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Abstract—Image transmission in a wireless visual sensor net-
work (WVSN) with limited resources over an unreliable and
bandwidth-limited wireless channel is challenging. This paper
presents a highly efficient and robust image coding and trans-
mission scheme with a simple encoder based on compressive
sensing (CS) for WVSNs. First, an image measurement based on
scrambled block compressive sampling (SBCS) with a separable
sensing operator is proposed to simplify the encoder. Second,
a progressive non-uniform quantization (PNQ), which exploits
the measurement distribution at the encoder side and the
measurement dependencies at the decoder side, is designed to
improve the rate-distortion (R-D) performance while maintain-
ing low complexity at the encoder. Third, to further improve
the R-D performance, a progressive non-local low-rank (NLR)
reconstruction is designed at the decoder. The experimental
results show that the proposed scheme can achieve higher R-
D performance compared with the benchmark CS-based image
coding and transmission schemes. Higher robustness can be
achieved compared with the traditional source-channel coding,
such as Consultative Committee for Space Data Systems−Image
Data Compression (CCSDS-IDC) with Raptor codes under a
time-varying packet loss channel, and the encoding time can be
significantly reduced compared with the traditional image coding
schemes. The experimental results also show that the proposed
scheme achieves state-of-the-art coding efficiency with lower
computational complexity at the encoder while still supporting
error resilience.

I. INTRODUCTION

Wireless visual sensor networks (WVSNs) consist of low-
cost and low-power visual sensor nodes, which can collect
and transmit visual information for many potential applica-
tions, such as surveillance of wild animals, vehicle traffic
monitoring, and healthcare monitoring [1]–[3]. Due to limited
energy and bandwidth resources, the image data need to be
compressed. Although embedded visual sensors are becoming
powerful, some challenging problems still exist for WVSNs
[4].

Image coding and transmission schemes need to find a
balance between computational complexity and compression
performance. Inexpensive wireless visual sensors are typically
equipped with batteries of limited capacity, and therefore,
they cannot sustain the heavy computations involved in visual
compression and communication. HEVC and JPEG2000 are
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not appropriate for visual sensor nodes because these ap-
proaches achieve excellent compression performance at the
cost of high computational complexity. Moreover, the CCSDS-
IDC standard has sought a balance between complexity and
performance, but it still incurs high computational complexity
[5].

Meanwhile, image coding and transmission schemes should
be robust to packet loss. Considering the limited packet size,
compressed frames could be split into multiple data packets.
However, if some important data packets are dropped, then the
decoder is unable to reconstruct the original image. Tradition-
ally, channel coding protection is deployed to address packet
loss. Nevertheless, the additional channel coding redundancies
increase the energy consumption and computational complex-
ity. In addition, cliff effects may occur if the packet loss rate
(PLR) exceeds the correct capacity of channel coding [6].

Recently, compressive sensing (CS)-based image coding
has been investigated as a convincing solution to the afore-
mentioned problems. CS theory indicates that a compressible
signal can be reconstructed from under-sampled measurements
[7], [8]. Some benefits make CS a sensor-friendly compression
method under the wireless visual sensor scenario. First, the
CS-based coding scheme has a simple encoder since CS can
sample and compress sparse or compressible signals in a single
operation simultaneously. Second, the democracy property
makes CS a robust image coding and transmission scheme [9].
Third, CS can increase the security level because it is under a
low probability of successful attack by an adversary due to the
need of estimating the measurement method [10]. However,
the compression performance of the CS-based coding scheme
is unsatisfactory. A large R-D performance gap exists between
the CS-based coding and transmission schemes and traditional
coding standards [11].

Some CS enhancement strategies have been explored to
reduce this R-D gap at the cost of the encoder’s complexity.
For example, [12] performs the measurement in the discrete
wavelet domain with a Gaussian matrix. More measurements
are allocated to the low-frequency domain. However, such a
sparse domain measurement increases the complexity of the
encoder. In [13], motion detection is performed to identify
the region of interest (ROI), and more bits are allocated to
the ROI, which introduces a computation for extracting the
ROI. In [14], a traditional source-channel coding compressed
thumbnail is first transmitted to retrieve a reference similar
image, and the residual image is coded and transmitted using
CS-based transmission. Its R-D improvement highly relies on
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the image database for retrieval. The thumbnail procedure and
additional source channel coding will increase the encoder’s
complexity.

In this paper, we propose a novel CS-based image coding
and transmission scheme to keep the encoder complexity as
low as possible without compromising the R-D performance.
By using scrambled block compressive sampling (SBCS) with
a separable sensing operator, progressive non-uniform quanti-
zation (PNQ) and progressive non-local low-rank reconstruc-
tion (NLR), the transmission can achieve simple encoding,
good R-D performance and robustness against packet loss. The
main contributions of this paper are summarized as follows:

First, we develop scrambled block compressed sampling
with a separable sensing operator to reduce the encoder’s
complexity. Meanwhile, this random sampling method guar-
antees equal importance for each measurement, which makes
the proposed coding scheme robust to packet loss.

Second, we propose a progressive non-uniform quantiza-
tion method to improve the rate-distortion performance. This
quantization method exploits the distribution and dependencies
of the measurement results, which adds little computational
burden to the encoder side.

Third, we develop an efficient progressive non-local low-
rank CS reconstruction at the decoder side. Since the mea-
surements are divided into the base layer and refinement
layer, the reconstruction process is also divided into the two
corresponding steps. This progressive non-local low-rank CS
image restoration imparts the proposed coding scheme with
higher R-D performance compared with other CS-based image
coding methods.

The experimental results show that the proposed CS-based
coding and transmission scheme has a low-complexity encoder
(approximately one-third of the encoding time of CCSDS-
IDC), high error resilience (stable reconstruction performance
under different packet loss rates), and high R-D performance
(higher PSNR than benchmark CS-based coding schemes).

The remainder of this paper is organized as follows. In
Section II, we provide an overview of the CS-based transmis-
sion scheme and the related works. In Section III, we detail
the encoder side, including the CS measurement method and
quantization method. In Section IV, we detail the decoder side,
including the proposed reconstruction method. The experimen-
tal results and performance analysis are provided in Section
V. Finally, Section VI concludes this paper.

