
Knowledge-Based Systems 228 (2021) 107251

a

b

c

m
g
p
c
i
i
l
w
i
R
p
p

l
b
u

g
q

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dynamic evolution ofmulti-graph based collaborative filtering for
recommendation systems
Hao Tang a, Guoshuai Zhao b,∗, Xuxiao Bu b, Xueming Qian a,c

School of Information and Communication Engineering, Xi’an Jiaotong University, Xi’an 710049, China
School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi’an 710049, China

a r t i c l e i n f o

Article history:
Received 21 November 2020
Received in revised form 20 March 2021
Accepted 23 June 2021
Available online 25 June 2021

Keywords:
Multiple graphs
Collaborative filtering
Graph convolutional network
Rating prediction
Side information

a b s t r a c t

The recommendation system is an important and widely used technology in the era of Big Data. Current
methods have fused side information into it to alleviate the sparsity problem, one of the key problems
of recommendation systems. However, not all the side information can be obtained with high quality,
and the specific methods based on side information are not universal. In addition, side information
has not been mined by the existing graph-based methods. To address these problems, we propose
a Dynamic evolution of Multi-Graph Collaborative Filtering (DMGCF) model to mine and reuse side
information. Specifically, we first construct user graph and item graph based on user-item bipartite
graph and embeddings to exploit inter-user and inter-item relationships. The two new graphs simulate
side information in latent space. Next, we perform a dual-path graph convolution network (GCN) on
these three graphs for collaborative filtering. Then, a novel dynamic evolution mechanism is proposed
to update and promote the embeddings and graphs collaboratively during the learning process, which
produces better embeddings, user and item relationships, as well as the rating scores. We conduct a
series of experiments on real-world datasets, and experimental results show the effectiveness of our
approach.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of the Internet, various infor-
ation has been generated and ‘‘information overload’’ problem
radually emerges. Recommendation systems aiming to solve this
roblem have been developed vigorously and used widely in e-
ommerce, news, movies, music, travel, etc. Rating prediction
s one of the key problems of the recommendation system. For
nstance, when listening to music, watching movies, shopping on-
ine, users always give them a rating to express their feelings. The
ebsite will also analyze users’ preferences according to their rat-

ngs, and give them efficient and personalized recommendations.
ecommendation systems serve as a bridge between information
roviders and users. Consequently, it is of great significance to
ay attention to the study of this win-win technology.
Rating prediction has been widely considered and studied. Col-

aborative Filtering (CF) [1,2] is one of the most popular methods,
ut it faces the major defect of sparsity. Though the number of
sers or items is often tens of thousands, their corresponding

∗ Corresponding author.
E-mail addresses: th1002@stu.xjtu.edu.cn (H. Tang),

uoshuai.zhao@xjtu.edu.cn (G. Zhao), bo951024@stu.xjtu.edu.cn (X. Bu),
ianxm@mail.xjtu.edu.cn (X. Qian).
ttps://doi.org/10.1016/j.knosys.2021.107251
950-7051/© 2021 Elsevier B.V. All rights reserved.
rating pairs (user, item, rating) are relatively limited which re-
sults in a sparse rating matrix. To deal with this problem, side
information [3] has been introduced to add more information of
users and items. Side information can be formed by attributes and
labels of users or items, such as the user’s gender, age, income, ge-
ographical location, the movie’s director, actors and release time.
Besides, many types of side information which include users’
reviews, social networks, contextual information, and knowledge
graph [4–6] for items have been studied by many researchers.

Although side information is beneficial, it is difficult to obtain
high-quality and a amount of side information. It also faces chal-
lenges to apply the information. For example, different networks
need to be designed to fit various kinds of inputs. Review-based
rating prediction methods need language or text processing foun-
dation, while social network-based rating prediction methods
require detailed analysis and design, such as social circles, trust.
Rating prediction based on reviews, social networks, and loca-
tions have evolved into specialized recommendation methods,
resulting in both the complexity of the algorithm and the limita-
tion of its application. Therefore, the acquisition of information,
the need for specialized algorithms, and application limitations
become critical shortcomings of side information.

Recently, graph convolution network (GCN) [7–9] has become
more and more widely used in recommendation systems. GCN is

https://doi.org/10.1016/j.knosys.2021.107251
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107251&domain=pdf
mailto:th1002@stu.xjtu.edu.cn
mailto:guoshuai.zhao@xjtu.edu.cn
mailto:bo951024@stu.xjtu.edu.cn
mailto:qianxm@mail.xjtu.edu.cn
https://doi.org/10.1016/j.knosys.2021.107251

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251
Fig. 1. The idea of our proposed model DMGCF. We propose multiple graphs
that are self-generated and self-used, as well as the co-evolution of graphs and
embeddings by the iteration and update process.

a kind of deep learning method for graphs, which has a strong
ability of feature expression. The rating matrix can be viewed
as a bipartite graph, and the rating prediction problem can be
explored on the graph. There are three graphs in recommendation
systems from the perspective of the graph: user-item interaction
graph, social network on the user side, and knowledge graph on
the item side. The latter two have rich connections and attributes,
which can be used as supplementary information to improve the
performance of the recommendation system. However, how to
make use of these multiple graphs remains a challenge.

To make use of the powerful ability of GNN based on multiple
graphs to improve the performance of the recommendation sys-
tem and avoid the shortages of side information, we propose a
new method in this paper. Instead of using real side information,
we mine inter-user and inter-item relationships and build user
graph and item graph to simulate and replace the side infor-
mation in real-world. And a multi-graph based GCN method is
formed. There are two main challenges. (1) It is a big difference
that the user graph and item graph are homogeneous, directed,
dynamic, and generated graphs while the user-item graph is not.
We design a dual-path GCN to address the problem of different
types of multiple graphs. (2) The right graphs are difficult to
build just in once because the optimization is a gradual process.
It is important that the generated graphs and embeddings could
benefit from each other. How to achieve that in the optimization
procedure is a vital problem. Thus, we propose a dynamic evo-
lution mechanism. Under this mechanism, user and item graphs
can be built many times to find the optimal results in the iter-
ative learning process. Embeddings and the built graphs can be
optimized together, and they can promote each other.

Therefore, a Dynamic evolution of Multi-Graph Collaborative
Filtering (DMGCF) model is proposed which is shown in Fig. 1.
Embeddings processed by GCN layers are used to generate the
user graph and item graph. Next, the generated graphs are reused
with the original graph forming multiple graphs based collabora-
tive filtering. We build a dynamic evolution mechanism in which
the embeddings and the generated graphs are both optimized in
the training process. Furthermore, we gain a new type of dynamic
graphs that are self-generated and evolved, while the traditional
dynamic graphs are based on time series and only used as inputs.

DMGCF can be widely used in the real world for better per-
formance because the required input is only the user-item graph.
2

Many GCN backbones can be adopted and modified for DMGCF
model and we use the Neural Graph Collaborative Filtering (NGCF)
[10] framework. The main contributions of our approach are as
follows:

• We propose a Dynamic evolution of Multi-Graph Collabora-
tive Filtering (DMGCF) model. We generate multiple graphs
with a dynamic evolution mechanism to simulate side infor-
mation for better performance, especially when side infor-
mation is unavailable.
• Our generated graphs are not only self-generated but also

self-used. They are meaningful because they represent the
inter-user and inter-item relationships. We design a dual-
path GCN to address the problem of the different types of
multiple graphs.
• We propose a dynamic evolution mechanism that makes the

generated graphs and embeddings promote each other in
the learning process. Better graphs help to get better embed-
dings, and vice versa. Experiments on real-world datasets
verify the effectiveness of our model.

The rest of this paper is organized as follows: In Section 2,
a series of related works are briefly reviewed and the differ-
ences between our work and them are addressed. In Section 3,
the proposed DMGCF is introduced in detail. Experiments and
discussions are given in Section 4 and conclusions are drawn in
Section 5.

2. Related work

In this section, we introduce recent works related to our
approach. Firstly, the collaborative filtering (CF) methods are
introduced. The related methods using side information are dis-
cussed next. In addition, the graph convolution network (GCN)
and its development in recommendation systems are introduced.
Finally, the differences between DMGCF and previous works are
analyzed.

2.1. Collaborative filtering

Collaborative filtering (CF) is the most commonly used method
in the field of recommendation systems and rating prediction [1,
2,11,12]. The idea of the CF algorithm is to recommend with the
help of neighbors or similar users(items). So users or items can
collaborate by helping each other. For example, recommend to
the user what his/her friends like. CF methods can be divided
into memory-based CF and model-based CF. Memory-based CF [1,
2,12] recommendation algorithm obtains similar relationships
between users or items according to the user-item rating matrix
and finds the nearest neighbors for user or items. Predictions are
made according to the neighbors. The recommendation accuracy
depends on the adopted similarity measure, which is usually
based on a suboptimal relation between users or between items.
However, side information can be exploited for calculating or
refining the similarities and thereby improving recommenda-
tions. Model-based CF [13–17] exploits data mining and machine
learning algorithms by training specific models and gains high
recommendation quality. Matrix factorization (MF) [13] is a typ-
ical method of model-based CF which models the rating matrix
by two low-rank matrices. MF learns the potential relationship
between users and items and predicts by inner product gener-
ally. Many variants of this model are proposed, such as Singular
Value Decomposition (SVD) [14], Probabilistic Matrix Factoriza-
tion (PMF) [15], Non-negative Matrix Factorization (NMF) [16],
etc. Factorization Machines (FM) [18] which is a general predictor
that can work with any real-valued feature vector can mimic
many of the most successful factorization models including MF.

