individual variable of the patients, due to the dif-
ferent ranges of the data values, training the model on raw data
would increase the difficulty of convergence. Therefore, we use
normalization as a data preprocessing technique:

X - Xmecm

X =
Xstd

(22)

B. Implementation

In the AL-Transformer, the feature dimension is set to 256,
the number of self-attention network blocks of the encoder is
set to 3; The number of self-attention blocks for the decoder
is set to 1. In the causal convolutional self-attention used by
AL-Transformer, the convolution kernel sizes wg, wy, w, are
respectively set as 3, 3, 1. Dropout rate is set to 0.1. The window
of sparsity constraints w is set to 12, and the convolution kernel
sizes of the three CNN blocks in its classification model are set
to 3, 5, and 7 respectively.

All experiments presented in this section are implemented
using the PyTorch deep learning framework. During the training
process, the number of epochs for model training is set to 50,
and early stopping is used to avoid overfitting of the model. The
model was trained using the Adam optimizer with a learning
rate of 0.0002 and a weight decay of 0.0005. The batch size for
model training is set to 64. The code related to this paper can be
found at Github.!

C. Compared Methods

The compared methods are summarized as follows. 1) RNN:
A recurrent neural network proposed by [37] 2) GRU: The
recurrent gating unit proposed by [38] 3) LSTM: The long
short-term memory network proposed by [39]. 4) AL-LSTM:
A dual LSTM network designed in this subsection for perfor-
mance comparison with alternating prediction models. The two
LSTM networks model and predict the outcome and treatment
sequence separately, but there is no interaction between these
two LSTMs. 5) Transformer: A neural network based on a
self-attention mechanism proposed by [40] 6) Informer: An
improved sequence prediction model based on Transformer
proposed by [41].

![Online]. Available: https:/github.com/meiyoufeng116/AL-Transfromer

D. Results

The evaluation metrics for treatment and outcome prediction
are Mean Absolute Error (MAE), Mean Squared Error (MSE),
and the Overall Geometric Mean. Geometric Mean indicates the
central tendency of a set of numbers, so we utilize it as the overall
metric for each method. Table I shows the detailed performance
comparisons with the compared methods on the sepsis dataset.

The proposed AL-Transformer outperforms other approaches
in most performance indices. In the 12-hour prediction task,
compared with the baseline model AL-LSTM, the overall pre-
diction error of AL-Transformer is significantly reduced by
29.95%. In the 24-hour prediction task, compared with the base-
line model AL-LSTM, which is also the best baseline model,
the overall prediction error of AL-Transformer is significantly
reduced by 24.35%. It indicates that our model has better perfor-
mance in longer time sequence than baselines. In addition, it can
be seen that among all the models which can predict the outcome
and treatment sequence simultaneously, the models based on
the self-attention mechanism such as Transformer and Informer
are better than recurrent neural networks such as RNN, GRU,
and LSTM. Specifically, Transformer and Informer outperform
recurrent neural networks on outcome prediction metrics and
longer time sequence performance, but do not perform as well
in treatment prediction metrics. This is due to the limited effec-
tiveness of the self-attention mechanism in dealing with sparse
variables. At the same time, it can be observed from Table I that
AL-LSTM achieves the best overall performance among all the
compared methods in 12 hours prediction. This suggests that
alternate prediction mechanism can achieve better performance
in short sequence modeling, while the self-attentive mechanism
can achieve better results in longer sequences.

Table II presents the comparison results on the respiratory
failure dataset. AL-Transformer exhibits the best results on most
performance indices, with only a slight difference from Trans-
former in the MSE of treatment variables. Compared with Trans-
former, the best method on this metric, AL-Transformer reduces
the error by 7.58%. Moreover, our model significantly outper-
forms the baseline model LSTM, reducing the overall prediction
error by 26.11%. The results indicate that self-attention-based
models have better effects on sequences with fewer outcome
variables, and the models based on self-attention mechanism
perform better than recurrent neural networks on most metrics.
For 24-hour prediction, AL-Transformer shows a remarkable
improvement over LSTM with a significant reduction in over-
all prediction error by 37.93%. Compared with Transformer,
the best baseline method on overall error, our model reduced
the error by 6.42%. Specifically, AL-Transformer outperforms
LSTM by 22.56% in MAE and 29.38% in MSE for outcome
sequence, and by 32.08% in MAE and 60.05% in MSE for
treatment. Additionally, compared with the best baseline method
for each metric, AL-Transformer reduces the MAE and MSE of
outcome by 4.14% and 4.89%, respectively, and the MAE and
MSE of treatment by 11.91% and 7.51%, respectively, com-
pared to Transformer. Our experiments also demonstrate that
self-attention-based models, including Transformer, Informer,
and AL-Transformer, outperform traditional recurrent neural
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TABLE |
COMPARISON RESULTS ON THE SEPSIS DATASET