II. OVERVIEW OF THE CS-BASED CODING AND
TRANSMISSION SCHEME

The CS-based coding and transmission scheme consists of
encoder-side measurement and quantization and decoder-side
reconstruction. These steps need to be delicately designed
to achieve state-of-the-art coding efficiency with lower en-
coder computational complexity while still supporting error
resilience.

The measurement step is related to the computational com-
plexity of the CS-based coding scheme. Although a completely
random sensing matrix offers optimal performance [7], it may
suffer high computational complexity and low efficiency in

practical implementations [15]. To reduce the measurement
complexity, block compressive sampling (BCS) is proposed
[16]. Furthermore, scrambled block compressive sampling
(SBCS) has been proposed and theoretically proven to show
sensing performance comparable to that of random sensing
matrices for whole images [17], [18]. In [19], a 2-D separa-
ble sensing operator is proposed to reduce the measurement
complexity. To reduce the encoder’s complexity and guarantee
the democracy property, we introduce image scrambled block
compressive sampling with a separable sensing operator to
obtain the CS measurements.

Quantization is crucial for improving the R-D performance
in the CS-based coding scheme. In [12]–[14], uniform scalar
quantization is employed in the CS-based coding and trans-
mission scheme. In [20], a distortion model on the relationship
between distortion, sampling ratio and quantization bit depth
is proposed. In [21], a non-uniform quantization is designed
according to the distribution of CS measurements. In [22], a
progressive quantization scheme is proposed, which splits the
CS measurements into the base layer and refinement layer and
exploits the measurement dependencies at the decoder side.
In this work, to enhance the R-D performance and keep the
encoder simple, we propose a progressive non-uniform quan-
tization (PNQ), which exploits the measurement distribution
at the encoder side and the measurement dependencies at the
decoder side.

An efficient reconstruction algorithm can enhance the R-
D performance in the CS-based coding scheme. In BCS
frames, BCS with smoothed projected Landweber (BCS-SPL)
adopts the general paradigm of block-based random image
sampling coupled with a projection-based reconstruction [23].
Multiscale BCS-SPL (MS-BCS-SPL) provides a variant of the
original BCS-SPL reconstruction by deploying block-based
CS sampling within the domain of a wavelet transform [24].
The endeavours in [25] improve the BCS reconstruction by
imposing smoothness constraints between adjacent blocks.
In other non-BCS frames, reconstruction algorithms based
on tree-structured wavelet CS (TSW-CS) have been used in
WVSN [12] [26]. The work in [27] provides a non-local low-
rank CS reconstruction by exploiting the similar structure of
nature images. In this work, we develop a progressive NLR
reconstruction method to enhance the reconstructed image
quality.

The diagram of the proposed CS-based image coding and
transmission scheme is shown in Fig. 1. At the encoder
side, the captured image is measured using scrambled block
compressive sensing (SBCS) with a separable sensing oper-
ator. Then, the measurement results are quantized by non-
uniform progressive quantization (PNQ). The quantized results
are divided into the base layer and refinement layer, which
are packaged and transmitted to the decoder side. At the
decoder side, the proposed progressive non-local low-rank
reconstruction (progressive NLR) method is utilized to recover
the original image. Because the measurements are divided into
the base layer and refinement layer, the reconstruction process
is also divided corresponding to the two parts. In the following
sections, we elaborate the above three steps, i.e., SBCS, PNQ
and progressive NLR.
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III. SCRAMBLED BLOCK COMPRESSIVE SAMPLING AND
PROGRESSIVE NON-UNIFORM QUANTIZATION

In this section, we elaborate the compressive sampling
and quantization steps for the proposed CS-based coding and
transmission scheme at the encoder side. The design criterion
is to enhance the R-D performance while keeping the encoder
as simple as possible.

A. Scrambled Block Compressive Sampling with Separable
Sensing Operator

The procedure of the proposed measurement is shown in
Fig. 2. We develop a measurement method using scrambled
block compressive sampling with a separable sensing operator.
In our model, we first reorder (i.e., scramble) the pixels of the
whole image to spatially de-correlate the neighbouring blocks
of pixels in a random manner [28]. Then, the scrambled image
is divided into M non-overlapping sub-blocks with a size of√
n×

√
n, and the ith scrambled image block denoted as Si(x)

is measured with a separable sensing operator

yi = ΦSi(x)Φ
T, (1)

where yi ∈ R
√
m×

√
m is the measurement result and Φ ∈

R
√
m×

√
n is a partial Hadamard matrix. We obtain Φ by

selecting the first
√
m rows of a

√
n ×

√
n size Hadamard

matrix.
This 2-D separable sensing operator described in Eq. (1)

can be considered as a case of a traditional column-based CS
measurement operator [29]. Suppose that Φ̄ can be decom-
posed into Φ̄ = (Φ ⊗ Φ), where ⊗ is the Kronecker product
operator. Eq. (1) can equivalently be represented as

vec(yi) = Φ̄vec(Si(x)), (2)

where vec(yi) and vec(Si(x)) are the row-ordered vectoriza-
tions of yi and Si(x), respectively. Furthermore, Eq. (2) can
characterize the block CS measurement, which can equivalent-
ly be expressed as a whole image CS measurement, i.e., vec(y1)

...
vec(yM )

 = (IM ⊗ Φ̄) ·

 vec(S1(x))
...

vec(SM (x))

 . (3)

Considering that S(x) is equivalent to multiplying vec(x) by a
matrix S, which is a random binary matrix that contains only
one ′1′ per row and column, we have vec(S1(x))

...
vec(SM (x))

 = S · vec(x). (4)
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Eq. (3) can further be represented as

vec(y) = (IM ⊗ Φ̄) · S · vec(x). (5)

Thus, the equivalent measurement matrix of the proposed
measurement method for the whole image can be represented
as a structured random matrix (IM ⊗ Φ̄) · S, which is nearly
incoherent with almost all other orthonormal matrices and has
theoretical sensing properties similar to those of completely
random sensing matrices [18].

This SBCS with a separable Hadamard sensing operator
presented in Eq. (1) requires A1 = (

√
n−1)

√
m
√
n+(

√
n−

1)m add/sub operations, whereas the column-based sensing
operator presented in Eq. (2) requires A2 = m(n−1) add/sub
operations. Comparing A1 and A2, we have

A1 +m

A2 +m
=

1√
m

+
1√
n
− 1√

m
√
n
≤ 1, (6)

which shows that A1 ≤ A2. Thus, this separable sensing
operator has a lower computational complexity compared with
the traditional column-based sensing operator.