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251
With the development of deep learning, more and more neural
network methods for rating prediction are proposed [10,19–22].
Deep Matrix Factorization [19] constructs a user-item matrix
with explicit ratings and non-preference implicit feedback, and
then presents a matrix factorization model with neural network
architecture to learn a common low dimensional space for the
representations of users and items. AutoRec [20] proposes an au-
toencoder framework for collaborative filtering which is compact
and has computational advantage. Neural collaborative filtering
(NCF) [22] presents a neural network architecture to model latent
features of users and items and devises a general framework
for collaborative filtering based on neural networks. Recently,
NGCF [10] introduces a graph-based neural collaborative filtering
approach, but only the user-item graph is used. Thus, CF methods
are still evolving, from traditional matrix decomposition to meth-
ods based on deep learning, and graph-based methods have been
proposed recently. How to develop CF methods based on multiple
graphs is a challenging problem we need to solve.

2.2. Side information based methods

More and more attention has been paid to the introduction
of side information, or auxiliary information, to alleviate the
sparsity problem and improve the performance of recommenda-
tion systems [23–26]. Side information contains a wide range of
information related to users and items, such as age, gender, occu-
pation of users and labels, attributes of items, etc. In recent years,
locations, textual reviews, social networks, context information,
knowledge graph have been widely explored in recommendation
systems [27–31].

Location information is always used for kinds of recommenda-
tions [27,31–36]. Cheng et al. [33] propose a location-aware social
music recommendation which considers users’ location related
contexts as well as global music popularity trends. VenueMu-
sic [35] explores user’s venue, which often includes surround-
ing atmosphere and related activities. Even complex correla-
tions between clothing attributes and location attributes are
mined to build location-oriented clothing recommendations for
tourists [27]. Textual reviews are always used [37–39], for exam-
ple, sentiment similarity from textual reviews is mined to build
a sentiment-based rating prediction method [28]. And some of
these review-based methods are able to provide interpretability
by convolutional neural network and attention mechanism [37,
38]. In addition, social information is widely used [40–43]. Hsu
et al. [41] propose a framework to learn the degree of social
correlation and rating prediction jointly. A dual graph attention
network is proposed to model four interactions of social effects in
user domain and item domain according to specific contexts [44].
Knowledge graph [4–6] provides rich relationships and attributes
information for the items, and it has started to attract attention
in the field of recommendation systems, but has not been used
for rating prediction.

However, diversity of information means different inputs, and
specific algorithms need to be designed, which make the rec-
ommendation system and the rating prediction task more com-
plex and less adaptable. Besides, high-quality information is not
always available and useful [45]. These shortcomings of side
information inspire us to automatically generate and replace the
side information in the real-world through relationship mining in
latent space.

2.3. GCN based methods

Graph-based learning methods can make use of the interaction
between users and items to make accurate recommendations.
3

The complexity of graph data poses a major challenge to exist-
ing machine learning algorithms, so graph convolution network
(GCN) becomes a new research hotspot [7–9]. GCN methods can
be divided into two categories, spectral-based GCN and spatial-
based GCN. The spectral-based method employs the theory of
graph signal processing and introduces filters to define graph con-
volutions [46]. The spectrum-based GCN is limited in efficiency,
generality, and flexibility while the space-based method is getting
more and more attention [47,48]. The key idea of the space-based
method is to use the information propagation mechanism on the
graph to aggregate features from adjacent nodes, which is easier
to understand and apply. The Message Passing Neural Network
(MPNN) [47] is one of the representative methods which presents
a simple but effective idea to update the state of each node after
receiving the message from its neighbors.

GCN can be applied to almost every field of recommenda-
tion systems, such as rating prediction, top-n recommendation,
session-based (sequential) recommendation, social recommenda-
tion, and so on [49–52]. SR-GNN [51] is proposed to obtain accu-
rate item embeddings and take complex transitions of items into
account with graph neural networks. Session sequences are mod-
eled as graph-structured data so that GCN can capture complex
transitions of items. GraphRec [52] is presented for social recom-
mendations based on the GNN framework, which jointly captures
interactions and opinions in the user-item graph and coherently
models two graphs and heterogeneous strengths. Some graph-
based methods for rating prediction are proposed recently [49,
53,54]. STAR-GCN [49] proposes an architecture to learn node
representations for boosting the performance in recommendation
systems, especially in the cold start scenario. IGMC [53] achieves
better performance and shows potential for transfer learning by
mining local graph patterns. However, they are all based on
one graph. sRMGCNN [54] proposes a multi-graph convolutional
neural network architecture to learn meaningful statistical graph-
structured patterns from users and items, but only the user
graph and item graph are used which are always built by side
information.

It is worth noting that there are bipartite graphs, attribute
graphs, complex heterogeneous graphs, multi-source heteroge-
neous graphs and other types in the recommendation system [55,
56]. How to extract useful information, reduce the noise, and
integrate information from multi-source graphs or heterogeneous
graphs is quite a challenge.

2.4. Differences with existing works

The relation and difference with the related works: DMGCF is
a new development of the CF method and a new GCN method
based on multiple graphs for rating prediction. It is a new ap-
proach by generating graphs to simulate side information in the
recommendation system. Compared with similar works: Multiple
graphs based on side information or the original rating matrix are
used by sRMGCNN [54], while we adopt embedding-based and
self-generated graphs without real side information in a new GCN
model. The difference between NGCF [10] and our method is that
we use ever-changing multiple graphs by mining relationships of
users or item to gain a better CF prediction, while NGCF is based
on only one graph. Besides, the dynamic evolution mechanism is
proposed to make graphs and embeddings promote each other.

3. Methodology

In this section, the technical background and the overview of
our method are introduced firstly. Then, the embedding layer,
dual-path GCN based on multiple graphs and dynamic evolution
mechanism are described in detail. The prediction layer and the
loss function are introduced next. Finally, model complexities are
analyzed.

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

t

3

G
t

i
o
f

w
b
p
F
r
a

e

w
a
m
s

Fig. 2. An illustration of DMGCF model architecture. The dynamic evolution mechanism is the core of the method, which mainly includes the dual-path GCN layer,
he process of multi-graph establishment and update. The MLP layer is used for feature interaction and prediction.
i
n
t
p

d
W
e
d
g
G
F
f
p
i
m

l
t
m
s
A
c
t
s
t
e

3

c
e
e
D
p

3

f

.1. Preliminary

First, we briefly introduce some background methods, such as
CN [47–49] and NGCF [10], and an overview of our approach for
he reader’s convenience.

GCN: Briefly, the key idea of the space-based GCN method
is to use the information propagation mechanism on the graph
to aggregate features from neighbor nodes [47–49]. GCN can be
described as:

h(k)
i =

∑
j∈Ni

1
cij

h(k)
j (1)

h(k+1)
i = σ (Wh(k)

i) (2)

where h(k)
i denotes node features of node i in layer k; cij is a

normalized constant, computed as
√
|Ni|

⏐⏐Nj
⏐⏐ (symmetric normal-

zation) or |Ni| (left normalization) ; N denotes a set of neighbors
f the node; W is learnable parameter matrices; σ is a non-linear
unction.

NGCF: NGCF [10] is a CF method with graph neural network,
hich exploits the user-item graph structure by propagating em-
eddings on it. NGCF explicitly encodes the collaborative signal by
erforming embedding propagation on more hops on the graph.
irst, each user and item is associated with an embedding for its
epresentation. Let e(0)u , e(0)u denote the initial embedding of user u
nd item i. Then NGCF propagates embeddings on the user-item

interaction graph as:

e(k+1)u = σ (
∑
i∈Nu

1
√
|NuNi|

(W1e
(k)
i +W2(e

(k)
i ⊙ e(k)u))+ W1e(k)u) (3)

(k+1)
i = σ (

∑
u∈Ni

1
√
|NuNi|

(W1e(k)u +W2(e(k)u ⊙ e(k)i))+ W1e
(k)
i) (4)

here e(k)i , e(k)i respectively denote the refined embedding of u
nd i after k layers propagation; W1 and W2 are trainable weight
atrices to perform feature transformation in each layer. By
tacking k embedding propagation layers, a user (or an item)
4

s capable of receiving the messages propagated from its k-hop
eighbors. It then concatenates these k+1 embeddings to obtain
he final user embedding and item embedding, using the inner
roduct to generate the prediction score of a user-item pair.
Overview: Our proposed multi-graph based model with a

ynamic evolution mechanism is shown in the center of Fig. 2.
e first create embeddings of users and items, e0u, e

0
i in the

mbedding layer. We connect them to a dual-path GCN layer
esigned for multiple graphs, and new features e1u, e

1
i can be

ained through the first GCN layer (e2u, e
2
i learned from the second

CN layer, etc. For brevity, only one GCN layer is illustrated in
ig. 2). After that, all the embeddings are concatenated as the
inal embeddings of users and items. The final representation is
ut together into a Multi-Layer Perceptron (MLP) and converted
nto rating scores. This is the general process of graph-based CF
ethod.
Based on the final embeddings of users and items, the simi-

arity matrices are calculated by the cosine similarity metric. The
op-k similar users or items are selected in rows of the similarity
atrices to build the user graph and item graph, Gu,Gi. The
imilarity values are recorded as the edge weights of the graph.
long with the original user-item graph, Gui, multiple graphs are
onstructed and sent to the dual-path GCN embedding propaga-
ion layers for CF. In this way Gu and Gi are reused as collaborative
ignals to learn new embeddings. Thus, all the embeddings and
he generated Gu,Gi can be updated and promoted in the dynamic
volution mechanism until the end of the training process.

