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Abstract— The number of mitotic cells present in
histopathological slides is an important predictor of tumor
proliferation in the diagnosis of breast cancer. However, the
current approaches can hardly perform precise pixel-level
prediction for mitosis datasets with only weak labels
(i.e., only provide the centroid location of mitotic cells), and
take no account of the large domain gap across histopatho-
logical slides from different pathology laboratories. In this
work, we propose a Domain adaptive Box-supervised
Instance segmentationNetwork (DBIN) to address the above
issues. In DBIN, we propose a high-performance Box-
supervised Instance-Aware (BIA) head with the core idea of
redesigning three box-supervisedmask loss terms. Further-
more, we add a Pseudo-Mask-supervised Semantic (PMS)
head for enriching characteristics extracted from underly-
ing feature maps. Besides, we align the pixel-level fea-
ture distributions between source and target domains by a
Cross-Domain Adaptive Module (CDAM), so as to adapt the
detector learned from one lab can work well on unlabeled
data from another lab. The proposed method achieves state-
of-the-art performance across four mainstream datasets.
A series of analysis and experiments show that our pro-
posed BIA and PMS head can accomplish mitosis pixel-wise
localization under weak supervision, and we can boost the
generalization ability of our model by CDAM.

Index Terms— Mitosis detection, box-supervised
instance segmentation, domain adaptation, pesudo masks.
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I. INTRODUCTION

M ITOSIS detection is an important indicator of tumor
cells in breast cancer diagnosis [1]. However, it is

time-consuming and laborious for pathologists to manually
complete the mitotic count. Therefore, it is necessary to
develop automatic detection methods, which can not only
save a lot of time, manpower and material resources, but also
improve the reliability of pathological diagnosis [2].

Earlier mitosis detection approaches [3], [4] simulate the
textural features and tissue morphology of mitotic cells to cap-
ture mitosis-specific characteristics for automated detection.
However, due to the large intra-class variability of mitotic cells
and the difficulty in distinguishing mitotic cells from normal
cells, manual features are often poorly performing.

Recent CNN-based mitosis detection methods are mainly
divided into three categories. (1) Mitosis detection by pixel
classification [5], [6]. For each pixel of training images,
it is labeled as mitotic when close to the centroid pixel
of a mitotic cell, otherwise labeled as non-mitotic. Pixel
classification is inherently a sliding-window-based method that
produces a fixed-size patch for each pixel to be fed into
the classification network, leading to high storage costs and
inference time. (2)Mitosis detection by semantic segmentation
[7], [8]. The semantic segmentation method directly predicts
a segmentation map to determine the category of each pixel
for the input image, avoiding duplicate computation. Pixel-
level annotations are often required to train segmentation
networks, so how to extend weak labels (i.e., only centroid
coordinates of mitotic cells are provided) into precise semantic
masks is particularly crucial. (3) Mitosis detection by object
detection [9], [10]. Detection networks require bounding box
annotations for training. While fortunately, it is relatively easy
to generate ground truth boxes based on weak labels. This
method has a significant improvement in detection speed.

The existing CNN-based mitosis detection methods still
have some drawbacks. (1) It is difficult to give precise
instance mask predictions for mitosis datasets with only weak
labels. The instance mask predictions not only provide more
information for disease diagnosis but also reduce the labeling
work of pathologists significantly. To address this problem,
Li et al. [7] designs a concentric loss function to train seman-
tic segmentation networks with weak labels. But this method
needs cumbersome filtering mechanisms and is hard to give
precise pixel-wise mitosis localization. (2) Mitosis models
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Fig. 1. The first row shows pathology images from Lab1, while the
second row corresponds to pathology images from Lab2 and Lab3.
There is a significant domain gap between them. We also present some
detection results of our model on these images: the second column
shows the segmentation results without using centroid-circle loss in BIA
head, and the third column shows the results with centroid-circle loss in
BIA head.

learned from one domain may not be globally applicable. Due
to the use of different microscope scanners and staining proce-
dures, the histopathology images obtained from different insti-
tutions usually have high variability in appearance as shown in
Fig.1. This hinders the generalization ability of the model, and
the model trained in one pathology laboratory is difficult to use
for the data of other laboratories. Various strategies have been
proposed to address the domain migration issue, such as stain
standardization [11], staining augmentation [6], and domain
adversarial training for classification networks [12]. But these
methods don’t perform feature alignment at both the image
and instance level, leading to much noise from background
regions on the target domain.

We propose an approach to overcome the above challenges.
In contrast to these methods, we argue that it makes more sense
to consider mitosis detection as an application of instance
segmentation combined with unsupervised domain adaptation.
Therefore, we propose a Domain adaptive Box-supervised
Instance segmentation Network (DBIN) for mitosis detection.
DBIN can not only perform pixel-level mitosis prediction
for weakly labeled mitosis datasets, but also adapt detectors
trained on the source domain to an unlabeled target domain.

On the one hand, the major obstacle for the application
of instance segmentation models is highly time-consuming
pixel-level mask annotations. Several works [13]–[15] try to
obtain instance masks through box annotations. PAD [13]
and BBTP [14] are based on Faster-RCNN [16], and rely on
region of interests(ROIs) on feature maps for further instance
mask predictions. In addition, to obtain good performance,
these methods need to first extract the object contours using
traditional contour extraction algorithms (e.g., MCG [17] or
GrabCut [18]), and then further refine the segmentation results
by the iterative training process. These methods have com-
plex network structures and require iterative training. In con-
trast, our approach is an anchor-free model, which not only
eliminates the unfavorable deployment and time-consuming

ROI operations but also does not require contour extraction
algorithms that are difficult to compute in parallel on GPUs.
In this paper, we create two novel branch networks for DBIN:
a Box-supervised Instance-Aware (BIA) head for generating
a single instance mask prediction for each mitotic cell; a
Pseudo-Mask-supervised Semantic (PMS) head for enriching
characteristic information extracted from feature maps. Specif-
ically, instead of designing a tedious network structure for BIA
head, we redesign three loss terms based on bounding box
annotations according to some prior information of mitotic
cells, including projection loss, consistency loss of adjacent
pixel pairs, pixel-level centroid-circle loss. PMS head is used
to assist in the learning of the instance segmentation task,
which is supervised by pseudo ground truth masks generated
by BIA head.

On the other hand, domain adaptation is necessary to be
considered for mitosis detection. Since the model trained in
one histopathological lab is hard to work well on unlabeled
data from another lab, due to the significant discrepancy in
data distribution. Various approaches [19]–[22] have been
proposed by many researchers. To address the severe lack
of target domain data and the problem of over-domain adap-
tion, Wang et al. [20] introduces a matching mechanism for
source and target features, including adaptive components and
feature regularization components. In the field of medical
image processing, researches on domain adaptation are at
the very beginning stage. Such works are mainly focused
on classification tasks. Zhang et al. [19] proposes a DMAN
network that uses adversarial learning to extract inter-domain
consistency features. We argue that the domain adaptation
problem for mitosis detection is a key limitation to the
generalized application of models. One solution is to add
constraints during the training stage so that the model ignores
irrelevant changes in appearance. Facing the issue of domain
gaps, we propose a Cross-Domain Adaptive Module (CDAM)
for aligning feature distributions between domains. Specifi-
cally, we design two domain adaptive components in CDAM:
a global adaptive component for image-level feature align-
ment, and a center-aware adaptive component that focuses
on foreground region feature alignment. As shown in Fig.2,
by gradually adding the global adaptive component and the
center-aware adaptive component, we can enable our model
response less to background regions (especially normal cells)
in the target image.