B. Progressive Non-uniform Quantization

In this subsection, we first exploit the dependencies among
the measurements by utilizing the progressive quantization
strategy. To further improve the R-D performance, we sub-
sequently design a non-uniform quantizer based on the mea-
surement distribution. The proposed progressive non-uniform
quantizer increases the R-D performance while having low
computational complexity at the encoder side.

1) Progressive Quantization: Suppose that y(i,j) is the jth
measurement value of the ith block for SBCS measurements.
Conventionally, each measurement y(i,j) is quantized and
transmitted in fixed-length bits. However, this strategy disre-
gards the dependencies among CS measurements. To improve
the R-D performance, we exploit the correlation for SBCS
measurements by adopting a progressive quantization strategy.

For the progressive quantization strategy, the measurement
values of the ith block are divided into base layer y(i,··m̄)

and refinement layer y(i,m̄··), where y(i,··m̄) consists of the
first m̄ measurements and y(i,m̄··) consists of the remaining
m−m̄ measurements. To obtain y(i,··m̄) and y(i,m̄··), the partial
Hadamard measurement matrix Φ in Eq. (1) is regarded as
being composed of two matrices, that is,

Φ =

[
Φ··m̄
Φm̄··

]
. (7)

By substituting Eq. (7) into Eq. (1), the SBCS measurement
procedure can be rewritten as follows:[

y(i,··m̄) y(i,m̄··)
]
= ΦSi(x)

[
ΦT

··m̄ ΦT
m̄··

]
. (8)

In this way, the base layer y(i,··m̄) and refinement layer y(i,m̄··)
can respectively be obtained via the following two partial
Hadamard projections:

y(i,··m̄) = ΦSi(x)Φ
T
··m̄ , (9)

y(i,m̄··) = ΦSi(x)Φ
T
m̄·· . (10)

Consider the CS decoder that can recover an initial estimated
result Si(x̂) by using the first m̄ CS measurements y(i,··m̄).
It can generate an approximate refinement layer y(i,m̄··) by
ΦSi(x̂)Φ

T
m̄·· at the decoder side, which means that y(i,··m̄)

has side information on y(i,m̄··) [30].
In the proposed CS-based coding and transmission scheme,

for each scrambled block measurement, only the first m̄ SBCS
measurement values y(i,··m̄) (base layer) are transmitted with a
total of B bits, while the remaining m−m̄ SBCS measurement
values y(i,m̄··) (refinement layer) are transmitted with only the
b least significant bits. The dropped B−b most significant bits
for y(i,m̄··) can be predicted from ΦSi(x̂)Φ

T
m̄·· at the decoder

side. In this way, the encoder saves (m− m̄)(B − b) bits for
each measurement block compared with fixed-length bit code,
which can improve the R-D performance.

2) Non-uniform Quantization: In [22], the base layer and
refinement layer are sent to the uniform quantizer. This unifor-
m quantization does not utilize the statistical characteristics of
the measurement values and suffers from lower compression
efficiency. Thus, we select non-uniform quantization levels
and decision levels based on the distribution of the SBCS
measurement values, which can reduce the average distortion
for a fixed quantization bit depth.

The scrambled image S(x) is divided into M blocks and
compressed into M ×m measurement values using compres-
sive sampling, which is further divided into y(i,··m̄) and y(i,m̄··)
as shown in Fig. 2. Since the pixels in the scrambled image
block are identically and independently distributed, the SBCS
measurement values y(i,j) follow a Gaussian distribution based
on central limit theory [31]. Assuming that S(x) satisfies a
Gaussian distribution with mean µ and variance σ2, we have
that yDC

n ∼ N(µ, σ2

n ) and yAC

n ∼ N(0, σ2

n ), where the DC part
yDC consists of the first column of y and the AC part yAC

consists of the remaining columns.
The DC part and AC part are first normalized to a standard

Gaussian distribution and then processed by the non-uniform
quantizer. The non-uniform quantizer is pre-trained offline
using the Lloyd-Max design [32] for the standard Gaussian
distribution. For non-uniform quantization, there are more
quantization levels around the mean point compared with
uniform quantization according to the probability distribution
of SBCS measurements. By using table lookups, the base layer
and refinement layer can be non-uniformly quantized with low
computational cost.

IV. PROGRESSIVE NON-LOCAL LOW-RANK CS
RECONSTRUCTION FOR SBCS AND PNQ

In this section, we elaborate the reconstruction algorithm
at the decoder side. A progressive non-local low-rank recon-
struction algorithm at the decoder side, which exploits the
self-similarity of image and measurement dependencies, is
designed to reconstruct the image from the SBCS and PNQ
outputs. This reconstruction algorithm will improve the R-D
performance without increasing the encoder’s complexity.

A. Non-local Low-Rank Reconstruction
Repetitive similar structures exist in an image, such as

smooth structure, texture structure, and edge structure. Denote
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pi,j(x) as the jth similar patch of an exemplar patch pi(x) in
a search window of size w. The top q patches under a mean
squared error (MSE) criterion are vectorized and grouped to
form Pi(x) = [pi,1(x), pi,2(x), ...pi,q(x)], as shown in Fig. 3.
Since the columns of Pi(x) are similar with each other, we can
assume that Pi(x) is a low-rank matrix [33]. However, Pi(x)
may be corrupted by noise, which could lead to deviation from
the desirable low-rank constraint. To obtain an approximate
low-rank solution to Pi(x), the nuclear norm (sum of the
singular values) can be used as a convex surrogate of the rank
[27].

( )
i
p x

( )
i
P xSimilar patch group

Image x

Search window

,
( )

i j
p x

,1 ( )
i
p x ,2 ( )

i
p x

Fig. 3. Illustration of similar patch search.

We thus formulate the CS reconstruction problem as the
low-rank matrix approximation problem with measurement
and nuclear norm constraints, which is formulated as follows: argmin

x

N∑
i=1

∥ Pi(x) ∥∗,

s.t. yi = ΦSi(x)Φ
T, i = 1, ...,M,

(11)

where N is the number of similar patch groups in the entire
image and ∥ ∥∗ is the nuclear norm operator. Using the nuclear
norm, the rank minimization problem can be efficiently solved
using the singular value thresholding (SVT) technique [34].