.2. Embedding layer

Following mainstream recommender models [10,22], we first
reate embeddings of users and items as their representation,
u, ei ∈ Rd, where d is the embedding dimension. They are param-
ters to be learned and optimized through the training process.
ifferent dimensions of embeddings indicate different features or
references of the users or items in the recommendation system.

.3. Dual-path GCN

As can be seen from the following analysis, Gui is different
rom G and G while the latter two are similar. We design
u i

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

a
F
s
t
b
a

3

G
u
s
a
m
f

i
a
p
e
b
s
r
S
n
u
t
G
I
m

m

m

m

m

w
n
n

G
t
a
h
w

a

a
r
r
d

m
n

new branch for Gu and Gi, thus forming a dual-path GCN.
ig. 2 shows that there are two paths in the ‘‘Dual-path GCN’’
ection, with the new path added for the generated graphs at
he top. The message-passing architecture is applied by spatial-
ased GCN [10,48]. We describe the dual-path GCN in two steps
s NGCF, namely, message construction and message aggregation.

.3.1. Message construction
Three graphs, Gui, Gu and Gi, are shown in the ‘‘Multiple

raphs’’ part in Fig. 2 which represent the relationship between
sers and items, the relationship among users, and the relation-
hip among items respectively. It is necessary to point out that
t the beginning of training Gu and Gi are initialized to zeros
atrices. They are generated after some training epochs, but their

ormulas are consistent.
Users and items share the same message construction and

nformation aggregation mechanisms and users are taken as ex-
mple. For any user-item pair (u, i), the feature of the item i is
assed as a message to u through a neural network with param-
ter W1. Meanwhile, the affinity of the user and item is modeled
y element-wise product method to pass more messages from
imilar items, with parameter W2 used for feature learning. mu←i
epresents messages from each i to u, which is the original path.
imilarly, for the new graph Gu, we passed the information of the
ew neighbor and modeled the affinity between the two users by
sing W3, W4. mu←u′ represents messages from each neighbor u′
o u, which is in the new path. All the neighbors of u in Gui and
u pass information according to the above mentioned process.
tems have the same messages, mi←u, mi←i′ , as the users. All
essage construction functions are expressed as:

u←i =
1

√
|NuNi|

(W1ei +W2(ei ⊙ eu)) (5)

u←u′ =
1
|Nu′ |

(W3eu′ +W4(eu′ ⊙ eu)) (6)

i←u =
1

√
|NiNu|

(W1eu +W2(eu ⊙ ei)) (7)

i←i′ =
1
|Ni′ |

(W3ei′ +W4(ei′ ⊙ ei)) (8)

here N is normalization constant, Nu,Ni normalized by the
eighbors of user u and item i in Gui, Nu′ ,Ni′ normalized by the
eighbors of user u in Gu and the neighbors of item i in Gi. And
⊙ denotes the element-wise product.

We adopt a new path of GCN with parameters W3, W4 to learn
the different patterns and pass collaborative signals in Gu and Gi,
as shown in formulas (6) and (8). The new path is designed to
solve the challenge of large differences between multiple graphs:

(1) Differences in graph types: Gu and Gi are directed and
dynamic graphs, while Gui is an undirected and static graph. It
is a big difference in graph types. It is a challenge to learn useful
features, so we design the dual-path GCN to tackle the two kinds
of graphs separately. Besides, different normalization parameters
are designed for them.

(2) The different meanings in reality: Gu and Gi are built based
on similarity, while Gui is the interaction records in reality. Gu and
i are homogeneous graph while Gui is a heterogeneous graph,
hey should be treated differently for the difference influence
mong nodes. For example, the influence of one user’s friend on
im may be more effective than items that he has interacted with
hen to make the decision to watch a movie or listen to a song.
(3) Quality difference: The edges in Gui is the real interactions
s mentioned before, while the links in Gu and Gi are generated,

5

pproximately. The quality of the two new graphs is also closely
elated to the dataset and the performance of the whole algo-
ithm. This design can also avoid mutual influence between the
ifferent quality of the graphs.
Besides, the weights in graphs are used to calculate nor-

alization constant N in the GCN process. We use symmetric
ormalization, 1√

|NuNi|
, for the undirected symmetric graphs,

Gui, and left normalization, 1
|Nu′ |

, 1
|Ni′ |

, for directed asymmet-
ric graphs Gu and Gi. Graphs are generated based on similarity
matrices row by row, while the left normalization is the row
normalization on matrices, so they are matched. The left normal-
ization is asymmetric normalization which is more suitable for
directed graphs derived from asymmetric similarity matrices (the
bold part in the similarity matrix in Fig. 2).

3.3.2. Message aggregation
In the message aggregation stage, the previous messages are

used to enrich the user’s or item’s representations. A self-loop to
keep and learn features of itself is always added in GCN methods,
that is:

mu = W1eu (9)

mi = W1ei (10)

The aggregation functions contain summation, average, max-
imum, the commonly used summation function is adopted here.
The message aggregation is defined as:

eu = σ (
∑
i∈Nu

mu←i +
∑
u∈Nu′

mu←u′ +mu) (11)

ei = σ (
∑
i∈Ni

mi←u +
∑
i∈Ni′

mi←i′ +mi) (12)

where σ is the activation function, and Relu is used as the
activation function in this paper.

If more than one GCN layers are used, the message construc-
tion and aggregation mechanism can be described as follows:

e(k+1)u = σ (
∑
i∈Nu

1
√
|NuNi|

(W1e
(k)
i +W2(e

(k)
i ⊙ e(k)u))+

∑
i∈Nu

1
|Nu′ |

(W3e
(k)
u′ +W4(e

(k)
u′ ⊙ e(k)u))+W1e(k)u)

(13)

e(k+1)i = σ (
∑
u∈Ni

1
√
|NuNi|

(W1e(k)u +W2(e(k)u ⊙ e(k)i))+

∑
u∈Ni

1
|Ni′ |

(W3e
(k)
i′ +W4(e

(k)
i′ ⊙ e(k)i))+W1e

(k)
i)

(14)

where k denotes the kth GCN layer.

3.4. Dynamic evolution mechanism

Our dynamic evolution mechanism is the core of this method,
including dual-path GCN, final embeddings, graphs construction
and reuse, as well as the update and co-evolution of embeddings
and graphs. Next, we will introduce the parts except the GCN
layers in detail.

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

3

t
m
b
e
l
t

E

E

w

s
t

R

w

w
n
m
f

3

e
(
a
M
o
a∑
.4.1. Final embeddings
After propagating by GCN layers, we get multiple represen-

ations of users and items. With the neighborhood aggregation
echanism, the more GCN propagation layers the farther neigh-
ors’ information is aggregated. To make the full use of initial
mbeddings and representations from different GNN propagation
ayers, we concatenate them as the final embeddings following
he NGCF’s approach:

u = [e0u, e1u, e
2
u, . . . , e

k
u] (15)

i = [e0i , e1i , e
2
i , . . . , e

k
i] (16)

here e0u, e
0
i are the initial embeddings of users and items, e1u, e

2
u,

. . . , eku and e0i , e
1
i , e

2
i , . . . , e

k
i are the 1, 2, . . . , kth output of GCN

layers, [] denotes the concatenation operation.

3.4.2. Graphs construction and reuse
How to build user and item graphs are described here and

the user graph is taken as an example. Eu is used to calculate
similarity by the cosine similarity and build a similarity matrix
for users. The cosine value is recorded as the edge weight. Then
we choose the top k close users as neighbors in each row and
establish directed links from neighbors to the user of the row. In
this way, we form a directed and weighted graph Gu for all users.
Gi is constructed in the same way.

We take the user graph as an example to illustrate why the
two generated graphs are directed graphs. We choose the closest
neighbor for a user to build the user graph as shown in Fig. 2.
Suppose that the four users with blue, green, gray, and yellow
colors represent u1, u2, u3, u4, respectively. The user similarity
results are shown in the left of the ‘‘Similarity Matrices’’, and
the established user relationship, Gu, is shown on the left of
‘‘Multiple Graphs’’. Similarity values are recorded as the weight
of the graph, and the similarity matrix is symmetric. The nearest
user is calculated by ranking in a row for each user and shown
in bold. The bold values in the similarity matrix are asymmetric,
so the Gu is a directed graph. u1 and u2 is two-way link. u1 is the
most similar to u3, but u3 is not the most similar to u1. So a one-
way connection to u1 is established between them. Therefore, the
user graph is directed and weighted. Moreover, this is in line with
the social network in the real world for the social graph can be
directed and weighted.

The generated graphs are used as side information in latent
space to form a multi-graph collaboration mechanism. The graph
Gu with links between similar users simulates the social network.
Since different items may belong to the same category and share
the same attributes, connections can be mined naturally by our
item graph. The graph Gi simulates the knowledge graph from
this perspective. Thus, both of them simulate and replace the side
information in the real-world and used as collaborative signals for
a better rating prediction with the original interaction graph Gui.

3.4.3. Continuous updating for dynamic evolution
Embeddings and the generated graphs need a multi-step opti-

mization process according to deep learning optimization theory.
The multiple graphs and embeddings promote each other in our
model. For each epoch, Gu and Gi are recalculated and updated,
o that it is easy to use the latest and optimized embeddings
o obtain better Gu and Gi. At the same time, new Gu and Gi
are reused by the next round of training. The better Gu and Gi
information are injected into the network to promote the em-
beddings and achieve high-quality collaborative filtering by the
GCN layers. Thus both the multi-graph and embeddings should
be continuously updated, to be better step by step, forming a
dynamic evolution mechanism. It should be pointed out that Gui is
static while Gu and Gi evolve in the training process in our model.
Without any side information, it is also a self-evolving mechanism

by mining its relationships from scratch.