12 Hours Prediction

24 Hours Prediction

Methods Outcome Treatment Overall Ourcome Treatment Overall
MAE MSE MAE MSE  Geometric Mean MAE MSE MAE MSE  Geometric Mean

RNN 0.5229  0.6313 0.1027  0.0349 0.1854 0.5600  0.6872  0.0893 0.0343 0.1852
GRU 0.4424 04810  0.1058  0.0411 0.1744 0.4490  0.5015 0.1208  0.0434 0.1854
LSTM 0.5274  0.6358 0.0733 0.0346 0.1708 0.5121 0.5635 0.0787  0.0339 0.1666
AL-LSTM 0.4527  0.5250  0.0649  0.0329 0.1496 0.4371 0.4897 0.0519  0.0287 0.1337
Transformer 0.3906  0.4336  0.0994  0.0408 0.1619 0.3620  0.3787 0.0846  0.0413 0.1480
Informer 0.3995 0.4391 0.1028  0.0366 0.1603 0.3701 0.3761 0.0820  0.0351 0.1415
Our 0.3132  0.3388  0.0424  0.0268 0.1048 0.3116  0.3148  0.0372  0.0285 0.1009

vs. AL-LSTM  30.82% | 35.47% | 34.67% | 18.54% | 29.95% | 28.71% | 35.72% | 28.32% | 0.70% .| 24.35% |

vs. Transformer 19.82% | 21.86% | 57.34% | 34.31% | 3527% | 13.92% | 16.87% | 56.03% | 30.99% | 31.82% |

vs. Best Baseline 19.82% | 21.86% | 34.67% | 18.54% | 29.95% | 13.92% | 16.30% | 28.32% | 0.70% | 24.35% |

Best performing result in bold, and the second best is underscored. The down arrow indicates the performance gain obtained by our method compared to the baseline method.

TABLE Il
COMPARISON RESULTS ON RESPIRATORY FAILURE DATASET

12 Hours Prediction

24 Hours Prediction

Methods

Outcome Treatment Overall Outcome Treatment Overall
MAE MSE MAE MSE  Geometric Mean MAE MSE MAE MSE  Geometric Mean

RNN 0.4651 0.5217 0.3283  1.1420 0.5492 0.4903 0.5492 0.3678 0.7212 0.5170
GRU 0.4223 0.4617 0.2807  1.0443 0.4890 0.4339 04665 0.3324 0.6773 0.4620
LSTM 0.4739 0.5432 0.3937  1.1511 0.5844 0.4873 0.5685 0.4116  0.6965 0.5309
AL-LSTM 0.4324 0.4701 0.3862  1.1679 0.5503 0.4592 0.5166 0.4570 0.8583 0.5523
Transformer 0.3880 0.4119 0.3242 09351 0.4692 0.3937 04212 0.3129  0.3008 0.3534
Informer 0.4036 0.4118 0.3549  0.9962 0.4924 0.4042 04419 0.3363  0.3221 0.3729
Our 0.3767 0.3919 0.2501 0.9421 0.4318 0.3774 04015 0.2796  0.2782 0.3295
vs. AL-LSTM  12.89%] 16.64% | 35.25%) 19.33%] 21.53%] 17.81%] 22.28%] 38.82%) 67.58% 40.34%.
vs. Transformer 2.91%) 4.86% | 22.86%) 0.75%1 7.97%.. 4.14%])  4.68%) 10.64%] 7.51%| 6.76%,
vs. Best Baseline 2.91%] 4.83%) 7.93%| 0.75%" 7.58%. 4.14%]) 4.89%) 11.91%]) 7.51%| 6.42% |

Best performing result in bold, and the second best is underscored. The down arrow means the performance gain obtained by our method compared to the baseline method.