The contributions of this paper can be summarized as:
(1) To train instance segmentation networks based on

bounding box annotations, we propose a box-supervised
instance-aware (BIA) head and give precise pixel-level mitosis
predictions. Since instance masks can yield better localization
than weak labels, mask predictions obtained from our model
can be employed to boost the performance of other models
without any additional annotations of ground truth masks.

(2) We create a pseudo-mask-supervised semantic (PMS)
head whose purpose is to directly optimize the characteristics
extracted from the feature space, ultimately facilitating the
learning of detailed pixel-level information.

(3) To reduce domain gaps, we propose a cross-domain
adaptive module (CDAM), including a global adaptive
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Fig. 2. Response maps on the target image. By gradually using the
global adaptation and the center-aware adaptation in CDAM, we can
reduce noise from background regions (especially normal cells).

component and a center-aware adaptive component, which
align the feature distributions of both domains on the pixel
level. In this way, we can learn a model adapted to unlabeled
target domains, and we can apply our model in different
laboratories and various pathological images.

(4) We design an end-to-end domain adaptive box-
supervised instance segmentation network(DBIN) to localize
mitosis in diverse histopathology images without cumbersome
filtering mechanisms for model outputs. To our best knowl-
edge, this is the first time that combining box-supervised
instance segmentation with domain adaptation has been
applied to mitosis detection. Also, We have achieved state-of-
the-art results on four mainstream datasets with a fast detection
speed.

II. RELATED WORK

A. Mitosis Detection

Thanks to publicly available mitosis datasets [23]–[27],
many methods have been proposed for automatic mito-
sis detection in histopathological slide images. In terms of
extracting image features, we can classify them into two
types, manual-based features, and CNN-based features. Earlier
approaches [3], [4] used a variety of handcrafted features to
describe the appearance of mitotic cells. The handcrafted fea-
tures, containing shape, statistical and textural characteristics,
are usually built on the expertise of pathologists. However, due
to the diverse appearance of mitotic cells, it is difficult to char-
acterize all mitotic cells very accurately and comprehensively
with manually designed features.

Convolutional neural networks have revolutionized the field
of computer vision [28]. Recently, many deep learning-based
methods [19], [29]–[32] have been applied to medical image
analysis tasks and have yielded results superior to tradi-
tional methods. Xue et al. [29] combines convolutional neural

networks with compressed sensing in end-to-end training
method for cell detection task. They convert a classification
problem to a regression problem, the discretization of output
space and inter-class imbalance are mitigated significantly.

CNN-based features allow automatic and more efficient
learning of mitosis features. However, many methods fail to
predict precise instance masks for weakly labeled mitosis
datasets, such as TUPAC16 [26] dataset, while pixel-level
mitosis predictions can provide more specific evidence for
the medical diagnosis. Sohail et al. [33] uses MITOS12
dataset [25] with mask labels to train a label-refiner for weakly
labelled mitosis figures, but this label-refiner may provide
poor predictions for datasets from external pathology centers.
Li et al. [7] proposes to extend single-pixel labels to region
labels with concentric circles and designs a “concentric loss
function” to train semantic networks. However, this method
assumes that mitotic cells are round, resulting in the inability
to give accurate pixel-wise localization for mitotic cells that
are variable in shape. In contrast, our method makes no
assumptions about the shape of mitotic cells, but instead
utilizes a Box-supervised Instance-Aware (BIA) head with
three box-supervised mask loss terms to guide training.

Furthermore, current methods ignore domain shift problems,
resulting in poor performance when applied directly to differ-
ent labs. Several strategies [6], [11], [12] have been proposed
to address the domain migration issue for mitosis detection.
Tellez et al. [6] utilizes staining augmentation techniques to
automatically generate diverse training samples, which effec-
tively improves the robustness of the model against different
staining protocols. But this approach can hardly perfectly
simulate the realistic staining variations and multi-scanner
difference. Lafarge et al. [12] apply the DANN network [34]
directly to mitosis detection and only align domain features at
the image level, leading to poor feature alignment in mitotic
regions. By contrast, we propose a Cross-Domain Adaptive
Module (CDAM) that performs pixel-by-pixel alignment and
spotlights high-confidence regions of mitosis.

B. Box-Supervised Instance Segmentation

Mitosis datasets usually do not have mask-level annotations,
so we desire to inherit advantages of instance segmentation
methods through box-supervised training. We adopt CondInst
[35] as the baseline network in this paper.

Recently, weakly supervised learning receives widespread
attention in the field of deep learning [36]. Weakly super-
vised object detection with image-level annotations has been
extensively investigated in the past few years [37], [38].
While weakly supervised instance segmentation with box-level
annotations has not been much explored yet. Box-supervised
instance segmentation can considerably reduce the labeling
difficulty and predict pixel-level instance masks rather than
labeled boxes. For example, SDI [39] need to extract object
contours as original masks using traditional contour extraction
algorithms MCG [17] or Grabcut [18], and then further iterate
to refine instance masks. BBTP [14] views the box-supervised
instance segmentation task as a multi-instance learning (MIL)
problem and generates positive and negative bags based on
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Fig. 3. System overview of the proposed Domain adaptive Box-supervised Instance segmentation Network (DBIN). DBIN contains three novel
sub-networks: a Box-supervised Instance-Aware (BIA) head with the core idea of redesigning three box-supervised mask loss terms, which outputs
instance masks for mitotic cells under weak supervision; a Pseudo-Mask-supervised Semantic (PMS) head that output semantic masks and enrich
characteristic information extracted from underlying feature maps; and a Cross-Domain Adaptive Module (CDAM) that align feature distributions
between domains. CDAM consists of two components: a global adaptive component for image-level feature alignment, and a center-aware adaptive
component for mitosis-related feature alignment.

regional proposals. PAD [13] recursively estimates pseudo
masks by an object detection branch and an instance seg-
mentation branch. A top-down segmentation feedback is used
to enhance its detection branch. In contrast, we propose a
box-supervised instance-aware (BIA) head that contains three
novel box-supervised mask loss terms instead of designing
complex network structures, which not only facilitate training
but also significantly improve the comprehensive performance,
especially in terms of inference time.

C. Domain Adaptation

Domain adaptation has been well explored in terms of image
classification tasks [40], [41]. However, domain adaptation has
been less studied in other computer vision tasks. To address
domain adaptation problems in the field of object detec-
tion, several approaches [20]–[22], [42] have been proposed
in recent years. For target domains with only image-level
labels, Inoue et al. [42] uses a two-stage weakly supervised
domain adaptation framework on the detector for fine-tuning.
For target domains without annotations, Chen et al. [21]
designs the image and instance level domain adaptation com-
ponents based on Faster R-CNN for unsupervised adaptation.
This method also enhances the consistency between two
adaptation components through a consistency regularization
component. In the community of medical image analysis,
domain adaptation is now mostly used for classification tasks
[12], [19], [43]. Zhang et al. [19] proposes a DMAN network
to reduce domain differences through adversarial learning and
entropy minimization. We observe that no domain adapta-
tion model based on detection networks has been applied
to the mitosis detection task. In this paper, we propose a

cross-domain adaptive module (CDAM) that contains two
domain adaptive components at the image and instance level,
which are trained in an adversarial manner.