6

3.5. MLP Layer

It is insufficient for modeling the collaborative filtering effect
just by an element-wise inner product, especially in this dynamic,
multi-graph framework. To address this issue, we combine the
features of users and items by concatenating them, then one MLP
layer is used. The MLP makes interactions between users’ and
items’ latent features and implements the transformation from
the final embeddings to the rating score.

h1 = [Eu, Ev] (17)

h2 = σ (Wh1h1 + bh1) (18)

h3 = σ (Wh2h2 + bh2) (19)

ˆui = Wh3h3 + bh3 (20)

here h1, h2, h3 denote the features,Wh1,Wh2,Wh3 are the weight
matrix, bh1, bh2, bh3 denote bias vectors, the activation function σ

is Relu, R̂u,i is the predicted rating score.
We empirically implement the tower structure for the first

two layers, halving the layer size for each successive higher layer,
such as [64, 32]. By using a small number of hidden units for
higher layers, they can learn more abstractive features of data.
At last, we get only one output, namely, the prediction. It is
worthwhile to mention that NGCF adopts the same MLP for the
rating prediction task for a fair comparison with us.

3.6. Loss function

We use the loss function commonly used in rating prediction
by minimizing deviation between the predictions and the ground
truth ratings, and regularization is added to prevent overfitting:

Loss =
1
Ω

∑
(u,i)∈Ω

(R̂u,i − Ru,i)2 + λ ||Θ||22 (21)

here Ω denotes the edges or links in training data, Ru,i, R̂u,i de-
ote the ground truth and predicted score, Θ denotes all trainable
odel parameters, λ trades-off the importance of the two loss

unctions.

.7. Model analysis

Model Size: The model parameters contain three parts, initial
mbeddings, GCN layers and the MLP layer. The total size is
m+n)d+

∑L
l=1 4dldl−1+

∑H
h=1 dhdh−1, wherem, n denote the user

nd item numbers; L,H denote the number of GCN layers and
LP hidden layers, respectively; d, dl, dh denote the dimension
f parameters of the three parts. The difference between DMGCF
nd NGCF in model size is the new GCN path which brings
L
1=1 2d1d1−1 more parameters. Considering that dl is always set

to 32 or 64, L is usually a number smaller than 5, which is much
smaller than m, n. Thus, the total parameters increased are quite
limited. For example, if we set L=2, dl=32, the model size of NGCF
of Flixster, Yelp are about 202K, 1314K respectively, while our
DMGCF uses only 4K more parameters. To summarize, DMGCF
can achieve better results than NGCF with almost the same model
size.

Time Complexity Analysis: There computational complex-
ity of DMGCF contains the dual-path GCN, the cosine similarity
and sorting for top-k links to build graphs, and the MLP layer.
For the dual-path GCN, the computational complexity of the

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

l
R
i
k
O
i
c
t
k
d
d
a
i
i

th propagation layer is O(
∑L

l=1

(⏐⏐R+ + k(m+ n)
⏐⏐) dldl−1), where

+, k(m + n) denote the number of nonzero values of the user-
tem graph, the generated user and item graphs, respectively;
denotes the number of links added for each user and item.
(mn

∑L
l=0 dl),O(m logm + n log n) are computational complex-

ties for cosine similarity and sorting for top-k relations. The
omputational complexity of MLP is O(

∑H
h=1

⏐⏐R+⏐⏐ dhdh−1). Thus,
he total computational complexity of DMGCF is O(

∑L
l=1(

⏐⏐R+⏐⏐+
(m+ n))dldl−1 +mn

∑L
l=0 dl +m logm+ n log n+

∑H
h=1

⏐⏐R+⏐⏐ dh
h−1), while that of NGCF is O(

∑L
l=1

⏐⏐R+⏐⏐ dldl−1 +∑H
h=1

⏐⏐R+⏐⏐ dh
h−1). The difference lies in the construction and calculation of the
dded graphs. According to the subsequent experimental analysis
n Section 4, we can reduce the time complexity by using only the
tem graph and reducing the number of k.

Empirically, dl, dh are always set to 32, 64, which are smaller.⏐⏐R+⏐⏐ ,m, n of the recommendation system are large, which are
the main factor affecting the computational complexity. Under
the same experimental settings (as explained in Section 4) on the
GeForce RTX 2080Ti GPU, NGCF costs about 2.3s, 16.3s, 4.5s per
epoch on ML-100K, ML-1M, Yelp, while DMGCF costs 2.6s, 17.4s,
10 s for training, respectively. There is almost no time difference
in test for both NGCF and DMGCF cost about 0.2s, 1.2s, 0.3s on
the three datasets. Because there is no need to build graphs when
test, and the added graphs are also very sparse, the computation
can be accelerated by the GPU. The above results showed that the
time costs are acceptable and m, n have a bigger impact on train
time. DMGCF has more advantages in the application for having
almost the same test time as NGCF.

4. Experiments

In this section, a series of experiments are conducted to study
the proposed model. First, the basic information of the exper-
iments is introduced, such as datasets, performance measures,
experimental details, compared methods. Then experimental re-
sults, ablation study, and many discussions are elaborated.

4.1. Datasets

We evaluate our model on five commonly used rating perdi-
tion benchmark datasets:

Flixster [57]: Flixster is a movie rating dataset obtained from
the Flixster website. The scale of the rating is 0.5–5, and the
interval between the ratings is 0.5. Following sRMGCNN [54],
3000 users and items are used for experiments.

YahooMusic [58]: This dataset is released based on Yahoo!
Music ratings through the KDD Cup 2011 contest. The sparsity of
the dataset is relatively high when compared to other collabora-
tive filtering datasets. A reduced matrix of 3000 users and items
following sRMGCNN.

MovieLens 100K (ML-100K), MovieLens 1M (ML-1M) [59]:
MovieLens datasets are widely used for rating prediction and rec-
ommendation. They contain the rating data of users for multiple
movies from the MovieLens website with timestamps. There are
several versions for different amounts of data, we use the size of
100K and 1M. For ML-100K, the first of the 5 provided data splits
is used.

Yelp1: Yelp dataset is adopted from the 2020 edition of the
Yelp challenge from America’s biggest review site. Local busi-
nesses like restaurants are viewed as items. We random sample
15% of rating records and select users and items having at least 5
ratings. The dataset is sparser and the number of users and items
are larger than the other datasets.

1 https://www.yelp.com/dataset
7

Table 1
Detailed information for datasets.
Dataset Users Items Ratings Density Rating types

Flixster 3000 3000 26173 0.0029 0.5, 1, . . . , 5
YahooMusic 3000 3000 5335 0.0006 1, 2, . . . , 100
ML-100K 943 1682 100000 0.063 1, 2, 3, 4, 5
ML-1M 6040 3706 1000209 0.0447 1, 2, 3, 4, 5
Yelp 16793 23953 172567 0.0004 1, 2, 3, 4, 5

The statistics of these datasets are shown in Table 1. We com-
pletely followed the dataset setup provided by sRMGCNN [54]
in which the train, test datasets are split already2 for the first
three datasets. They are different in numbers of ratings, density,
and rating types. The MovieLens 1M dataset is used because the
rating numbers are large. Yelp is used because its user and item
numbers are large and the dataset is sparser. The train set is
90% of the whole dataset besides ML-100K accounts for 80%. We
randomly select 10% of the train set as validation set to tune
hyperparameters.

4.2. Performance measures

The most popular accuracy measurements used in rating pre-
diction are Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) [28,39,40], which are defined as follows:

RMSE =
√ ∑

i∈Ntest

(R̂u,i − Ru,i)
2
/|Ntest | (22)

MAE =
∑
i∈Ntest

⏐⏐⏐R̂u,i − Ru,i

⏐⏐⏐ /|Ntest | (23)

where Ru,i, R̂u,i denote the ground truth and predicted rating
score, and Ntest denotes the number of user-item pairs in the test
set.

4.3. Experimental details

We implement our model in Pytorch3 to take advantage of its
dynamic graph mechanism4. The default embedding size is 32
for all methods, and one GCN layer is used in our model. We
optimize all models with the Adam optimizer, the batch size is
fixed at 2048 except that of ML-1M is 10240. The learning rate is
tuned amongst [0.0001, 0.0005, 0.001, 0.005] , the coefficient of
L2 normalization is searched in [0.0001, 0.001, 0.01, 0.1, 1]. We do
not use node dropout strategy employed by NGCF. If there is no
special explanation, we generally establish 5 links for each user
and item in the generated graphs. Kaiming initializer is used to
initialize the model parameters.

4.4. Compared methods

In addition to the traditional matrix factorization method
SVD [14], we select four state-of-the-art recommenders as the
competitors, NCF [22], DeepFM [60], sRMGCNN [54], NGCF [10].

SVD [14]: This model is a classical rating prediction method
in the matrix factorization approach with user and item bias to
model the preference or difference of users and items.

NCF [22]: He et al. propose three neural collaborative fil-
tering (NCF) methods in a deep learning way. The best model

2 https://github.com/fmonti/mgcnn
3 https://pytorch.org
4 https://github.com/th971286733/DMGCF

https://www.yelp.com/dataset
https://github.com/fmonti/mgcnn
https://pytorch.org
https://github.com/th971286733/DMGCF

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

T
P

u
t
l
s
i
m
i

l
w
m
i
b
o
g
a

b
u
j
e
w

4

s
m
m

S
w
d
M
m
t
r
w
o
N
o

t
s
o

able 2
erformance comparison.