To solve Eq. (11), we take two steps to optimize ∥ Pi(x) ∥∗
and x alternatively. The kth iterations of the reconstructed
image for Step 1 and Step 2 are denoted as x(2k+1) and x(2k),
respectively, and the initial x(0) is reconstructed using BCS-
SPL [23].

Step 1 (Low-Rank Approximation): We first find Pi(x
(2k))

by grouping similar patches in x(2k). Let UΣV T be the
singular value decomposition of the matrix Pi(x

(2k)), where
Σ is the diagonal matrix composed of σr, the rth singular
values of Pi(x

(2k)). The low-rank approximation of Pi(x
(2k))

is obtained using the soft-thresholding method

Pi(x
(2k+1)) = Uρ(Σ)V T, (12)

where ρ is a diagonal operator defined as

ρ(Σ) = max(Σ− τdiag(ω), 0). (13)

The soft-threshold value is determined by τ and ω, where τ is
a preset coefficient to adjust the threshold and ω is a weighted
parameter to adapt the singular value Σ. The rth value of ω
is defined as ωr = 1/(σr + ε) [27], where ε denotes a small

constant value. From Eq. (12), we can obtain a set of new low-
rank patches Pi(x

(2k+1)) and output the reconstructed image
x(2k+1) for Step 1.

Step 2 (SBCS Measurement Constraint): To guarantee that
the reconstructed image x(2k+1) from Step 1 satisfies the
SBCS measurement constraint yi = ΦSi(x)Φ

T, we update
the scrambled image block Si(x

(2k+1)) by

Si(x
(2k+2)) = Si(x

(2k+1))+Φ+(yi−ΦSi(x
(2k+1))ΦT)(Φ+)T,

(14)
where Φ+ is the pseudo-inverse of Φ. Since Φ is a partial
Hadamard matrix, we have Φ+ = ΦT(ΦΦT)−1 = 1√

n
ΦT.

Thus, Eq. (14) can be rewritten as

Si(x
(2k+2)) = Si(x

(2k+1)) +
1

n
ΦT(yi − ΦSi(x

(2k+1))ΦT)Φ.

(15)
By tiling each scrambled image block Si(x

(2k+2)), we obtain
the updated scrambled image S(x(2k+2)). Let S−1(·) denote
the inverse operator of S(·), which restores the order of the
pixels. We output the reconstructed image x(2k+2) for Step 2
by

x(2k+2) = S−1(S(x(2k+2))). (16)

Through updating x(k) based on Step 1 and Step 2 iteratively,
we can find the low-rank approximation solution x for Eq.
(11).

B. Progressive Non-local Low-Rank Reconstruction

For the progressive strategy, the decoder receives all B
bits per measurement for the base layer and only the least
significant b bits per measurement for the refinement layer.
By performing inverse non-uniform quantization, we obtain
ỹ(i,··m̄) for the base layer and a set Ω(i,m̄··) that contains
possible values of ỹ(i,m̄··) with the same insignificant b bits
as those received for the refinement layer. Thus, the low-
rank matrix problem presented in Eq. (11) is modified for
the progressive strategy, formulated as follows:

argmin
x

N∑
i=1

∥ Pi(x) ∥∗

s.t.

ỹ(i,··m̄) = ΦSi(x)Φ
T
(i,··m̄),

ỹ(i,m̄··) = ΦSi(x)Φ
T
(i,m̄··),

ỹ(i,m̄··) ∈ Ω(i,m̄··), i = 1, ...,M.

(17)

To find the solution to this problem, we first reconstruct an
approximation of the image with the base layer data, and
then we estimate and update the refinement layer. Finally, we
find the final solution by solving a low-rank matrix problem
with the base layer and refinement layer SBCS measurement
constraint.

1) Reconstruction with the Base Layer: We first reconstruct
an approximated x̂ using base layer data ỹ(i,··m̄). The recon-
struction problem is formulated as argmin

x̂

N∑
i=1

∥ Pi(x̂) ∥∗
s.t. ỹ(i,··m̄) = ΦSi(x̂)Φ

T
··m̄, i = 1, ...,M.

(18)
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We find a solution x̂ to Eq. (18) using the method proposed
in Section IV-A except that the related Eq. (15) is changed to
the following:

Si(x) = Si(x) +
1

n
ΦT(ỹ(i,··m̄) − ΦSi(x)Φ

T
··m̄)Φ··m̄. (19)

This base layer reconstruction image x̂ is used to obtain an
estimated refinement layer ŷ(i,m̄··).

2) Estimate and Update the Refinement Layer: After ob-
taining the approximate reconstruction x̂, we estimate the
refinement layer y(i,m̄··) by

ŷ(i,m̄··) = ΦSi(x̂)Φ
T
m̄··. (20)

Then, we adopt the maximum a posteriori probability (MAP)
estimator to update the estimation ỹ(i,m̄··) by exploiting the
received b least significant bits of y(i,m··), i.e.,

ỹ(i,m̄··) = argmax
ỹ(i,m̄··)∈Ω(i,m̄··)

p(ỹ(i,m̄··)|ŷ(i,m̄··))

= argmin
ỹ(i,m̄··)∈Ω(i,m̄··)

∥ ỹ(i,m̄··) − ŷ(i,m̄··) ∥,
(21)

where Ω(i,m̄··) is the set of possible ỹ(i,m̄··) with the same
quantized b least significant bits of the received refinement
layer part. In this way, we update the refinement layer from
ŷ(i,m̄··) to ỹ(i,m̄··).

3) Reconstruction with Base and Refinement Layers: Note
that we have obtained the base layer ỹ(i,··m̄) and refinement
layer ỹ(i,m̄··). The problem in Eq. (17) is simplified to a
low-rank matrix problem with the following base layer and
refinement layer SBCS measurement constraints:

argmin
x

N∑
i=1

∥ Pi(x) ∥∗

s.t.
ỹ(i,··m̄) = ΦSi(x)Φ

T
(i,··m̄),

ỹ(i,m̄··) = ΦSi(x)Φ
T
(i,m̄··), i = 1, ...,M,

(22)

which has one more ỹ(i,m··) constraint than Eq. (18). The
solution is given by

Si(x) = Si(x) +
1

n
ΦT(ỹ(i,··m̄) − ΦSi(x)Φ

T
··m̄)Φ··m̄

+
1

n
ΦT(ỹ(i,m̄··) − ΦSi(x)Φ

T
m̄··)Φm̄··

(23)

Algorithm 1 provides the pseudo-code for the proposed SBCS-
PNQ-NLR scheme.