III. PROPOSED METHOD

A. Method Overview

Fig.3 shows an overview of our proposed framework. With
three novel sub-networks, including a box-supervised instance-
aware (BIA) head, a pseudo-mask-supervised semantic (PMS)
head, and a cross-domain adaptive module(CDAM), we even-
tually form our domain adaptive box-supervised instance seg-
mentation network (DBIN).

Our goal is to learn a box-supervised instance segmentation
model adapted to the unlabeled target domain. We perform
supervised training on source images Is , but unsupervised
training on target images It . The overall procedure is illus-
trated in Fig.3. Firstly, we extract the underlying feature map
Fi through feature extractors. Secondly, we use BIA head
and PMS head to further extract instance characteristics from
Fi for pixel-level mitosis prediction. Lastly, we use CDAM
to perform per-pixel domain predictions, which can learn
domain-invariant feature representations for Fi .

B. Box-Supervised Instance-Aware (BIA) Head

Here, we propose a high-performance box-supervised
instance-aware (BIA) head that requires only bounding box
annotations to implement instance segmentation. Instead of
modifying the network structure for the original dynamic
instance-aware mask head in the baseline network CondInst
[35], our proposed BIA head simply redesigns three loss terms
according to bounding box annotations.
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Fig. 4. Illustration of the projection loss in BIA head. We compute the
projections of the ground-truth box and predection mask on the x- and
y-axes, and use dice loss to overcome foreground sparsity.

1) Projection Loss: To enable the minimum bounding rec-
tangle (MBR) of instance mask predictions match bounding
box annotations, the projection loss is designed. As illustrated
in Fig.4, for the horizontal and vertical projection vectors of
the predicted mask, we evaluate the dice loss [44] separately.

Specifically, let B ∈ R
H×W be supervised information gen-

erated on a whole training image by box annotations. Besides,
the instance mask derived from the detector is represented as
M ∈ R

H×W . We can calculate the horizontal projection vector
Bx ∈ R

H and the vertical projection vector By ∈ R
W of B

via (1). Similarly, we can obtain Mx and My for M .

Bx(x) = max
y

B(x, y) = max{B(x, y)|y = 1, 2, . . . W }
By(y) = max

x
B(x, y) = max{B(x, y)|x = 1, 2, . . . H } (1)

To alleviate sample imbalances, we use the dice loss to shine
a spotlight on foregrounds. The projection loss is defined as:

L proj = DL

(
max

y
B, max

y
M

)
+ DL

(
max

x
B, max

x
M

)

= DL (Bx , Mx ) + DL
(
By, My

)

= 2 − 2 |Bx ∩ Mx |
|Bx |2 + |Mx |2 + ε

− 2
∣∣By ∩ My

∣∣∣∣By
∣∣2 + ∣∣My

∣∣2 + ε
(2)

where DL function represents the dice loss [44], and ε takes a
default value of 1e-5 for the stability of denominator values.

2) Consistency Loss of Adjacent Pixel Pairs: For each loca-
tion in the input image I ∈ R

H×W , there are eight adjacent
pixels, namely the 8-neighbourhood. Under this definition,
we can generate 8 neighbouring images I i

N (i = 1, 2, . . . 8) for
image I , as shown in Fig.5. Observations reveal that the color
inside mitotic cells is normally similar, but differs significantly
from surrounding tissues. This prior knowledge makes color
clustering feasible, and can be utilised to supervise training.

Firstly, we compute the color similarity map Si between the
input image I and its neighbouring image I i

N via (3),

Si (x, y) = exp(−α
∣∣∣I (x, y) − I i

N (x, y)
∣∣∣) (3)

where α defaults to 2 in this paper. When the color similarity
Si (x, y) is greater than the given threshold τ (defaulting
to 0.3), we have reason to believe that the adjacent pixel
pairs (I (x, y),I i

N (x, y)) share an identical label; otherwise
we do not make any assumptions. Based on this hypothesis,
we produce the consistent supervision matrix Pi for pixel pairs
(I ,I i

N ), with Pi (x, y) taking 1 only when Si (x, y) is greater

Fig. 5. Illustration of the consistency loss in BIA head. We calculate
color similarities between every pixel and its 8-neighbourhood pixels.
The white locations in 8 neighbouring images are regions where color
similarities are over the threshold, and they are taken for model training.

than τ , and 0 otherwise. As shown in Fig.5, white areas in I i
N

are where Pi takes 1.
Secondly, we generate 8 neighbouring instance masks Mi

N
(i = 1, 2, . . . 8) for the predicted instance mask M . Let the
value of adjacent pixel pairs (M(x, y),Mi

N (x, y)) be P̂i (x, y),
whose value represents the prediction probability that adjacent
pixel pairs have the same label and is calculated via (4).

P̂i (x, y) = M(x, y) · Mi
N (x, y)

+(1 − M(x, y)) ·
(

1 − Mi
N (x, y)

)
(4)

We only calculate the consistency loss for elements set to
1 in Pi , since pixel pairs at these positions are most likely to
share the same label. Additionally, to avoid gradient updates
being dominated by numerous pixel pairs outside ground-truth
boxes, the consistency loss is calculated only for pixel pairs
located inside boxes. Using the cross-entropy loss function to
guide training, the consistency loss term is defined below:

Lcons = − 1

N

∑
i,x,y

B(x, y)Pi (x, y) log(P̂i (x, y)) (5)

where N means the number of adjacent pixel pairs with
consistent colours in the ground-truth box, and its value is
expressed as N = ∑

i,x,y
B(x, y)Pi (x, y).

3) Pixel-Level Centroid-Circle Loss: By far, we have
designed projection loss and consistency loss, which imple-
ment training box-supervised instance segmentation net-
works. However, because Eq.(5) computes losses only
for colour-consistent pixel pairs inside bounding boxes,
we observe that this may lead to several trivial solutions
as shown in Fig.6(a). The first case is that all pixels of
the predicted mask M are 0, but this does not satisfy the
projection loss term of Eq.(2). The second case is where
M degenerates to a bounding box, i.e., all pixels inside the
box are 1, but the consistency loss tends to predict pixels
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Fig. 6. Illustration of the centroid-circle loss in BIA head. (a) shows some
trivial solutions about instance masks. (b) and (c) show the qualitative
demonstration of the improvement by centroid-circle loss.

Fig. 7. Definition of the middle ground GM. GM is an area where mitotic
and non-mitotic pixels coexist within the ground-truth box B.

on the edge of the box as negative samples. However, there
is still a trivial solution that can’t be avoided, where only
pixels around cells’ edges are 1. Not only does this satisfy
the projection loss term, but the consistency loss term also
falls into a local minimum solution. To prevent trapping into
such a case shown in Fig.6(b), we propose a pixel-level
centroid-circle loss, forcing center regions of mitosis to be
positive.