Flixster YahooMusic ML-100K ML-1M Yelp

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVD [14] 0.9476 0.7486 54.71 47.69 0.9856 0.7922 0.9850 0.8014 1.1250 0.9064
NCF [22] 0.9150 0.7076 26.44 21.17 0.9390 0.7415 0.8692 0.6820 1.0889 0.8630
DeepFM [60] 0.9109 0.7001 25.47 20.33 0.9489 0.7531 0.8834 0.6943 1.0926 0.8610
sRMGCNN [54] 0.9261 0.7139 22.31 18.76 0.9292 0.7378 0.8776 0.6920 1.0881 0.8719
NGCF [10] 0.9098 0.6888 21.49 17.41 0.9319 0.7321 0.8670 0.6802 1.0931 0.8567
DMGCF(ours) 0.8928 0.6691 20.55 16.10 0.9234 0.7254 0.8586 0.6724 1.0801 0.8519
Improv. 1.87% 2.86% 4.37% 7.52% 0.62% 0.92% 0.97% 1.15% 0.74% 0.56%
p-value 8.22E−06 2.84E−06 2.10E−06 2.24E−06 1.05E−03 3.30E−04 2.81E−05 5.00E−05 5.41E−03 1.18E−01

The best and the second-best results are in bold or underlined respectively. ‘‘Improv.’’ indicates the improvements of DMGCF over the second-best results.
NeuMF is adopted here. It combines traditional matrix factoriza-
tion and deep neural network, which can simultaneously extract
low and high dimensional features. It contains two submod-
ules, a generalized matrix factorization (GMF) model to realize
matrix decomposition and a MLP to learn deep and nonlinear
relationships.

DeepFM [60]: DeepFM is one of the well-known and widely
sed recommenders.DeepFM combines the power of factoriza-
ion machines for recommendation and deep learning for feature
earning in a new neural network architecture. It introduces a
haring strategy of feature embedding to avoid feature engineer-
ng. DeepFM makes it possible to derive an end-to-end learning
odel that emphasizes both low-order and high-order feature

nteractions.
sRMGCNN [54]: sRMGCNN solves the rating prediction prob-

em in a matrix completion way. A deep multi-graph CNN frame-
ork using Chebychev polynomial filters is proposed to extract
eaningful statistical patterns on two graphs, user graph and

tem graph. It is worth noting that the user and item graphs
uilt in the space of user and movie features or from the scores
f the original matrix are used in sRMGCNN. Thus, it makes a
ood comparison with us for sRMGCNN with side information
nd multiple graphs.
NGCF [10]: NGCF is the state-of-the-art model of the graph-

ased CF method. NGCF exploits high-order connectivity in the
ser-item graph by propagating embeddings on it, effectively in-
ecting the collaborative signal into the embedding process in an
xplicit manner. We keep the same settings for a fair comparison
ith our model.

.5. Performance comparison

The experimental results are shown in Table 2 best results are
hown in bold, and the second-best results are underlined. Our
odel achieves the best results compared to all the comparison
ethods.
As a basic matrix factorization method, the performances of

VD are poor. NCF and DeepFM get better results than SVD,
hich shows the advantages of deep learning over the tra-
itional method. In general, the graph-based approaches (sR-
GCNN, NGCF, and DMGCF) are better than the deep learning
ethods without graphs (NCF and DeepFM), which demonstrates

he importance of graphs and graph convolution network. Most
esults of NGCF on these datasets have been improved compared
ith sRMGCNN, for sRMGCNN is the spectral GNN method based
n the user graph and item graph which are built by design while
GCF is based on the advanced GCN method in the spatial domain
n the real user-item graph.
DMGCF consistently gains the best on all the datasets. From

he comparison of the five methods, DMGCF improves over the
econd-best method NGCF by 1.87%, 4.37%, 0.91%, 0.97%, 1.19%
n the five datasets with respect to RMSE. The improvements
 w

8

are significant, even though NGCF is the best graph-based CF
method at present. And the improvements relative to the second-
best results are shown in Table 2 in the row of ‘‘Improv’’. The
results show that DMGCF improves significantly on YahooMusic
and Flixster, and owns about a 1% increase on ML-1M, ML-100k,
and a slight increase on Yelp. We conduct one-sample t-tests and
p-value <0.05 indicates that the improvements of DMGCF over
the second-best results are statistically significant only except
MAE on the Yelp dataset. Besides, compared with sRMGCNN
which uses side information and multiple graphs, the improve-
ment of DMGCF is more obvious. Thus, these performances and
comparisons show the advancement of our model.

Besides, we observe that the improvement of MAE is always
better than that of the RMSE. The differences between MAE and
RMSE are very close, and the MAE value is smaller than the RMSE
in general, so the improvements on MAE is larger than RMSE here.

4.6. Ablation study

It is important to explore whether our design works. The
ablation study is divided into four parts. The effects of multiple
graphs and parameters we designed are discussed in the first
two parts. Then, just adding Gu or Gi as variants of DMGCF are
discussed. Besides, the comparison of dynamic learning mech-
anism and static learning are compared. The whole results are
shown in Table 3. The ID here is the number of the different
methods. Method ID 6 is our DMGCF. It is important to note
that multiple graphs are generated dynamically, so the dynamic
evolution mechanism is added when we add generated graph
unless it is removed when we study the effect of the dynamic
mechanism alone (method 5).

4.6.1. Effect of the added multiple graphs
In order to show just the Gu, Gi are added without more

parameters, we need additional design to form a variant of the
model. For message construction, the parameters W3, W4 are
reduced by treating message passing and affinity message as two
types of signals, that is to say, W3 = W1, W4 = W2, the added
path is removed. In this case, the user graph and item graph are
treated the same as the original graph for simple. We show the
formula clearly:

e(k+1)u = σ (
∑
i∈Nu

1
√
|Nuu′Nii′ |

(W1(e
(k)
i + e(k)u′)+

W2(e
(k)
i ⊙ e(k)u + e(k)u′ ⊙ e(k)u))+W1e(k)u)

(24)

e(k+1)i = σ (
∑
u∈Ni

1
√
|Nuu′Nii′ |

(W1(e(k)u + e(k)i′)+

W2(e(k)u ⊙ e(k)i + e(k)i′ ⊙ e(k)i))+W1e
(k)
i)

(25)

here the N ′ ,N ′ contains links within two graphs.
uu ii

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

T
R

i
t

able 3
esults of ablation study.

COMPONENTS Flixster YahooMusic ML-100K ML-1M Yelp

ID NGCF Dy Gu Gi Para RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 � 0.9088 0.6888 21.49 17.41 0.9319 0.7321 0.8670 0.6802 1.0931 0.8567
2 � � � � 0.9020 0.6813 21.21 17.02 0.9249 0.7277 0.8673 0.6821 1.0917 0.8534
3 � � � � 0.9059 0.6846 21.06 16.54 0.9254 0.7278 0.8593 0.6733 1.0840 0.8525
4 � � � � 0.8906 0.6743 20.59 16.13 0.9239 0.7254 0.8586 0.6724 1.0814 0.8523
5 � � � � 0.8967 0.6771 21.15 16.96 0.9255 0.7277 0.8613 0.6758 1.0982 0.8587
6 � � � � � 0.8931 0.6753 20.56 16.10 0.9238 0.7249 0.8605 0.6735 1.0814 0.8518

where ’ID’, ’Dy’, ’Para’ refer to the ID of methods, the dynamic evolution mechanism, the added parameters, respectively. Method 6 is ours DMGCF. The dynamic
evolution mechanism is used simultaneously with multiple graphs, except when its effects are studied separately (method 5).
d
r
a

This variant has the same parameters as NGCF and is shown
n ID 2 in Table 3. The results of ID 1 and 2 show that the overall
rends of RMSE and MAE become better with the addition of Gu, Gi
in the first three datasets, while there are no significant changes
in the two large datasets. This illustrates the effectiveness of
the multi-graph on small datasets but still facing challenges on
big datasets. More design is needed for multi-graph collaborative
filtering, as can be seen below.

4.6.2. Effect of the added parameters
The results are listed in IDs of 2, 6 in Table 3. Adding param-

eters based on method 2, the RMSEs and MAEs are improved
obviously except Yelp with a slight improvement of MAE. The
relative improvement ratio of RMSE are 1.73%, 4.33%, 0.869%,
0.749%, 1.07%, that of MAE are 1.95%, 7.52%, 0.983%, 0.985%,
0.258%. YahooMusic and Flixster datasets benefit most. Results
show the effectiveness of the new path with parameters we
designed for different multiple graphs.

4.6.3. Variants of DMGCF, DMGCF-U and DMGCF-I
It is necessary to discuss the specific situation of adding only

Gu or Gi, termed DMGCF-U and DMGCF-I respectively. They can
be seen as variants of DMGCF. Methods 3, 4, 6 in Table 3 make
it clear for contrast. Results show that DMGCF-U, DMGCF-I, and
DMGCF are all better than the original NGCF. Generally, DMGCF-I
has a significant improvement than DMGCF-U, and DMGCF-I on
Flixster and ML-1M achieves the best results. DMGCF gets the
best results in the other three datasets. Nevertheless, the best
results of the other three datasets in DMGCF and DMGCF-I are
also very close.