In Algorithm 1, the base layer data are involved in all
iterations, whereas the refinement layer data are only involved
in reconstruction after K0 (K0 = 200 in our implementation)
iterations. To better show the convergence of Algorithm 1, we
present the average PSNR obtained from the CS reconstruction
for the 48 test images with respect to iterations with different
compression rates. We can observe that the proposed method
gradually converges in two steps, which correspond to Sec.
IV-B-1 (reconstruction with base layer) and Sec. IV-B-3 (re-
construction with base and refinement layer). The progressive
NLR has a better CS reconstruction compared with the original
NLR [27].
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30

35
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Fig. 4. Average PSNR of the CS recovery for 48 test images with respect
to the iterations. Progressive-NLR denotes the proposed CS method. NLR
denotes the CS method in [27].

Algorithm 1 The SBCS-PNQ-NLR Algorithm
Input:
• The base layer bits and refinement layer bits

Output:
• A reconstruction x̃ of the original image x

Initialization:
(a) Obtain ỹ(i,··m̄) from the received base layer bits
(b) Obtain Ω(i,m̄··) from the refinement layer bits
(c) Estimate an initial image x(0) from ỹ(i,··m̄) using a

block-based CS recovery method (e.g., BCS-SPL)
for k = 0, 1, ...,K do
(I) Step 1 (low-rank approximation):

for i = 1, 2, ..., N do
Group a set of similar patches Pi(x

2k)
Singular value decomposition of Pi(x

2k)
Calculate Pi(x

(2k+1)) via Eq. (12)
end for
Output x(2k+1) with Pi(x

(2k+1))
(II) Step 2 (SBCS measurement constraint):

if k <= K0 (base layer constraint):
for i = 1, 2, ...,M do

Compute Si(x
(2k+2)) via Eq. (19)

end for
Output x(2k+2) via Eq. (16)

else (base and refinement layer constraint):
Take x(2k+1) as x̂
for i = 1, 2, ...,M do

Estimate ŷ(i,m̄··) via Eq. (20)
Update ŷ(i,m̄··) into ỹ(i,m̄··) via Eq. (21)
Compute Si(x

(2k+2)) via Eq. (23)
end for
Update x(2k+2) via Eq. (16)

end if
end for
Return x̃ = x(2K+2)
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Fig. 5. The test images for experiments. From left to right, the first eight images are denoted as Barbara, Lena, Monarch, Peppers, Boats, Parrots, Foreman
and House.

(a) (b) (c) (d) (e)

Fig. 6. Reconstructed Barbara with 0.5 bpp. (a) Original image, (b) proposed SBCS-PNQ-NLR (30.13 dB) recovery, (c) BCS-SPL (22.84 dB) recovery, (d)
MS-BCS-SPL (23.65 dB) recovery, and (e) TSW-CS (23.41 dB) recovery.

X: 115 Y: 72
Index: 248
RGB: 0.976, 0.976, 0.976

(a) (b) (c) (d) (e)

Fig. 7. Reconstructed Parrots with 1.0 bpp. (a) Original image, (b) proposed SBCS-PNQ-NLR (36.13 dB) recovery, (c) BCS-SPL (29.31 dB) recovery, (d)
MS-BCS-SPL (29.15 dB) recovery, and (e) TSW-CS (29.14 dB) recovery.

V. EXPERIMENTAL RESULTS AND ANALYSIS

For the proposed SBCS-PNQ-NLR scheme, each test image
is compressed by SBCS with a separable sensing operator and
PNQ at the encoder side and reconstructed by progressive NLR
at the decoder side.

In addition to R-D performance, the encoder complexity and
packet loss robustness should be considered in the WVSN
scenario. Hence, we first compare the R-D performance of
the proposed SBCS-PNQ-NLR with other CS-based coding
schemes and conventional source coding schemes to show
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the improvement in efficiency of SBCS-PNQ-NLR. Then, we
compare the robustness of the proposed SBCS-PNQ-NLR and
source-channel coding schemes under packet loss channels.
Subsequently, we test the running time for the encoder of the
proposed method. Finally, we discuss the main parameter of
the proposed scheme, i.e., bit allocation between the base and
refinement layers in PNQ, and we show the improvement in
performance of PNQ.

For the SBCS with a separable sensing operator, a 16× 16
codeblock size is set, and a corresponding partial Hadamard
matrix is chosen as the separable measurement matrix. Each
CS measurement is quantized into 5 bits. For the base layer
data, all 5 bits are transmitted, whereas for the refinement
layer data, only the least 3 significant bits are transmitted. We
take the compression ratio by adjusting the sample rate. Forty-
eight standard 256 × 256 greyscale images with 8 bpp (bits
per pixel), as shown in Fig. 5, are used to verify the validity.
The first 24 images are from the UGR Computer Vision Group
image repository [35], and the left images are from ImageNet
[36]. For the experiments, we present the results of the first
eight images and the average results of all forty-eight test
images.

A. R-D Efficiency Comparison

1) Comparison with CS-based Coding Schemes: In this
part, we compare SBCS-PNQ-NLR with the benchmark CS-
based approaches, which are MS-BCS-SPL, BCS-SPL and
TSW-CS, because they have been reported to be applied
for image coding and transmission. Note that the standard
uniform quantization is chosen for TSW-CS, MS-BCS-SPL