As shown in Fig.7, We extend the centroid pixel label to
a centroid-circle C with an appropriate radius r (defaulting
to 5 pixels). C is a high-confidence mitotic region, and the
remaining area of the ground-truth box B is defined as middle
ground GM . Mathematically, GM can be obtained via GM =
B − C . GM is an area where mitotic and non-mitotic pixels
coexist within B , which is not involved in computing loss.
We employ the dice loss function to supervise the predicted
mask in the centroid-circle region as follows:

Lcend = 2
∑

χ(x,y)/∈G M M(x, y) · B(x, y)∑
χ(x,y)/∈G M (M2(x, y) + B2(x, y))

(6)

Fig. 8. The structure of pseudo-mask-supervised semantic (PMS) head.
We generate a pseudo ground truth semantic mask using output instance
masks from BIA head.

where χ denotes the indicative function. As shown in Fig.6(c),
the above three loss terms can prevent falling into trivial
solutions and yield well-formed instance masks.

C. Pseudo-Mask-Supervised Semantic (PMS) Head

As indicated by YOLACT [45] and PAD [13], the object
detection task and the instance segmentation task can poten-
tially benefit from the joint semantic segmentation task.
Therefore, we also designed a pseudo-mask-supervised seman-
tic (PMS) head that shares the same feature maps with the
BIA head. Instance-level detailed information obtained from
PMS head can be back-propagated to enrich the detection
characteristics.

As shown in Fig.8, we will fuse and binarize all instance
mask predictions Mi from BIA head to generate a pseudo
ground truth semantic mask M pse

s via (7).

M pse
s (x, y)=sgn(max{σ(Mi (x, y))|i =1, 2, . . . n}−0.5) (7)

In this way, pseudo-masks and network parameters are
alternately optimised for mutual gain. The focal loss (F L) is
empolied to calculate the loss between Ms and M as below:

Lsem = F L(Ms , M pse
s ) (8)

Additionally, to ensure training stability, we do not train PMS
head in early epochs, as poor M pse

s leads to poor learning for
segmentation, which in turn affects our framework adversely.

D. Cross-Domain Adaptive Module (CDAM)

As illustrated in Fig.9, the cross-domain adaptive mod-
ule (CDAM) is the last core component. CDAM is composed
of a global adaptive component and a center-aware adaptive
component. Notably, we align the pixel-wise feature distri-
butions of two domains, which allows our model to take
full account of every pixel and focus on the alignment of
foreground pixels.
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Fig. 9. The architecture of our cross-domain adaptive module (CDAM). It consists of two domain classifiers, including a global domain classifier
GGA and a center-aware domain classifier GCA. It is trained in an adversarial manner through a gradient inversion layer (GRL). The GRL ensures
that the distribution of extracted features over the two domains becomes similar (as indistinguishable as possible for domain classifiers).

1) Global Adaptive Component: Image-level features are rep-
resented by feature maps extracted from the FPN at different
levels. Specifically, we utilize five levels of feature maps,
denoted as {F3, F4, F5, F6, F7}. To align the domain dis-
tribution at the image level, we use a global domain classifier
GG A, as shown in the lower part of Fig.9.

We define Di to represent the domain label of the training
image Ii , with Ds = 1 for the source image Is and Dt =
0 for the target image It . For the point (u, v) of feature maps,
we denote P(u,v)

i as the output of image Ii obtained by GG A.
The cross-entropy loss function is used for GG A, written as:

LG A =−
∑
u,v

[
Ds log P(u,v)

s +(1−Dt ) log
(

1− P(u,v)
t

)]
(9)

In order to align the domain distribution, we use the gradient
reversal layer (GRL) to achieve the ambition of inter-domain
indistinguishability [34]. In this way, we can optimise the
parameters of the domain classifier to minimise the domain
classification loss via (9), together with optimising the para-
meters of our baseline network to maximise its loss. By adding
the global adaptive component, we can reduce the performance
degradation caused by pathological image differences.

2) Center-Aware Adaptive Component: Unlike approaches
[20], [21], [42] based on region proposals to perform instance-
level alignment, we adopt a center-aware adaptive component
that allows us to focus on high-confidence regions of objects,
which can reduce distractions from background regions.

In order to align the domain distribution at instance level,
we train a domain classifier GC A, as shown in the top half
of Fig.9. Concretely, for the feature map Fi , we can obtain
predictions of the classification map Mcls and the centerness
map Mctr from the detection head, and apply the sigmoid func-
tion to activate all elements. Then, we apply the max pooling
operation to Mcls to obtain the class-agnostic objectness map
Mobj . Mobj is then combined with the centerness map Mctr

via (10) to obtain the center-aware map MC A , giving particular
interest to the central region of objects. To summarize, for a
position (u, v) at MC A , its value is derived as follows:

M(u,v)
obj = max

k

(
σ

(
M(k,u,v)

cls

))

M(u,v)
C A = σ

(
M(u,v)

obj · σ
(

M(u,v)
ctr

))
(10)

We desire the center-aware domain classifier GC A to spot-
light features in object regions from the feature map F .
Therefore, we product the center-aware map MC A with F ,
which serves as the input of domain classifier GC A.

Similar to the domain classifier GG A, we insert the GRL
layer into the front of domain classifier GC A so as to adopt the
adversarial training technique. The output of image Ii obtained
by GC A at location (u, v) is denoted as Q(u,v)

i . Hence, the loss
of our center-aware adaptive component can be written as:

LC A =−
∑
u,v

[
Ds log Q(u,v)

s +(1−Dt) log
(

1−Q(u,v)
t

)]
(11)

Aligning instance-level features can help reduce
inter-domain distribution disparity among local instances.
By adding a center-aware domain adaptive component,
we provide the ability to focus on foreground regions,
especially pixels with high objectness confidence and close
to objects’ centers.

E. Overview of Loss

The total loss function of our DBIN is a weighted com-
bination of components via (12), where λi is the weight
for balancing different loss terms. If not otherwise specified,
we set λ1 and λ3 to 1 and λ2 as 0.1 in this work.

L = Lossdet + λ1(L proj + Lcons + Lcend )

+λ2 Lsem + λ3(LG A + LC A) (12)
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TABLE I
DETAILS OF TUPAC16 DATASET

Notably, in the training phase, we feed the source domain
data together with the target domain data into the network.
During the testing phase, CDAM will be discarded and only
cross-domain parameters will be used for mitosis detection.

Finally, we propose a solution for training a cross-domain
instance segmentation model in a box-supervised way, which
can significantly reduce the labeling work of pathologists.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our pro-
posed domain adaptive box-supervised instance segmentation
network (DBIN) on four mainstream datasets. We verify the
effectiveness of our proposed BIA head, PMS head, and
CDAM individually on TUPAC16 dataset [26].

We also perform extension analysis on various datasets.
Firstly, we quantitatively evaluate the segmentation perfor-
mance in MITOS12 dataset [25]. Besides, to further explore
the Domain adaption capacity, we perform multi-dataset and
multi-scanner cross-validation experiments. Moreover, we also
compare the performance with more state-of-the-art methods
to demonstrate the superiority of our method.