It is interesting to find that DMGCF-I is better than DMGCF-
U, or even gets the best results sometimes. Similar to us, Au-
toRec [20] also found that the item-based method is more ef-
ficient than the user-based. It makes sense for the following
reasons. On one hand, user graph-based CF tends to focus on
the common preferences of users in their interest groups and
pays more attention to socialization, while item graph-based CF
recommends similar items based on users’ historical behaviors
and pays more attention to personalization. The user’s rating
behavior is more personalized, thus the item graph works better
for movies, music, and book sites. On the other hand, users
always have a large range of personal preferences and some
users may give noise ratings while items are more objective. The
connections established by items are relatively good by their fixed
attributes and categories. For example, in music, movie and e-
commerce websites, their tree-like classification is an objective
and real connection, which can be mined through embedding
features. Thus, adding Gu and Gi at the same time usually has
both the advantages of collaboration and the difficulty of noise.
However, it is worth noting that both DMGCF and variants are
obviously improved compared to NGCF. This also suggests that
DMGCF-I can be used for simplicity.
 s

9

Table 4
The impact of embedding size of dual-path GCN.
Embedding
size

Flixster YahooMusic ML-100K

RMSE MAE RMSE MAE RMSE MAE

16 0.9105 0.6949 20.9344 16.8077 0.9266 0.7274
32 0.8926 0.6736 20.6872 16.3879 0.9238 0.7249
64 0.8966 0.6776 20.9662 16.3886 0.9286 0.7294
128 0.9088 0.6772 21.8890 17.1163 0.9546 0.7547

Table 5
The impact of parameters W1- W4 of dual-path GCN.
W_size Flixster YahooMusic ML-100K

RMSE MAE RMSE MAE RMSE MAE

16 0.9051 0.6867 21.3959 17.0251 0.9267 0.7267
32 0.8926 0.6736 20.6872 16.3879 0.9238 0.7249
64 0.9011 0.6764 20.6503 16.2061 0.9266 0.7266
128 0.8928 0.6762 20.1420 15.6566 0.9529 0.7528

4.6.4. Effect of dynamic graphs
Here, we illustrate the advantages of dynamic graphs over

static graphs. A method based on static graphs is designed for
comparison. We first calculate the cosine similarity between
users (or items) based on the rating matrix, and then select the
top-n users (items) to establish Gu and Gi as our DMGCN does.
Then we use the same formulas in Section 3. The difference
compared with the dynamic approach is that user graph and item
graph are calculated at the beginning by rating matrix and remain
unchanged while the dynamic way is to dynamically build, use
and update these two graphs by embeddings throughout the
training process. Methods 5 and 6 in Table 3 show that the dy-
namic mode achieves better results than the static one, especially
on YahooMusic and Yelp datasets. RMSE and MAE of Yelp are both
the worst without dynamic graphs, while the best result is gained
when adding it.

4.7. Discussion

In this part, the dual-path GCN, the added graphs, and the
dynamic evolution mechanism are discussed in detail for a better
understanding of the model. The first three datasets are used here
for they represent three different levels of sparsity and have three
different rating types, a 5-point scale with 1 or 0.5 interval, a
100-point scale. Different rating types take into account the wide
range of practical applications and also increase the difficulty of
rating prediction.

4.7.1. Discussion of the parameters of the dual-path GCN
The impact of embedding size of dual-path GCN. Four

ifferent embedding sizes, [16, 32, 64, 128], are considered. The
esults are shown in Table 4. As the size increases, both RMSE
nd MAE decrease first and then increase. The size 16 is too

mall to reflect the difference between items or users. The results

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251
Fig. 3. The impact of the number of links in user graph and item graph. The horizontal axis represents the number of links added. We set the NGCF result as the
maximum value of the vertical coordinate to observe the trend.
Table 6
The impact of the layer number of dual-path GCN.
Layer
number

Flixster YahooMusic ML-100K

RMSE MAE RMSE MAE RMSE MAE

1 0.8926 0.6736 20.6872 16.3879 0.9238 0.7249
2 0.8934 0.6785 20.3458 16.0628 0.9250 0.7256
3 0.9012 0.6822 21.1385 16.0707 0.9236 0.7253
4 0.9022 0.6904 21.1069 16.0759 0.9251 0.7256

Table 7
The impact of the weighted graphs.
Weighted
graph

Flixster YahooMusic ML-100K

RMSE MAE RMSE MAE RMSE MAE

Yes 0.8926 0.6736 20.6872 16.3879 0.9238 0.7249
No 0.8998 0.6879 20.6928 16.3979 0.9246 0.7281

are significantly worse at 128 because the embedding size is
too large, which makes the learning process more difficult and
increases the risk of over-fitting. This experiment shows that
choosing the right size is helpful to improve the effect, and the
size 32 is the best one.

The impact of parameters size of dual-path GCN. W1-W4 are
parameters of dual-path GCN. They are the same size of [embed-
ding size, output size] in our model. The output size of them is
adjusted to [16, 32, 64, 128] to observe the effect. The results of
the three datasets are shown in Table 5. It can be seen that 32 is
appropriate for Flixster and ML-100K dataset, and 128 is better
for YahooMusic. Thus, our default setting of 32 is reasonable.
YahooMusic performs better with a large parameter size may
because it has more complex rating types, which requires more
parameters.

The impact of the layer number of dual-path GCN. Table 6
shows the impact of the layer number of dual-path GCN. Flixster,
YahooMusic achieve the best results on one or two layers, and
the 3 or 4 layers became worse significantly. The results of ML-
100K fluctuate. Considering the two accuracy measurements, one
layer is better. At present, the common algorithms based on graph
convolution generally use few layers, because the aggregation
of more layers will make the representation of nodes tend to
be smooth, and may introduce more noises. The connections we
established have increased the number of nodes that need to be
aggregated. Therefore, few layers or just one layer are suitable for
our method.

4.7.2. Discussion of the added graphs
The impact of the weighted graphs. The user and item

graphs designed in this paper are weighted graphs, and the
weights are used in the GCN layers. To investigate whether
DMGCF can benefit from the weighted graphs, we compare it
with the unweighted graphs where only 0 and 1 to indicate
whether an edge has been established. The results in Table 7 show
10
that the weighted graphs are better than the unweighted graphs,
which verify the effectiveness of weights in the generated graphs.

The impact of the number of links in user graph and item
graph. Though the number is a hyperparameter in experiments,
we find that different datasets have different performances, and
there are still rules on the same dataset. We use the variable con-
trol method to study the influence of the change of the number
of one factor, and the range of number is [2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 25, 30, 35, 40, 45, 50], which begins with a compact
and detailed scope and ends with a large scope. If the vertical
coordinate range in the figure is small, the curve will fluctuate
greatly. Therefore, we set the NGCF result as the maximum value
of the vertical coordinate to discuss the data fluctuation from a
proper angle. The examples of default number 5 for the fixed
factor are representative after many experiments, and the RMSE
results are shown in Fig. 3. Results show that the Flixster dataset
has a small fluctuation range and is almost stable. As the number
increases, the RMSE starts to deteriorate when the number is
greater than 35. On the YahooMusic dataset, RMSE moves up and
down slowly, and the fluctuation range of the item is larger than
that of the user. For The ML-100K dataset, both user and item own
a rising trend with the increase of the number, and the fluctuation
range is between 0.923 and 0.927. Compared with the NGCF, the
figure shows that a smaller number of links are acceptable. It
is not a difficult task to adjust this parameters, 5 links in our
experiments can be effective.

4.7.3. Discussion of the dynamic evolution mechanism
The impact of the start time of the dynamic evolution

mechanism. When to start the dynamic evolution mechanism is
another important question. From 0.1, 0.2, 0.3, . . . , 0.9 times the
total number of training epochs, we start the dynamic evolution
mechanism and the collaborative evolution of multiple graphs
and embeddings. For example, we start to build and update the
user graph and item graph at 0.1 of the total train epochs and run
the collaborative evolution of multiple graphs and embeddings
for all the rest epochs.

We show RMSE and MAE results of three datasets in Fig. 4. The
common trend of RMSE and MAE is that they decrease first and
then increase as the starting point changes. The YahooMusic and
Flixster dataset have a trend of the checkmark and long tail with
a slight and reasonable fluctuation, while the ML-100K dataset
is concave and fluctuates greatly. Generally speaking, the result
of starting the dynamic mechanism in the initial stage is not
optimal. Starting the dynamic mechanism after training for some
time can get the best results. When starting too late the result
becomes worse gradually.

This phenomenon is reasonable and in line with expectations.
The result of starting the dynamic update mechanism at the
beginning is not optimal. Because the embedding has not been
improved and trained sufficiently, and the quality of them is still
poor, so are the graphs based on embeddings. With the advance-
ment of training time, the dynamic mechanism is started at a

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

r

g
i
o
e
d

m

a
t
w
a
t
a
d
p
t
m

5

m

Fig. 4. The impact of start time of dynamic evolution mechanism. The horizontal axis represents the start time of the whole epochs. RMSE and MAE have a different
ange and are represented separately by the left and right vertical axes.
Fig. 5. The impact of update frequency and the dynamic evolution mechanism. The horizontal axis represents the update interval, and ‘once’ means multiple graphs
build only once without any update. RMSE and MAE have a different range and are represented separately by the left and right vertical axes.
-
i
W
s

D

c
t

A

G
P
R ;
i
a
p

reasonable point when the embedding quality is guaranteed, and
the higher quality of the graph is established. The co-evolution
mechanism we expect is well established and the best results
are obtained. As time goes on, RMSE and MAE curves increase
gradually in the middle and late stages of training, and the results
become worse and worse. Due to the existence of overfitting,
over-learning of embedding parameters led to a poor graph that
established and updated at this time. Therefore, the right startup
time is an important issue.