TABLE IlI
QUANTITATIVE RESULTS OF ABLATION STUDY ON SEPSIS DATASET

Component 12 Hours 24Hours
AL- Convolutional ~ Sparsity Outcome Treatment Overall Outcome Treatment Overall
Transformer self-attention constraints MAE MSE MAE MSE Geometric Mean MAE MSE MAE MSE Geometric Mean
v 0.3240 0.3516 0.0883 0.0250 0.1234 0.3588 0.3587 0.0524 0.0276 0.1168
v v 0.3399 0.3638 0.0637 0.0250 0.1184 0.3519 0.3551 0.0622 0.0299 0.1234
v v 0.3226  0.3492 0.0436 0.0243 0.1043 0.3598 0.3608 0.0381 0.0283 0.1088
v v v 0.3081 0.3344 0.0427 0.0251 0.1024 0.3233  0.3276 0.0355 0.0239 0.0973

networks such as RNN, GRU, and LSTM, in non-sparse data.
Furthermore, our model shows better performance than Trans-
former and Informer for 24-hour prediction, indicating that the
Causal Convolution Module has a stronger impact over longer
time sequences.

V. DISCUSSION
A. Ablation Study.

The proposed alternating prediction model in this section
consists of three main components: AL-Transformer, causal
convolutional self-attention, and sparsity constraints. To eval-
uate the impact of each component on model performance, we

conducted an ablation analysis on AL-Transformer with differ-
ent components. The results of the analysis on the sepsis dataset
are shown in Table III, where the geometric mean represents the
overall prediction error of the model.

Table III clearly shows that the more components are incor-
porated into AL-Transformer, the better its overall performance
becomes. With regard to the causal convolutional self-attention
mechanism, the comparison reveals that integrating it into AL-
Transformer leads to a slight increase in MAEs of outcomes by
4.9% (12 hours) and 1.91% (24 hours) compared to using only
AL-Transformer for prediction. Meanwhile, MAEs of treatment
are reduced by 27.8% (12 hours) and increased by 18.77%
(24 hours), and the geometric means are reduced by 4.07%
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Fig. 3. Discussing the impact of different treatment thresholds on the
24-hour prediction in the sepsis dataset. In (a) The threshold of treat-
ment 2 is set to 0.4. In (b) The threshold of treatment 1 is set to 0.6.
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Fig. 4. Impact of the number of self-attention blocks on the perfor-
mance of the AL-Transformer encoder and decoder in the 24-hour pre-
diction of the sepsis dataset.

(12 hours) and increased by 5.63% (24 hours). This suggests
that incorporating sequential local contextual information into
the self-attention mechanism can somewhat improve the model’s
predictive ability for treatment. Furthermore, the performance
of the model is significantly enhanced when the sparsity con-
straint is included. This may be due to the sparsity constraint
suppressing the errors present in the convolutional self-attention
mechanism when making long-range predictions.

As for the effectiveness of the sparsity constraint, it can be
found by comparison that when the AL-Transformer is matched

0.10 Time-varying on Geometric Mean

0.09 4

0.08 1

0.07 A

Geometric Mean

0.06

0.05 4

0.04

2 4 6 8 10 12
Time Steps

Fig. 5. Discussion on the performance of the model for different time
steps in the first 12 hours of the 24-hour prediction on the sepsis dataset.

with the sparsity constraint, compared with only using the AL-
Transformer for prediction, the MAE of outcome shows slightly
changed, and the MAE of treatment is significantly reduced by
50.66% (12 hours) and 21.17% (24 hours), the geometric mean
is reduced by 15.5% (12 hours) and 6.9% (24 hours). These two
comparative results demonstrate the effectiveness of the sparsity
constraint in our model. Besides, it can be observed that after
using the sparsity constraint, the MAE of outcome has slightly
changed, because the sparsity constraint is only proposed to
ensure the sparsity of the treatment data.

B. Threshold of Sparsity Constraints

In most classification tasks, a threshold of 0.5 is commonly
used. However, in some clinical tasks, with the granularity of
hours, patients may not require treatment most of the time,
leading to a highly imbalanced distribution of positive and
negative treatment samples. To explore the impact of different
thresholds on the model’s performance, we evaluated the effect
of varying the classification threshold for treatment variables
on sequence prediction. Fig. 3 illustrates the effect of different
thresholds for treatment variables 1 and 2 on the MAE for the
treatment sequence in sepsis dataset’s validation set. The test
set remained unseen during this step, and we determined the
optimal thresholds based on the MAE on the validation set. We
observed that the MAE is highest when the threshold values
for both variables are set to 1 or O, and it decreases as the
threshold values decrease to about 0.5. The optimal combination
of thresholds is found to be [0.6, 0.4]. Importantly, when both
variables have a threshold of 1, the sparsity constraint has no
effect on the model. Therefore, our proposed sparsity constraint
can improve the model’s performance in predicting treatment
variables.