A. Datasets

1) TUPAC16 Dataset: A full summary of TUPAC16 dataset
[26] is provided in Table I. To facilitate training of the
detection network, we take a few hours to manually expand
weak labels into bounding box annotations that match the
actual size and shape of mitotic cells. Notably, in a similar
way to TUPAC16 dataset, we also extend the weak labels
on MIDOG dataset [27] and MITOS14 dataset [24] into box
annotations. The testing set contains images from 34 breast
cancer cases. The mitosis annotations of this portion are not
publicly available, and participants are evaluated by the contest
organizers. However, this competition is currently closed,
so we only validate on the training set.

We found that the images between three pathology lab-
oratories have obvious differences in appearance and tissue
texture. Especially these cases collected from Lab1 truly differ
from Lab2 and Lab3. Therefore, we used Lab1 as the source
domain dataset and Lab2 and Lab3 as the target domain
dataset.

TABLE II
DETAILS OF MITOS12 DATASET

TABLE III
DETAILS OF MITOS14 DATASET

Following Li et al. [7] to perform dataset division, we take
cases 30, 37, 44, 51, 58, 65, and 72 as the validation set,
all of which are from the target domain, and the remaining
as the training set. For the source domain, we always perform
supervised training. While for the target domain, We will apply
unsupervised training and test our model on the target domain.

2) MITOS12 Dataset: MITOS12 dataset [25] is extracted
from 5 breast cancer biopsy slides. For each slide, an Ape-
rio XT scanner and a Hamamatsu NanoZoomer scanner are
used to produce one image respectively. A full summary of
MITOS12 dataset is provided in Table II. There are 226 and
101 mitotic cells with mask annotations in the training and
testing sets, respectively. Unless specifically stated, we use
images produced by the Aperio XT scanner to evaluate our
method.

3) MITOS14 Dataset: A full summary of MITOS14 dataset
[24] is provided in Table III. There are 749 mitotic cells with
only centroid annotations in the training sets. As mitotic anno-
tations of the test set are not publicly available, we perform
experiments by splitting the training set of MITOS14 dataset
into training and validation data. Following the same splitting
protocol in [9], [10], [46], we randomly divide the training set
into training data and validation data by 4:1.

4) MIDOG Dataset: The MItosis DOmain Generaliza-
tion (MIDOG) challenge [27] proposes a largest annotated
multi-scanner and multi-center dataset on human breast cancer.
The Training set consists of 200 images from four different
scanners, with only 150 figure mitotic annotations being pub-
licly available. A full summary of MIDOG dataset is provided
in Table IV. Following [47], for each scanner, we divide it into
training set and validation set in a ratio of 4:1.

5) Performance Measurements: According to the evaluation
criteria, when the predicted position is smaller than a certain
distance with the centroid of mitosis, this detection is correct.
This threshold of distance is 5μm in MITOS12 dataset, but
7.5μm in the other datasets. We used F1-score to evaluate the
effectiveness of detection results.
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TABLE IV
DETAILS OF MIDOG DATASET

Besides, to evaluate the instance segmentation performance,
we adopt the region-based measure Pi xel F1 as follows:
Pi xel precision = |P M ∩ GM| / |P M|

Pi xel recall = |P M ∩ GM| / |GM|
Pi xel F1 = 2 × (Pi xel precision × Pi xel recall)

(Pi xel precision + Pi xel recall)
(13)

where P M is one instance segmentation mask prediction and
GM is the ground truth mask for a single mitotic cell. Thus,
to calculate the Pi xel F1 score, we compute the averaged
pixel precision for all multiple instance segmentation masks
in an image. Additionally, we will also evaluate segmentation
performance using the COCO-style mask AP, which is com-
monly used in the instance segmentation task.

B. Hyper-Parameters

Our model with ResNet-101 as the backbone is initialized
using weights pre-trained on ImageNet. For newly added lay-
ers, the parameters are initialized according to [35]. We firstly
finetune the network with a learning rate of 1e-3 for 40k
iterations and then continue for another 15k with a learning
rate of 1e-4, and finally 15k with a learning rate of 1e-5. Each
batch consists of 12 images, half from the source domain and
the other half from the target domain. A weight decay of 1e-4
and a momentum of 0.9 are set up in our experiments.

It is worth noting that the consistency loss of adjacent pixel
pairs in BIA head and semantic segmentation loss in PMS
head are not involved in parameter updates at the beginning
of training, and the loss weights are gradually increased from
0 starting at 10k and 30k iterations respectively, which can
ensure the reliability of training and speed up the convergence.

C. Data Augmentation of Training Data

We crop patches of 512 × 512 pixels with a step size of
128 pixels and re-scale them to 1024 × 1024 pixels. Further-
more, we use more data augmentation techniques to expand
the training data (including random flip, elastic deformation,
Gaussian blur, median blur, Gaussian noise, random lightning
and contrast change, Random HSV, etc.). For source data,
only patches containing mitotic cells will be used to train the
detector. When it comes to target data, since it is trained in
the unsupervised way, so the cropped patches are not filtered.

In the next few sections, we will gradually add our designed
BIA head, PMS head and CDAM to the baseline and perform
an experimental comparative analysis on TUPAC16 dataset.

TABLE V
PERFORMANCE OF DIFFERENT MASK LOSS TERMS IN BIA HEAD

D. Influence of BIA Head

Firstly, we use a redesigned box-supervised instance-aware
(BIA) head to replace original dynamical instance-aware mask
heads in the baseline network. The training set (both source
and target domains) generated in section IV-A.1 is fed into our
designed box-supervised instance segmentation network, and
the performance of our model is verified on the target domain.

We do not add PMS head and CDAM right now, and only
analyze the impact of BIA head with three instance mask
losses presented in section III-B with respect to our model
performance. A comparison of performance between various
models on TUPAC16 dataset is given in Table V.

Since our proposed instance segmentation system uses a
similar detection module to FCOS [48], we focus on perfor-
mance comparison with FCOS. To begin with, when using
only the projection loss, the F1-score of our model is 0.723,
close to FCOS. Because the same projection vectors can
correspond to numerous possible masks, the predicted mask
is approximating to a box mask, leading to poor instance
segmentation results. Secondly, when continuing to add the
consistency loss of adjacent pixel pairs, a performance gain of
+1.4% is achieved and the F1-score reaches 0.737. By now,
the edge and location features of objects can be nicely pre-
dicted by BIA head, as shown in Fig.6(b). However, it is
observed that only pixels at the mitotic cell boundary are
detected as positive samples, i.e., the predicted masks fall
into a trival solution. Finally, we proceed to add the pixel-
level centroid-circle loss term, forcing predictions around the
object’ centroid to 1, where a performance gain of +2.1% is
implemented and the F1-score reaches 0.744. With these three
loss terms, we can train an instance segmentation network for
mitotic cells based on box-level supervision only.