TABLE I
PSNR(dB) COMPARISON WITH OTHER CS-BASED CODING SCHEMES

Image Method bpp
0.5 1.0 1.5 2.0 2.5 3.0

Barbara

SBCS-PNQ-NLR 30.13 35.34 37.62 39.31 40.56 41.59
BCS-SPL 22.84 23.78 24.70 25.73 27.05 28.52

MS-BCS-SPL 23.65 25.02 26.30 26.96 27.18 27.26
TSW-CS 23.41 25.92 27.79 30.37 31.70 32.89

Lena

SBCS-PNQ-NLR 30.68 35.47 38.05 40.10 41.54 42.62
BCS-SPL 25.01 27.31 28.87 30.36 31.90 33.10

MS-BCS-SPL 27.64 30.33 32.38 33.05 33.99 34.29
TSW-CS 24.55 28.24 29.34 31.93 33.07 34.36

Monarch

SBCS-PNQ-NLR 28.84 33.96 36.71 38.85 40.10 41.01
BCS-SPL 22.00 24.71 26.50 28.21 29.85 31.30

MS-BCS-SPL 24.97 28.53 30.72 31.54 32.71 33.15
TSW-CS 22.03 25.38 27.90 30.03 31.27 32.95

Peppers

SBCS-PNQ-NLR 30.13 34.46 36.42 38.11 39.52 40.78
BCS-SPL 24.42 27.06 28.87 30.35 31.65 32.79

MS-BCS-SPL 26.04 28.77 30.83 32.67 32.75 33.11
TSW-CS 22.77 25.30 28.90 31.09 32.64 33.64

Boats

SBCS-PNQ-NLR 29.97 35.05 37.81 39.58 40.96 42.16
BCS-SPL 24.25 26.26 27.72 29.05 30.30 31.54

MS-BCS-SPL 26.91 29.66 31.40 31.34 32.06 32.25
TSW-CS 24.33 27.50 29.37 31.24 32.79 33.77

Parrots

SBCS-PNQ-NLR 32.13 36.13 38.09 39.60 40.73 41.44
BCS-SPL 25.77 29.31 31.18 32.58 33.66 34.46

MS-BCS-SPL 26.62 29.15 31.59 32.43 33.86 34.29
TSW-CS 24.83 29.14 31.48 33.45 34.60 35.08

Foreman

SBCS-PNQ-NLR 35.33 38.20 39.80 41.11 42.09 42.65
BCS-SPL 29.68 32.25 33.71 34.87 35.68 36.27

MS-BCS-SPL 31.98 34.40 37.35 37.31 39.12 39.76
TSW-CS 29.44 33.08 34.69 35.74 37.07 37.76

House

SBCS-PNQ-NLR 34.42 37.54 39.45 40.94 42.24 43.28
BCS-SPL 27.51 30.31 32.09 33.41 34.53 35.48

MS-BCS-SPL 29.15 31.93 33.87 34.74 36.15 36.65
TSW-CS 26.24 30.23 32.58 34.21 34.91 35.71

Average

SBCS-PNQ-NLR 30.94 35.43 37.77 39.42 40.54 41.26
BCS-SPL 24.85 27.28 28.99 30.52 31.90 33.23

MS-BCS-SPL 27.03 29.56 31.05 31.26 32.93 34.30
TSW-CS 22.95 26.40 29.30 31.55 33.31 34.47

and BCS-SPL, and there is no entropy coding for any CS-
based schemes. The PSNR results are presented in TABLE I,
which are encoded from 0.5 bpp to 3.0 bpp. The reconstruction
PSNR results of SBCS-PNQ-NLR obtain significant enhance-
ment compared with other CS-based schemes. To evaluate
the reconstruction quality from the subjective perspective, the
reconstructed images are shown in Figs. 6 and 7. It is apparent
that the proposed SBCS-PNQ-NLR achieves the best visual
quality among the competing CS-based coding schemes.

The R-D performance can be justified via the following
three aspects. First, the non-local low-rank reconstruction algo-
rithm exploits the group sparsity of similar patches, which out-
performs the existing state-of-the-art CS recovery techniques
[27]. Second, the progressive quantization strategy enables
the CS decoder to exploit hidden correlations among the
CS measurements [22]. Third, the non-uniform quantization
strategy utilizes the distribution of CS measurements [31]. The
impact of quantization will be tested and discussed in Section
V-D below.

2) Comparison with Conventional Source Coding Schemes:
CCSDS-IDC, JPEG2000 and HEVC-intra are three typical
image data compression algorithms that are widely used as
source coding methods. Among the three traditional source
coding methods, CCSDS-IDC is proposed for space image
compression on board. JPEG2000 is more complicated than
CCSDS-IDC, and HEVC-intra is the most complicated.

We compare the R-D performance of the proposed SBCS-
PNQ-NLR scheme with the above sophisticated image data
compression algorithms. To simplify the encoder, we add no
entropy coder after the quantization for SBCS-PNQ-NLR.
TABLE II shows the bit rate and PSNR obtained on test

TABLE II
PSNR (dB) COMPARISON WITH TRADITIONAL SOURCE CODING METHODS

Image Method bpp
0.50 1.00 1.50 2.00 2.50 3.00

Barbara

SBCS-PNQ-NLR 30.13 35.34 37.62 39.31 40.56 41.59
CCSDS-IDC 30.10 34.76 38.49 40.93 43.18 44.86
JPEG2000 31.56 36.74 40.36 43.12 45.56 47.81

HEVC-intra 33.55 38.93 42.00 44.62 47.06 49.18

Lena

SBCS-PNQ-NLR 30.68 35.47 38.05 40.10 41.54 42.62
CCSDS-IDC 32.52 37.84 40.93 43.88 45.58 48.44
JPEG2000 33.32 39.13 42.75 45.58 47.96 50.25

HEVC-intra 35.79 41.09 44.79 47.41 50.19 52.44

Monarch

SBCS-PNQ-NLR 28.84 33.96 36.71 38.85 40.10 41.01
CCSDS-IDC 29.21 34.72 38.73 41.14 43.73 45.32
JPEG2000 29.84 35.62 39.92 43.36 45.70 47.99

HEVC-intra 33.33 39.37 42.98 45.48 48.23 50.48

Peppers

SBCS-PNQ-NLR 30.13 34.46 36.42 38.11 39.52 40.78
CCSDS-IDC 32.13 36.22 38.95 41.09 42.97 44.57
JPEG2000 32.56 37.40 40.32 42.77 45.06 47.15

HEVC-intra 35.11 39.20 42.14 44.38 47.25 49.85

Boats

SBCS-PNQ-NLR 29.97 35.05 37.81 39.58 40.96 42.16
CCSDS-IDC 31.56 36.60 39.70 42.36 43.95 45.84
JPEG2000 32.88 38.05 41.44 44.15 46.35 48.90