C. Number of encoder/decoder Blocks

To discussion the influence of the number of encoder and
decoder blocks, we set the number of decoder blocks to 1 to
investigate the impact of different numbers of encoder blocks
on the results. Similarly, we set the number of encoder blocks to
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Results of noise experiment in Transformer, Informer and AL-Transformer, using normal distribution in input data with a mean of 0 and a

standard deviation of 0.5 as the noise. (a) Transformer, (b) Informer, and (c) AL-Transformer.

1 to investigate the effect of different numbers of decoder blocks
on the results. As can be seen from Fig. 4, with the increasing
number of decoder blocks, the geometric mean exhibits an in-
creasing trend. Conversely, the increase in the number of encoder
blocks has a smaller effect on the geometric mean, which means
that the model is not sensitive to the number of encoder blocks
compared to the number of decoder blocks. This is because more
blocks would increase the number of parameters, leading to a
higher risk of overfitting. Additionally, more blocks may cause
the model to capture the noise in the data, thereby reducing its
performance.

D. Prediction Performance on Different Time Steps

We conducted an analysis of the geometric mean values of
outcome and treatment sequences for 12 future time steps in
Spesis dataset 24 hours prediction. The results are shown in
Fig. 5. We observed that the geometric mean value initially
increased with the increase of the time step to be predicted, and
eventually tended to stabilize. Specifically, when predicting the
value of the first time step, the geometric mean value was 0.0612.
However, when predicting the value of the 12th time step, the
geometric mean value increased by 53.43% to 0.0939. This
analysis provides useful insights for doctors in real scenarios,
allowing them to select more reliable prediction results to assist
with the diagnosis and treatment of patients.

E. Performance With Noisy Data

To explore the performance of the model with noisy data, we
add Gaussian Noise to the test dataset and perform a large num-
ber of simulations. Specifically, we add normal distributed noise
to the input data and perform one hundred experiments. The
results of each experiment are compared with the ground truth,
to calculate the MAE, MSE, and geometric mean of treatment
and outcome. Fig. 6 shows the result of Transformer, Informer
and AL-Transformer performance with Gaussian noise input in
100 simulation. As we can see, in general, in outcome metrics,
the input with noise has significant impacts on Transformer and
Informer. The R-MAE and R-MSE of Transformer are decreased
by 20.88% and 18.44%, respectively. And R-MAE and R-MSE
of Informer are decreased by 12.68% and 6.96%, respectively.
On the other hand, AL-Transformer is slightly influenced by the
noise data, only reducing 3.3% and 1.9% in R-MAE and R-MSE.
In treatment metrics, Transformer has weak performances in

the noise data situation, the T-MSE and T-MAE drop by 19%
and 10.14%. On the contrary, the noise data does not have a
significant impact on Informer and AL-Transformer. It is noted
that the performance of treatment MSE increases by 8.77%
in the noise input case, which may be due to the noise data
suppressing the number of outlier points generated by the model.
It also proves that the alternating sequence model suppresses the
accumulation of errors in the sequence to a certain extent. In
conclusion, compared to the other self-attention based model,
the alternating sequence modeling brings better robustness for
AL-Transformer within the noisy data case.

VI. CONCLUSION AND FUTURE WORK

This paper presents a self-attention based approach to model
patient treatments and outcomes under time-varying and se-
quential dynamic treatment strategies. We use AL-Transformer
to simultaneously model outcomes and treatments to capture
dependencies between them, and to alternately predict outcome
and treatment sequences. Causal convolutional self-attention is
used in the AL-Transformer to enhance the temporal information
of sequential data. Additionally, we propose sparsity constraints
to constrain the sparse treatment output. Extensive experiments
demonstrate the effectiveness of our model, and an ablation
study verifies the contribution of sparsity constraints and con-
volutional self-attention to model performance.

While our current study is focusing on modeling the patients’
trajectories and treatment jointly, there still has some limitations
in our pipeline. For example, We did not individually consider
some time-invariant covariates such as age, gender, comorbidi-
ties, etc and treat them as a time-varying variable. While predict-
ing these covariates may not be meaningful, we overlooked their
significant role in treatment prediction. Additionally, our model
did not quantify the uncertainty in the prediction process, which
could aid medical professionals in making informed decisions.
For future work, we plan to investigate approaches for quanti-
fying model uncertainty as well as modeling of missing data in
clinical time-series measurements for more robust treatment and
outcome prediction. We also plan to design a separate encoding
module to extract information present in the covariates and
integrate it into our encoder. By doing so, we aim to utilize
the previously overlooked information and enhance the model’s
ability to effectively model patient data.
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