Table V primarily shows the advantages of our proposed
model over other methods in terms of F1-score. Nonetheless,
our ambitions go beyond this, as we desire to make pixel-level
predictions for mitotic cells. Fig.10 shows qualitative compar-
ison results of different models in some sample regions of
TUPAC16 dataset. Fig.10(a) indicates the bounding box anno-
tations of all mitotic cells in the pathological images. Fig.10(b)
shows the detection results of FCOS, and only box-level
predictions are obtained. Fig.10(c) shows the instance segmen-
tation results without using the centroid-circle loss term, and
it can be seen that only pixels around cells’ boundaries are
predicted to be foreground regions. This indicates that relying
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Fig. 10. Some detections comparisons between different methods. (a) shows bounding-box annotations of mitotic cells. (b) shows box-level detection
results of FCOS [48]. (c) shows pixel-level instance predictions of our model without the centroid-circle loss term in BIA head, which fall into a trival
solution. (d) shows precise mask predictions of our model with the centroid-circle loss term in BIA head.

on only two losses, projection loss and consistency loss,
to supervise our network training is prone to yield solutions
that do not match expectations. Finally, Fig.10(d) shows the
segmentation images using three losses jointly involved in the
training. In this case, the centroid region of the object tends
to be 1, and it relies on the consistency loss for the foreground
region growth, which ultimately yields accurate pixel-level
predictions.

E. Influence of PMS Head

Building on the model employed in the previous section,
we go on to add a pseudo-mask-supervised semantic (PMS)
head. BIA head can predict full-image instance masks, and we
can stack these masks and binarize them to generate pseudo
ground truth semantic masks. The flow of pseudo-masks’
production and participation of training is shown in Fig.8.

The effects of PMS head on detection performance are given
in Table VI. When using classification scores as NMS scores
following FCOS [48], the F1-score is 0.749, which is +0.5%
higher than when there is no PMS head. Moreover, according
to [49], the use of centerness and classification estimates are
inconsistent during the training and inference phases, leading
to certain performance degradation when directly multiply-
ing the two as final classification scores during inference.
An intuitive feeling is that the response of mitotic cells in
the semantic mask should be large and bright, while the
response of normal cells should be small and dark. Therefore,
we consider using area-mean scores of a semantic mask as
NMS score, which improves the F1-score to 0.755. And,
combining classification scores and area-mean scores as a

TABLE VI
ABLATION EXPERIMENTS OF DIFFERENT TRICKS IN PMS HEAD

ranking criterion, the performance continues to rise to 0.758.
Finally, we performed test time augmentation (TTA) on the
inference images, specifically, for each image, we rotate them
with a 90-degree step and flip it. We calculate the average
output of these variations, resulting in an F1-score of 0.782.

F. Influence of CDAM

Based on the previous two sections, we continue to add
a cross-domain adaptive module (CDAM) for improving the
cross-domain detection robustness of our model. In previous
experiments, we use all annotations from the training set
(both source and target domains). While, in this section, all
experiments will apply unsupervised training to the target
domain. We will also perform further analysis to show the
impact of each domain adaptive component in CDAM.
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Fig. 11. Comparisons of response maps on target images. when the domain adaptation is disabled, our model will respond more to background
regions(especially normal cells) in the target image. With the gradual addition of the global adaptive component and the center-aware adaptive
component, our model can focus more on mitosis and reduce background noise.

TABLE VII
PERFORMANCE OF DIFFERENT COMPONENTS IN CDAM

The effects of different domain adaptive components in
CDAM for the detection performance on the target domain are
provided in Table VII. Results show that each component in
CDAM provides a performance gain to the detector compared
to the F1-score of 0.702 for the network “Ours w/o CDAM”.
In detail, we achieved a performance improvement of +1.1%
using only image-level global feature alignment and +2.2%
by adding only center-aware instance-level feature alignment.
Also, applying both components at the image and instance
level simultaneously yields a 3.7% improvement.

Although the global and center-aware domain classifiers in
CDAM focus on different tasks, they both guide the model
to learn domain-invariant feature maps from different per-
spectives. For the global domain classifier, it focuses equally
on each activation element in feature maps and determines
whether it is from the source or target domain, which helps
to initially reduce the image style gap. However, its training
process may be dominated by numerous background pix-
els, resulting in poor feature alignment in the target region.
To address this issue, we propose a center-aware domain
classifier that achieves alignment of instance features by

weighting the feature map to focus more on pixels that may
be foreground.

In addition, we also perform a qualitative analysis.
We present the response maps of several methods on tar-
get images used to localize mitotic cells. In Fig.11, when
both domain adaptive components are disabled, the network
“Ours w/o CDAM” will respond to normal cells in the target
image. when the global adaptive component is enabled, the
response map responds weaker to background regions, which
can slightly reduce domain gaps due to image style differences.
Further, when both our global and center-aware adaptive com-
ponents are enabled, it can be observed that the response to the
background is almost non-existent, which further reduces the
inter-domain distribution differences between local instances.
Therefore, adding domain adaptive components allows our
model to focus more on objects and reduce the response to
background noise.

G. Comparison With Other Methods on TUPAC16

1) Performance Comparison: Finally, we achieved an
F1-score of 0.782 on TUPAC16 dataset, which outperformes
the detection performance of all teams. And, we do not use
any other dataset for training. As shown in Table VIII, the
detection performance of various methods is provided. Specif-
ically, when we use only source data for supervised training
and verify the performance on target images, our method
“Ours w/ CDAM” still outperforms other methods with an
F1-score of 0.739. This indicates that our domain adaptive
box-supervised instance segmentation network (DBIN) can be
directly applied to unlabeled pathology images from different
laboratories while maintaining a good detection performance.

2) Time Analysis: The detection speed is a critical fac-
tor for clinical application. For the 2048 × 2048 pixels
image in TUPAC 2016 dataset, our model’s detection time
is 1.29 seconds, and the GPU we used in all experiments
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TABLE VIII
PERFORMANCE COMPARISON ON TUPAC16 DATASET

TABLE IX
SEGMENTATION PERFORMANCE COMPARISON ON MITOS12 DATASET

for calculating speed is one NVIDIA GeForce GTX 2080Ti.
The SegMitos method [7], which currently performs best
in mitosis detection, takes 3 seconds to detect one image.
Compared to this, our method provides faster detection and
better performance.

H. Extensions: Evaluation of Segmentation Performance

To evaluate the segmentation performance, we conduct a
comparison analysis on MITOS12 dataset that carries mask
annotations.

1) Comparison With SOTA Instance Segmentation Methonds:
Table IX presents the segmentation performance comparison
of our method with SOTA box-supervised instance segmenta-
tion method BoxInst [15] and instance segmentation method
CondInst [35]. “Ours (BIA + PMS)” outperforms the current
SOTA box-supervised method BoxInst, but CondInst achieves
the best performance because it uses original mask annotations
for training (as pixel-level masks contain more precise local-
ization than box-level annotations). However, our model shows
better cross-domain robustness than CondInst and BoxInst in
that it restrains the performance degradation caused by domain
shifts.