The conclusion when the dynamic evolution mechanism be-
ins can be drawn from Fig. 4. The best result can be achieved by
nitiating the dynamic evolution mechanism during a short period
f initial training, about 20% of the total epochs. The training
pochs are based on the dataset and our training epochs are the
efault settings.
The impact of update frequency and the dynamic evolution
echanism. How often is better to update the user graph and

item graph? Each epoch updated in our default settings may not
be the best. It is necessary to explore the update frequency. We
start the dynamic evolution mechanism at 0.2 of the whole epoch
and update after every 1, 2, 4, 6, 8 epochs, and ‘once’ means
multiple graphs build only once at 0.2 times epoch and without
any update, which is equivalent to a very large update interval.

It can be seen from Fig. 5 that the trends of RMSE and MAE
re relatively consistent, and RMSE is used as the main indicator
o analyze. Experimental results show that it is better to update
ith smaller intervals. The best RMSE for Flixster, YahooMusic,
nd ML-100K dataset is updated every 1, 2, and 2 epochs respec-
ively. RMSE of the Flixster dataset changes relatively smoothly
s the update interval increases, while YahooMusic and ML-100K
ataset get worse greatly. It is worth noting that the ‘once’ is very
oor for all datasets. Impact of update frequency strongly prove
he necessity and the important role of the dynamic evolution
echanism.

. Conclusion

In this work, we propose the model of DMGCF based on
ultiple graphs and dynamic evolution mechanism. The idea
11
of mining relations and generating multiple graphs to simulate
side information for better performance is feasible. Our DMGCF
designed for different types of multiple graphs is effective. It
is generally effective to add the generated multiple graphs. All
results get better when adding a new path with parameters
which can deal with multiple graphs with different categories.
Dynamic evolution mechanism is necessary and it is better than
the method with a static graph. The discussion also shows the
superiority of the model.

For the collaborative filtering models based on multiple graphs,
DMGCF can be seen as the beginning of the automatic generation
of graphs and dynamic evolution mechanism. This work can be
expanded to many other challenging and excellent works such as
adding advanced methods for graph generation or more suitable
losses. Our work also provides useful references in other areas
for graph generation, dynamic graphs, and multi-graph based
collaborative filtering of the recommendation system.

CRediT authorship contribution statement

Hao Tang: Methodology, Software, Data curation, Writing
original draft, Formal analysis. Guoshuai Zhao: Conceptual-

zation, Methodology, Formal analysis, Supervision. Xuxiao Bu:
riting - review & editing. Xueming Qian: Resources, Supervi-

ion.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported in part by the NSFC, China under
rants 61902309, 61701391, and 61772407; in part by ShaanXi
rovince under Grant 2018JM6092; in part by the Fundamental
esearch Funds for the Central Universities, China (xxj022019003)
n part by China Postdoctoral Science Foundation (2020M683496);
nd in part by the National Postdoctoral Innovative Talents Sup-
ort Program, China (BX20190273).

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251

R
eferences

[1] R. Chen, Q. Hua, Y. Chang, B. Wang, L. Zhang, X. Kong, A survey
of collaborative filtering-based recommender systems: From traditional
methods to hybrid methods based on social networks, IEEE Access 6 (2018)
64301–64320.

[2] Y. Shi, M.A. Larson, A. Hanjalic, Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges, ACM
Comput. Surv. 47 (1) (2014) 3:1–3:45.

[3] Z. Sun, Q. Guo, J. Yang, H. Fang, G. Guo, J. Zhang, R. Burke, Research
commentary on recommendations with side information: A survey and
research directions, Electron. Commer. Res. Appl. 37 (2019).

[4] X. Wang, X. He, Y. Cao, M. Liu, T. Chua, KGAT: knowledge graph attention
network for recommendation, in: KDD, ACM, 2019, pp. 950–958.

[5] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, M. Guo, RippleNet:
Propagating user preferences on the knowledge graph for recommender
systems, in: CIKM, ACM, 2018, pp. 417–426.

[6] H. Wang, M. Zhao, X. Xie, W. Li, M. Guo, Knowledge graph convolu-
tional networks for recommender systems, in: WWW, ACM, 2019, pp.
3307–3313.

[7] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, M. Sun, Graph neural networks:
A review of methods and applications, CoRR (2018) abs/1812.08434.

[8] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey
on graph neural networks, CoRR (2019) abs/1901.00596.

[9] R. Yin, K. Li, G. Zhang, J. Lu, A deeper graph neural network for
recommender systems, Knowl. Based Syst. 185 (2019).

[10] X. Wang, X. He, M. Wang, F. Feng, T. Chua, Neural graph collaborative
filtering, in: SIGIR, ACM, 2019, pp. 165–174.

[11] S.R. Gandhi, J. Gheewala, A survey on recommendation system with
collaborative filtering using big data, in: 2017 International Conference
on Innovative Mechanisms for Industry Applications (ICIMIA), 2017, pp.
457–460.

[12] M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, M. Salehi, Evaluating collabo-
rative filtering recommender algorithms: A survey, IEEE Access 6 (2018)
74003–74024.

[13] Y. Koren, R.M. Bell, C. Volinsky, Matrix factorization techniques for
recommender systems, IEEE Comput. 42 (8) (2009) 30–37.

[14] D. Billsus, M.J. Pazzani, Learning collaborative information filters, in: ICML,
Morgan Kaufmann, 1998, pp. 46–54.

[15] R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in: NIPS,
Curran Associates, Inc., 2007, pp. 1257–1264.

[16] B. Huang, X. Yan, J. Lin, Collaborative filtering recommendation algorithm
based on joint nonnegative matrix factorization, Pattern Recognit. Artif.
Intell. (2016).

[17] G. Sun, Y. Cong, Y. Zhang, G. Zhao, Y. Fu, Continual multiview task learning
via deep matrix factorization, IEEE Trans. Neural Networks Learn. Syst. 32
(1) (2021) 139–150.

[18] S. Rendle, Factorization machines, in: ICDM, IEEE Computer Society, 2010,
pp. 995–1000.

[19] H. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models
for recommender systems, in: IJCAI, ijcai.org, 2017, pp. 3203–3209.

[20] S. Sedhain, A.K. Menon, S. Sanner, L. Xie, AutoRec: Autoencoders meet
collaborative filtering, in: WWW, ACM, 2015, pp. 111–112.

[21] Y. Zheng, B. Tang, W. Ding, H. Zhou, A neural autoregressive approach
to collaborative filtering, in: ICML, JMLR Workshop and Conference
Proceedings, vol. 48, JMLR.org, 2016, pp. 764–773.

[22] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T. Chua, Neural collaborative filtering,
in: WWW, ACM, 2017, pp. 173–182.

[23] Z. Sun, Q. Guo, J. Yang, H. Fang, G. Guo, J. Zhang, R. Burke, Research
commentary on recommendations with side information: A survey and
research directions, Electron. Commer. Res. Appl. 37 (2019).

[24] J. Han, L. Zheng, Y. Xu, B. Zhang, F. Zhuang, P.S. Yu, W. Zuo, Adaptive deep
modeling of users and items using side information for recommendation,
IEEE Trans. Neural Netw. Learn. Syst. 31 (3) (2020) 737–748.

[25] Y. Chen, X. Zhao, M. de Rijke, Top-N recommendation with high-
dimensional side information via locality preserving projection, in: SIGIR,
ACM, 2017, pp. 985–988.

[26] F. Zhao, Y. Guo, Learning discriminative recommendation systems with
side information, in: IJCAI, ijcai.org, 2017, pp. 3469–3475.

[27] X. Zhang, J. Jia, K. Gao, Y. Zhang, D. Zhang, J. Li, Q. Tian, Trip outfits advisor:
Location-oriented clothing recommendation, IEEE Trans. Multimed. 19 (11)
(2017) 2533–2544.

[28] X. Lei, X. Qian, G. Zhao, Rating prediction based on social sentiment from
textual reviews, IEEE Trans. Multimed. 18 (9) (2016) 1910–1921.

[29] G. Zhao, H. Fu, R. Song, T. Sakai, Z. Chen, X. Xie, X. Qian, Personalized
reason generation for explainable song recommendation, ACM Trans. Intell.
Syst. Technol. 10 (4) (2019) 41:1–41:21.

[30] G. Zhao, Z. Liu, Y. Chao, X. Qian, Caper: context-aware personalized emoji
recommendation, IEEE Transactions on Knowledge and Data Engineering
(2020) http://dx.doi.org/10.1109/TKDE.2020.2966971, 1-1.
12
[31] Y. Wu, K. Li, G. Zhao, X. QIAN, Personalized long- and short-term
preference learning for next poi recommendation, IEEE Transactions on
Knowledge and Data Engineering (2020) http://dx.doi.org/10.1109/TKDE.
2020.3002531, 1-1.

[32] G. Zhao, X. Qian, C. Kang, Service rating prediction by exploring social
mobile users’ geographical locations, IEEE Trans. Big Data 3 (1) (2017)
67–78.

[33] Z. Cheng, J. Shen, Just-for-Me: An adaptive personalization system for
location-aware social music recommendation, in: ICMR, ACM, 2014, p. 185.

[34] G. Zhao, P. Lou, X. Qian, X. Hou, Personalized location recommendation
by fusing sentimental and spatial context, Knowl. Based Syst. 196 (2020)
105849.

[35] Z. Cheng, J. Shen, On effective location-aware music recommendation, ACM
Trans. Inf. Syst. 34 (2) (2016) 13:1–13:32.