HEVC-intra 35.39 40.33 43.32 45.94 48.52 51.29

Parrots

SBCS-PNQ-NLR 32.13 36.13 38.09 39.60 40.73 41.44
CCSDS-IDC 35.40 39.68 42.18 44.01 45.99 48.59
JPEG2000 35.85 40.81 43.87 45.99 48.35 50.67

HEVC-intra 37.37 42.35 45.24 48.09 50.44 53.40

Foreman

SBCS-PNQ-NLR 35.33 38.20 39.80 41.11 42.09 42.65
CCSDS-IDC 37.16 40.98 44.42 45.97 49.12 50.61
JPEG2000 38.21 42.65 46.07 48.79 50.98 53.22

HEVC-intra 40.88 45.05 48.62 50.75 53.48 56.40

House

SBCS-PNQ-NLR 34.42 37.54 39.45 40.94 42.24 43.28
CCSDS-IDC 35.60 39.51 42.08 44.32 46.31 48.70
JPEG2000 36.12 40.97 44.30 46.81 49.08 51.19

HEVC-intra 39.49 43.17 46.27 49.01 51.23 54.28

Average

SBCS-PNQ-NLR 30.94 35.43 37.77 39.42 40.54 41.26
CCSDS-IDC 32.39 37.34 40.57 43.01 45.09 47.08
JPEG2000 33.80 39.09 42.68 45.52 47.98 50.27

HEVC-intra 36.80 41.66 45.08 47.99 50.88 54.26
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Fig. 8. The average PSNR of CS-based coding and transmission schemes and traditional source channel coding encoded at 1.0 bpp under various PLRs:
(a) comparison with CCSDS-IDC with Raptor codes, (b) comparison with JPEG2000 with Raptor codes, and (c) comparison with HEVC-intra with Raptor
codes.

images. The test images are encoded at 0.5 bpp, 1 bpp,
1.5 bpp, 2.0 bpp, 2.5 bpp and 3.0 bpp. The average PSNR
result of the proposed SBCS-PNQ-NLR is approximately 1.5
dB lower than the CCSDS-IDC for 0.5 bpp compression.
However, in the packet loss condition, the proposed SBCS-
PNQ-NLR obtains higher or similar performance compared
with the traditional source-channel coding schemes, as shown
in subsection V-B. Moreover, the CS coding and transmission
scheme is simple and efficient on the encoder side, which is
amenable for implementation on visual sensors. The traditional
source coding achieves higher compression efficiency at the
expense of higher encoder computational complexity, which
is shown in subsection V-C.

B. Packet Loss Robustness Comparison

In this part, we simulate the transmission of compressed
images under packet loss conditions to evaluate the robustness.
For conventional source-channel coding schemes, a source
coding codestream is transmitted with certain channel coding
redundancy. We take CCSDS-IDC, JPEG2000, and HEVC-
intra for source coding and Raptor codes for channel coding.
Note that Raptor code serves as a good candidate for the
channels with packet loss, which has been integrated into IP
Datacast services by DVB [37] and standardized by 3GPP in
MBMS services [38].

We test the R-D performance of the proposed SBCS-PNQ-
NLR scheme and three traditional source coding schemes
under different PLRs at a 1.0 bpp compression ratio. The
bitstreams of the proposed SBCS-PNQ-NLR scheme for 1.0
bpp are grouped into 164 packets, i.e., each packet consists of
400 bits for compression data, with 99 packets for the base
layer and 65 packets for the refinement layer. Consider the
fixed-rate Raptor code of rate s

r , where blocks of s source
coding bits are encoded into codewords of r bits. Three

fixed-rate s
r are selected: 4/5, 2/3, and 1/2. Random packet

loss is assumed, and the simulations are repeated 200 times.
The average reconstructed PSNRs of the forty-eight tested
images under channel packet loss are reported in Fig. 8.
This figure shows that the proposed SBCS-PNQ-NLR scheme
outperforms or matches the CCSDS-IDC with Raptor codes
and JPEG2000 with Raptor codes in most packet loss rates.
Although more redundancy could enhance the robustness to
packet loss, it reduces the R-D performance. For traditional
source coding schemes with fixed channel coding redundancy,
if a receiver is unable to collect sufficient coded symbols, then
the received packets would not be decoded. In such a case, the
overall recovery quality would be significantly degraded, i.e.,
the cliff effect occurs.

A considerably more complicated source coding method,
such as HEVC-intra, would obtain a higher R-D performance
compared with CCSDS-IDC or JPEG2000 at low PLR. How-
ever, the proposed method still outperforms HEVC-intra if
the cliff effect occurs. As shown in Fig. 8, the reconstruction
PSNR of HEVC-intra with Raptor code at a rate of 4/5 de-
grades dramatically with PLR and is weaker than the proposed
method at 0.05 PLR. The PSNR degradation of the proposed
SBCS-PNQ-NLR is less sensitive to the PLR, which shows the
robustness in unreliable channels. Although other CS-based
coding and transmission schemes have no cliff effect, there is
a PSNR gap from the proposed method. An example is 1.0 bpp
at 0.5 PLR, where the proposed SBCS-PNQ-NLR still obtains
30.55 dB PSNR, much higher than the MS-BCS-SPL with
26.84 dB. Fig. 9 depicts the reconstructed Lena image with
different PLRs. As the PLRs increase, the reconstructed image
of SBCS-PNQ-NLR becomes smoother with the loss of some
local texture details, such as the texture on the hat. However,
other details, such as information on face and hair, appear
to be effectively saved. This result shows that the proposed
SBCS-PNQ-NLR is robust to packet loss.
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Fig. 9. Performance of SBCS-PNQ-NLR, MS-BCS-SPL and CCSDS-IDC+Raptor encoded at 1.0 bpp with different PLRs.