2) Domain Adaption Capacity Comparison With SOTA
Instance Segmentation Methonds: The domain adaptation

TABLE X
DOMAIN ADAPTION CAPACITY COMPARISON ON MITOS12 DATASET

TABLE XI
RESULTS ON THE TEST SET OF MITOS12 DATASET

results of different models are reported in Table X. For each
method, the first row provides the performance of the source
domain (i.e., validation images created by scanner Aperio XT),
while the second row presents the performance of the target
domain (i.e., validation images created by scanner Hama-
matsu). CondInst yields the best segmentation performance,
with a Pi xel F1 score of 0.793 and mask AP of 55.8% in
the source domain. But there is a strong performance degra-
dation on the target domain, resulting in a Pi xel F1 score
of 0.701 and mask AP of 45.670% for CondInst. While the
inclusion of CDAM allows our model “Ours w/ CDAM” to
obtain the best detection and segmentation performance on
the target domain, with an of 0.816, Pi xel F1 score of 0.737,
and mask AP of 48.500%. It indicates that by adding domain
adaptive components, we can generate a robust detector for
the unlabeled target domain.

3) Comparison With SOTA Mitosis Detection Methods on
MITOS12 Dataset: Finally, Table XI presents the results of
our method and current mitosis detection methods. Using only
box-level labels, our method achieves a top-2 performance, and
the F1-score reaches 0.825.

I. Extensions: Explore the Domain Adaption Capacity

1) Multi-Dataset Cross-Validation: To further prove that our
proposed method can significantly alleviate the domain migra-
tion problem due to multiple centers and multiple scan-
ners. We further explore the generalization performance of
our model among TUPAC16 dataset, MITOS12 dataset, and
MITOS14 dataset. The multi-dataset cross-validation results
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TABLE XII
MULTI-DATASET CROSS-VALIDATION RESULTS AMONG TUPAC16,

MITOS12 AND MITOS14 DATASETS

TABLE XIII
MULTI-SCANNER CROSS-VALIDATION RESULTS ON MODOG DATASET

are reported in Table XII. The first column shows source
domain data used to train our model, and the second col-
umn presents target domain data used to apply unsupervised
training. For each dataset, we provide the performance of the
internal target domain in the first row, and the second row and
third row present the detection performance of external target
domains.

Table XII compares the results with and without CDAM
among various datasets. For the model trained on TUPAC16
dataset, while testing the performance on the internal tar-
get domain TUPAC16 Lab2,3, we achieve an F1-score of
0.739 with CDAM, resulting in a performance improvement of
+3.7% compared with 0.702. As expected, the F1-scores on
external target domains MITOS12 Hamamatsu and MITOS14
Hamamatsu with CDAM are improved to 0.651 and 0.592,
from 0.633 and 0.543, respectively, which are due to CDAM’s
strong domain adaption capacity. With the adoption of CDAM,
for these three datasets, the validation results on the internal
target domain and the other two external target domains are
almost all improved. Thus, CDAM can bring better generaliza-
tion performance for both internal and external target domains.

2) Multi-Scanner Cross-Validation: There are certain differ-
ences in manual mitosis diagnostic criteria among various
datasets, so we also perform a comparison analysis on the
multi-scanner MIDOG dataset. Multi-scanner cross-validation
results on MIDOG dataset are reported in Table XIII. For each

TABLE XIV
K-FOLD CROSS VALIDATION PERFORMANCE ON TUPAC16 DATASET

TABLE XV
METHODS PERFORMANCE ON MITOS14 DATASET

model, we provide the performance of the source domain,
internal target domain, and external target domain in each
row sequentially. Specifically, for the model using Scanner1
as source data, the F1-score of 0.747 on the validation data
Scanner1 (from source domain) with CDAM remains basi-
cally unchanged compared with 0.753, which is because the
source domain and validation domain have no discrepancy of
data distributions. While testing the performance on Scanner2
(internal target domain), we achieve an F1-score of 0.699 with
CDAM, resulting in a performance improvement of +5.6%
compared with 0.643. Besides, as expected, our model with
CDAM also yields an improvement of +3.1% on Scanner3
(external target domain), and the F1-score is improved to
0.751 from 0.720. Similarly, we also carry out two other sets
of experiments. With the inclusion of CDAM, for these three
scanners, the validation performances on both the internal and
external target domains are significantly improved.

J. Extensions: K-Fold Cross Validation on TUPAC16

To demonstrate the reliability and repeatability of experi-
mental results when using other cases as validation. We divide
cases 24-73 into training and validation set with a 6:1 ratio, and
perform 7 splits totally, namely Ki (i = 1, 2, . . . 7). For each
split Ki , we select cases in [23 + i, 30 + i, 37 + i, 44 + i, 51 +
i, 58 + i, 65 + i ] as the validation data. Specifically, the split
K7 is our old splitting protocol. Table XIV presents detec-
tion performances of “ours (BIA+PMS)” in various splits.
Through k-fold cross validation, we obtain a mean F1-score
of 0.758 with a standard deviation of 0.059. It indicates that
our model is robust and reliable.

K. Extensions: Comparison Analysis With More Methods

1) Performance Comparison on MITOS14 Dataset: We
compare the performance with DeepMitosis [9] and
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TABLE XVI
PERFORMANCE COMPARISON ON MIDOG DATASET

TABLE XVII
PERFORMANCE COMPARISON WITH MP-MITDET [33]

Mahmood et al. [10] on MITOS14 dataset. We use the
same splitting protocol mentioned in [9], [10], [46] for
obtaining a fair comparison. Results of our proposed method
and state-of-the-art methods are provided in Table XV.
Our method performs better than other models except for
Mahmood et al. [10], achieving a top-2 performance. How-
ever, Mahmood et al. [10] proposes a multi-stage mitosis
detection method “FRCNN + PP + SF”, making the com-
putational cost extremely expensive. By contrast, our method
not only has a faster detection speed with fewer computational
resources, but also boosts the domain generalization ability of
mitosis detection.

2) Performance Comparison on MIDOG Dataset: Table XVI
shows the performance of various models on the validation
data of MIDOG dataset. The F1-score of our model is 0.797,
which achieves a +4.6% performance improvement over the
reference algorithm [47] of the MIDOG Challenge.

3) Performance Comparison With MP-MitDet [33]: To get
comparable results with MP-MitDet [33], we report the per-
formance of F1-score on challenging TUPAC16 dataset on
Table XVII. We use the same cross-validation scheme as
mentioned in [33], [52], where patient samples are kept inde-
pendent during training, validation and testing to simulate real-
world situations. Our model performs best in discrimination
of mitoses with an F1-score of 0.773 on the test set.

4) Computational Complexity: Apart from time analysis with
state-of-the-art mitosis detection models, we also measure the
computational complexity of our model and other state-of-
the-art box-supervised instance segmentation models. We use
three common metrics: (1) number of model parameters;
(2) FLOPS (floating-point operations per second); (3) the
average inference time for one input image (1024 ×1024 pix-
els). Table XVIII summarizes the comparison results with
the three state-of-the-art methods: including PAD [13], BBTP
[14], and BoxInst [15]. PAD comprises of an object detection
branch and an instance segmentation branch, with a total
of 134M parameters and 304.1G FLOPS, and such struc-
ture also slows down its speed of inference by 490ms per
image. BoxInst and our model DBIN are both built on FCOS
[48], making them have the similar number of parameters
(30.26M vs 32.52M) and speed (82ms vs 80ms). However, our
method has several additional parallelized auxiliary branches

TABLE XVIII
COMPARISON ON COMPUTATIONAL COMPLEXITY WITH

BOX-SUPERVISED INSTANCE SEGMENTATION METHODS

TABLE XIX
PERFORMANCE COMPARISON WITH SOTA OBJECT DETECTION

METHODS ON TUPAC16 DATASET

(e.g., the PMS head and BIA head), making our method a little
more complex. Overall, compared with current box-supervised
instance segmentation methods, our model has a relatively low
computational complexity.