[36] G. Zhao, T. Liu, X. Qian, T. Hou, H. Wang, X. Hou, Z. Li, Location
recommendation for enterprises by multi- source urban big data analysis,
IEEE Trans. Serv. Comput. 13 (6) (2020) 1115–1127.

[37] D. Cong, Y. Zhao, B. Qin, Y. Han, M. Zhang, A. Liu, N. Chen, Hierarchical
attention based neural network for explainable recommendation, in: ICMR,
ACM, 2019, pp. 373–381.

[38] C. Chen, M. Zhang, Y. Liu, S. Ma, Neural attentional rating regression with
review-level explanations, in: WWW, ACM, 2018, pp. 1583–1592.

[39] J. Wen, J. Ma, H. Tu, M. Zhong, G. Zhang, W. Yin, J. Fang, Hierarchical text
interaction for rating prediction, Knowl. Based Syst. 206 (2020) 106344.

[40] J. Zhao, W. Wang, Z. Zhang, Q. Sun, H. Huo, L. Qu, S. Zheng, TrustTF:
A tensor factorization model using user trust and implicit feedback for
context-aware recommender systems, Knowl. Based Syst. 209 (2020)
106434.

[41] C. Hsu, M. Yeh, S. Lin, A general framework for implicit and explicit social
recommendation, IEEE Trans. Knowl. Data Eng. 30 (12) (2018) 2228–2241.

[42] G. Zhao, X. Lei, X. Qian, T. Mei, Exploring users’ internal influence from
reviews for social recommendation, IEEE Trans. Multim. 21 (3) (2019)
771–781.

[43] G. Zhao, X. Qian, X. Xie, User-service rating prediction by exploring social
users’ rating behaviors, IEEE Trans. Multim. 18 (3) (2016) 496–506.

[44] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph
attention networks for deep latent representation of multifaceted social
effects in recommender systems, in: WWW, ACM, 2019, pp. 2091–2102.

[45] N. Sachdeva, J. McAuley, How useful are reviews for recommendation?
A critical review and potential improvements, in: SIGIR, ACM, 2020, pp.
1845–1848.

[46] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, in: ICLR, OpenReview.net, 2017.

[47] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message
passing for quantum chemistry, in: ICML, Proceedings of Machine Learning
Research, vol. 70, PMLR, 2017, pp. 1263–1272.

[48] W.L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on
large graphs, in: NIPS, 2017, pp. 1024–1034.

[49] J. Zhang, X. Shi, S. Zhao, I. King, STAR-GCN: stacked and reconstructed
graph convolutional networks for recommender systems, in: IJCAI, ijcai.org,
2019, pp. 4264–4270.

[50] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, LightGCN: Simplifying
and powering graph convolution network for recommendation, in: SIGIR,
ACM, 2020, pp. 639–648.

[51] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, T. Tan, Session-based recom-
mendation with graph neural networks, in: AAAI, AAAI Press, 2019, pp.
346–353.

[52] W. Fan, Y. Ma, Q. Li, Y. He, Y.E. Zhao, J. Tang, D. Yin, Graph neural networks
for social recommendation, in: WWW 2019, ACM, 2019, pp. 417–426.

[53] M. Zhang, Y. Chen, Inductive matrix completion based on graph neural
networks, in: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.

[54] F. Monti, M.M. Bronstein, X. Bresson, Geometric matrix completion with
recurrent multi-graph neural networks, in: NIPS, 2017, pp. 3697–370.

[55] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, J. Tang, Representation learning
for attributed multiplex heterogeneous network, in: KDD, ACM, 2019, pp.
1358–1368.

[56] S. Wang, L. Hu, Y. Wang, X. He, Q.Z. Sheng, M.A. Orgun, L. Cao, N. Wang,
F. Ricci, P.S. Yu, Graph learning approaches to recommender systems: A
review, CoRR (2020) abs/2004.11718.

[57] M. Jamali, M. Ester, A matrix factorization technique with trust propaga-
tion for recommendation in social networks, in: RecSys, ACM, 2010, pp.
135–142.

[58] G. Dror, N. Koenigstein, Y. Koren, M. Weimer, The Yahoo! music dataset
and KDD-Cup ’11, in: KDD, JMLR Proceedings. vol. 18, JMLR.org, 2012, pp.
8–18.

[59] B.N. Miller, I. Albert, S.K. Lam, J.A. Konstan, J. Riedl, MovieLens unplugged:
experiences with an occasionally connected recommender system, in: Pro-
ceedings of the 8th International Conference on Intelligent User Interfaces,
ACM, 2003, pp. 263–266.

[60] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, DeepFm: A factorization-machine based
neural network for CTR prediction, in: IJCAI, ijcai.org, 2017, pp. 1725–1731.

http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb1
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb2
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb3
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb3
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb3
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb3
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb3
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb4
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb4
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb4
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb5
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb5
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb5
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb5
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb5
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb6
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb6
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb6
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb6
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb6
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb8
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb8
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb8
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb12
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb12
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb12
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb12
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb12
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb17
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb17
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb17
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb17
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb17
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb19
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb19
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb19
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb20
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb20
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb20
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb22
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb22
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb22
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb24
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb24
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb24
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb24
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb24
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb25
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb25
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb25
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb25
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb25
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb26
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb26
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb26
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb28
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb28
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb28
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb29
http://dx.doi.org/10.1109/TKDE.2020.2966971
http://dx.doi.org/10.1109/TKDE.2020.3002531
http://dx.doi.org/10.1109/TKDE.2020.3002531
http://dx.doi.org/10.1109/TKDE.2020.3002531
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb33
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb33
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb33
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb34
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb34
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb34
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb34
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb34
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb35
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb35
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb35
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb36
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb36
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb36
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb36
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb36
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb37
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb37
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb37
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb37
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb37
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb38
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb38
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb38
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb40
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb41
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb41
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb41
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb42
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb43
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb44
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb44
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb44
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb44
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb44
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb45
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb45
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb45
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb45
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb45
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb46
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb46
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb46
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb47
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb47
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb47
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb47
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb47
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb49
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb49
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb49
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb49
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb49
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb50
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb50
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb50
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb50
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb50
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb52
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb53
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb53
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb53
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb53
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb53
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb55
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb56
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb56
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb56
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb56
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb56
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb57
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb57
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb57
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb57
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb57
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb58
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb58
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb58
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb58
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb58
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb59
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb60
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb60
http://refhub.elsevier.com/S0950-7051(21)00513-X/sb60

H. Tang, G. Zhao, X. Bu et al. Knowledge-Based Systems 228 (2021) 107251
Hao Tang received the B.E. degree from The PLA
Information Engineering University, Zhengzhou, China,
in 2011, the M.E. degree from Shandong University
of Science and Technology, QingDao, China, in 2013.
After working for 5 years, he is currently working
towards the Ph.D. degree at SMILES LAB, Xi’an Jiaotong
University, Xi’an, China. His current research interests
include recommender systems and social media big
data mining.

Guoshuai Zhao received the B.E. degree from Hei-
longjiang University, Harbin, China, in 2012, the M.S.
degree and Ph.D. degree from Xi’an Jiaotong University,
Xi’an, China, in 2015 and 2019 respectively. He was an
intern with the Social Computing Group at Microsoft
Research Asia from January 2017 to July 2017, and was
a visiting scholar with Northeastern University, U.S.,
from October 2017 to October 2018 and with MIT,
U.S., from June 2019 to December 2019. Now he is
an Associate Professor with Xi’an Jiaotong University.
His research interests include social media big data

analysis, recommender systems, and natural language generation.
13
Xuxiao Bu received the B.E. degree from Xi’an Jiaotong
University, Xi’an, China, in 2017, and is expected to get
the M.S. degree from Xi’an Jiaotong University in 2020.
Her current research interests include social media big
data analysis and recommender systems.

Xueming Qian received the B.S. and M.S. degrees from
Xi’an University of Technology, Xi’an, China, in 1999
and 2004, respectively, and the Ph.D. degree from
the School of Electronics and Information Engineering,
Xi’an Jiaotong University, Xi’an, China, in 2008. He
was awarded the Microsoft Fellowship in 2006. From
1999 to 2001, he was an Assistant Engineer at Shanxi
Daily. Since 2008, he has been an Associate Professor in
the School of Electronics and Information Engineering,
Xi’an Jiaotong University. Now, he is an Associate
Professor in the School of Electronics and Information

Engineering, Xi’an Jiaotong University. He is the Director of SMILES LAB. He was
a Visiting Scholar at Microsoft Research Asia from August 2010 to March 2011.
His research interests include social media big data mining and search. He is a
member of the IEEE, ACM, and Senior Member of CCF.

	Dynamic evolution of multi-graph based collaborative filtering for recommendation systems
	Introduction
	Related work
	Collaborative filtering
	Side information based methods
	GCN based methods
	Differences with existing works

	Methodology
	Preliminary
	Embedding layer
	Dual-path GCN
	Message construction
	Message aggregation

	Dynamic evolution mechanism
	Final embeddings
	Graphs construction and reuse
	Continuous updating for dynamic evolution

	MLP Layer
	Loss function
	Model analysis

	Experiments
	Datasets
	Performance measures
	Experimental details
	Compared methods
	Performance comparison
	Ablation study
	Effect of the added multiple graphs
	Effect of the added parameters
	Variants of DMGCF, DMGCF-U and DMGCF-I
	Effect of dynamic graphs

	Discussion
	Discussion of the parameters of the dual-path GCN
	Discussion of the added graphs
	Discussion of the dynamic evolution mechanism

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