C. Encoder Complexity Comparison

We now compare the encoder running time of the proposed
method with those of the traditional source coding method
and other CS-based schemes. As the decoding process could
be performed by powerful computers, the decoder complexity
may not be a critical issue. The comparisons are performed
using MATLAB 2010a on a typical PC equipped with a 3.3
GHz i5 processor with 8 GB of RAM. Traditional source cod-
ing encoders, including CCSDS-IDC, JPEG2000, and HEVC-
intra, are written in C or C++. For the CS-based encoders,
including SBCS-PNQ-NLR, BCS-SPL, MS-BCS-SPL, and
TSW-CS, codes are written in MATLAB. There is no further
optimization or parallel processing for the codes. The results
are the average running times over forty-eight test images with
different compression ratios. As demonstrated in TABLE III,
the computational complexity of our SBCS-PNQ-NLR scheme
is considerably lower than that of the state-of-the-art source
image coding standards CCSDS-IDC, JPEG2000 and HEVC-
intra. The SBCS-PNQ-NLR encoder only costs approximately
one third of the CCSDS-IDC encoder time, which implies
significantly lower computational complexity. Block-based CS
frameworks, including SBCS-PNQ-NLR, BCS-SPL and MS-
BCS-SPL, take much smaller encoder times than TSW-CS.
among the block-based CS frameworks, MS-BCS-SPL has the
largest complexity for its wavelet transform process. Although
SBCS-PNQ-NLR costs slightly more than BCS-SPL, it has
substantial R-D performance improvements.

TABLE III
ENCODER COMPLEXITY COMPARISON (s)

Method bpp
0.5 1.0 1.5 2.0 2.5 3.0

SBCS-PNQ-NLR 0.0052 0.0073 0.0090 0.0110 0.0126 0.0143
BCS-SPL 0.0049 0.0060 0.0068 0.0079 0.0089 0.0101

MS-BCS-SPL 0.0108 0.0124 0.0137 0.0144 0.0160 0.0172
TSW-CS 0.1008 0.1858 0.2764 0.3480 0.4103 0.5045

CCSDS-IDC 0.0160 0.0210 0.0247 0.0280 0.0323 0.0353
JPEG2000 0.0392 0.0409 0.0419 0.0431 0.0439 0.0445

HEVC-intra 1.4930 1.5950 1.6750 1.7350 1.7840 1.8160

D. Discussion

1) Bit Allocation for Progressive Non-uniform Quantizer:
The allocation of bits between the base and refinement layers
in the progressive non-uniform quantizer plays a critical role
in the R-D performance of the proposed CS compression
transmission scheme. There are m̄B

n bpp allocated to the
base layer, and the remaining (m−m̄)b

n bpp are allocated to
the refinement layer. Here, B and b are fixed at 5 and 3,
respectively. Then, the compression ratio, denoted as R bpp,
is given as follows:

R =
m̄B + (m− m̄)b

n
. (24)

For m̄ ≤ m ≤ n and Eq. (24), the range of m̄B
n is given by

max{0, B

B − b
(R− b)} ≤ m̄B

n
≤ R. (25)
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TABLE IV shows the average SBCS-PNQ-NLR reconstruc-
tion PSNR results of the tested images at different compres-
sion ratios with m̄B

n ranging from 0.45 to 0.85. The small
change of m̄B

n would slightly affect the R-D performance.
The underlined values are the corresponding reconstruction
PSNRs with appropriate m̄B

n . At low compression ratios, we
prefer to allocate more bits to the base layer. For the 0.5
bpp compression ratio, m̄B

n is taken as 0.5, which means that
all 0.5 bpp is allocated to the base layer. For the 1.0 bpp
compression ratio, 0.6 bpp is allocated to the base layer. As
the compression ratio increases, the base layer is allocated
0.75 bpp, and more bits are allocated to the refinement layer,
which implies a smaller portion of bits allocated to the base
layer. In conclusion, the m̄B

n can be taken as 0.5 and 0.6 for
0.5 bpp and 1.0 bpp, respectively, and the maximum between
0.75 and B

B−b (R−b) for the compression ratio is greater than
1.0 bpp.

TABLE IV
THE AVERAGE PSNR (dB) RESULTS OF DIFFERENT BITS ALLOCATED TO

THE BASE LAYER WITHIN PROGRESSIVE NON-UNIFORM QUANTIZER

Image m̄B
n

bpp
0.5 1.0 1.5 2.0 2.5 3.0

Average

0.45 31.07 35.08 36.74 37.73 38.28 38.49
0.50 30.94 35.31 36.63 38.50 39.25 39.63
0.55 - 35.42 37.51 38.85 39.66 40.09
0.60 - 35.43 37.70 39.14 40.06 40.59
0.65 - 35.36 37.77 39.30 40.30 40.91
0.70 - 35.28 37.78 39.37 40.43 41.11
0.75 - 35.17 37.77 39.42 40.54 41.26
0.80 - 34.81 37.39 38.86 39.76 40.19
0.85 - 34.73 37.40 38.95 39.90 40.38

2) Progressive Non-uniform Quantizer Performance: The
contribution of the progressive non-uniform quantizer in the
proposed SBCS-PNQ-NLR scheme is shown in TABLE V.
Assume that SBCS and NLR are still employed for the
sensing measurement and reconstruction, respectively. We test
the performances of the progressive uniform quantizer, non-
uniform quantizer and uniform quantizer for the progressive
non-uniform quantizer. The average reconstruction PSNR re-
sults at 1.0 bpp are 35.43 dB, 34.93 dB, 34.37 dB and 33.45
dB for progressive non-uniform, progressive uniform, non-
uniform and uniform quantizer, respectively. The progressive
non-uniform quantizer, combining the advantages of the non-
uniform quantizer and progressive uniform quantizer, leads to
a higher PSNR performance.

TABLE V
AVERAGE PSNR (dB) RESULTS WITH DIFFERENT QUANTIZERS

Image Quantization method bpp
0.5 1.0 1.5 2.0 2.5 3.0

Average

progressive non-uniform quantizer 30.94 35.43 37.77 39.42 40.54 41.26
progressive uniform quantizer 30.59 34.93 36.95 38.32 39.15 39.55

non-uniform quantizer 30.94 34.37 36.00 37.09 37.85 38.30
uniform quantizer 30.59 33.45 34.69 35.59 36.26 36.53

VI. CONCLUSION

This paper has proposed an efficient compressive sensing-
based image coding and transmission scheme for visual sen-
sor networks with limited resources over an unreliable and

bandwidth-constrained channel. At the encoder side, scram-
bled image block compressive sensing with a separable sensing
operator is proposed, which requires only a few add/sub
operations while maintaining the democracy property. The
progressive non-uniform quantization is developed to enhance
the R-D performance. At the decoder side, we propose a
progressive NLR reconstruction method, which exploits the
non-local structured self-similarity and correlations among the
measurements. The proposed scheme can achieve state-of-the-
art coding efficiency with lower computational complexity at
the encoder while showing robustness to packet loss.
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