5) Performance Comparison With SOTA Object Detection
Methods: In our experiments, FCOS [48] achvies an F1-score
of 0.729 on TUPAC16 dataset, better than other methods
(except our proposed method). Mitotic detection is commonly
regarded as an object detection task due to the powerful
feature extraction capability of current deep CNN detection
models. Besides, the following tricks in our experiments
can bring additional benefits for the excellent performance
of FCOS for mitosis detection: (1) More data augmentation
techniques; (2) Multi-scale training; (3) We manually extend
the weak labels into box annotations. Moreover, we conduct
a comparative analysis with three state-of-the-art methods
ATSS [53], GFL [49], and FCOS [48]. Table XIX summarizes
the comparison results on TUPAC16 dataset. Thus, I think
using object detection methods with our proposed dedicated
method improvements based on the characteristics of pathol-
ogy images is key for mitosis cell location task.

L. Extensions: Ablation Study

We carry out ablation experiments to better understand some
hyper-parameters in our model.

1) Hyper-Parameters of the Consistency Loss Term: To
investigate that how the color similarity threshold τ in
the consistency loss term affects the segmentation per-
formance, we conduct experiments on MITOS12 dataset.
We also compare with the SOTA instance segmentation
method CondInst [35]. As shown in Table XX, when we set
τ to 0, all adjacent pixel pairs will be involved in training.
In this case, it is equivalent to assuming that all neighboring
pairs have the same label, which leads to a large number
of elements in the consistent supervision matrix Pi being
wrongly labeled as 1. Unsurprisingly, this experiment yields
a poor instance segmentation performance (a Pi xel F1 score
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Fig. 12. Due to tissue variability and staining variability, it is difficult for pathologists to collect mitotic cells of all lesion types. Hence, error predictions
of our model are inevitable, and we hope to provide some interpretability when our model fails. Error predictions of our model. (a) shows false
negative detection for samples containing mitotic cells with poor staining. (b) shows false negative detection for incomplete mitotic cells in histology
images. (c) shows false positive detection that incorrectly identifies non-mitotic cells as mitotic cells.

of 0.516 and 11.310% mask AP). If we increase τ to 0.1, the
proportion of adjacent pixel pairs that are wrongly labeled as
1 in Pi Significantly drops. As a result, the model can yield
high-quality instance masks, achieving a Pi xel F1 score of
0.761 and 52.189% mask AP. If we continue to increase τ
to 0.2 or 0.3, we can be more confident that these positive
elements in Pi do share the same labels. Our method is not
sensitive to the hyper-parameter τ , and a better performance
can be obtained when τ is set to 0.2. Although previous
experiments have set τ to 0.3 by default, the performance is
similar.

2) Input Image Size: Before inputting an image with 512 ×
512 pixels into our model, we up-sample it into 1024 ×
1024 pixels. To seek the appropriate scale, we train our
model with different scales on TUPAC16 dataset, and results
are presented in Table XXI. Higher pixel resolution can
help improve the detection performance indeed. Especially
for small objects, increasing pixel resolution can ensure that
feature maps extracted by the network contain enough infor-
mation to distinguish background from objects. It can be
observed that the performance improves drastically with the

scales increasing to 2. Further increasing the scale of input
images no longer provides more performance gain.

V. INSTRUCTION FOR CLINICIANS

We will discuss the principle and interpretability of our
method in this section.

A. Interpretability When the Model Fails

Most deep learning-based mitosis detection methods require
numerous mitotic sample data for supervised learning. How-
ever, mitosis datasets annotated by pathologists are severely
insufficient. Moreover, due to tissue variability and staining
variability, it is difficult for pathologists to collect mitotic
cells of all lesion types. Such a dilemma makes it difficult
to rule out the presence of abnormal mitotic cells. Hence,
error predictions of our model are inevitable, and we hope to
provide some interpretability when our model fails. There are
two failure types, including false negative and false positive.
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TABLE XX
ABLATION STUDY OF THE HYPER-PARAMETER τ IN THE CONSISTENCY

LOSS ON MITOS12 DATASET

TABLE XXI
ABLATION STUDY OF THE INPUT IMAGE SIZE ON TUPAC16 DATASET

1) False Negative Detection: Although H&E staining is a
relatively simple staining method,various artifacts can interfere
with a good stain. As shown in Fig.12(a), there is a negative
impact on mitosis detection for samples with poor staining.
Besides, in Fig.12(b), for incomplete mitotic cells in histology
images, our model may be confused about it, resulting in
missed detections. Thus, feeding overlapping patches with
good staining to our model can considerably avoid failing to
detect mitotic cells.

2) False Positive Detection: As shown in Fig.12(c), due
to the large intra-class variability of mitotic cells and the
difficulty in distinguishing mitotic cells from normal cells, our
model may incorrectly identify non-mitotic cells as mitotic
cells. However, even for diagnostic results from different
pathologists, it’s poorly reproducible due to individual expe-
rience and subjective judgment of pathologists. Thus, more
lesion types of mitotic cells may further strengthen the ability
of mitosis discrimination.

3) Explore Probable Mitotic Cells: As a condition diagnosis
issue, the missed detection problem generally has a more
serious impact. Our method can reduce the omission of mitosis
candidates when setting a lower confidence threshold, which
is convenient for pathologists to do secondary filtering. Using
TUPAC16 dataset as an example, there are 90 mitotic cells
in our validation data. When we set the threshold to 0.1, our
model predicts 418 candidates with a high recall of 0.978.

B. A Free Performance Boost on Your Dataset

We have proposed CDAM to improve the cross-domain
detection robustness, making our model obtain better perfor-
mance for external datasets. Moreover, in addition to using
the model trained on TUPAC16 dataset directly, clinicians can
also choose to fine-tune the trained model on their pathology
images. It is worth noting that CDAM allows clinicians to
train their datasets through unsupervised training. Clinicians

can obtain cross-domain features between TUPAC16 dataset
and their own dataset, resulting in a free performance boost.

VI. CONCLUSION

In this work, we propose a domain adaptive box-supervised
instance segmentation network (DBIN) for mitosis detection,
which contains several core modules (BIA head, PMS head,
and CDAM). This method allows precise pixel-wise prediction
of mitosis using weak labels, providing more detailed evidence
for downstream analysis and medical diagnosis. Moreover,
for the domain migration problem between various pathology
labs, we apply domain adaptation for pixel-level feature align-
ment. The state-of-the-art results of our DBIN across multiple
datasets indicate the effectiveness of taking the mitosis detec-
tion task as an application of instance segmentation combined
with unsupervised domain adaptation.
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