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Abstract—From social media has emerged continuous needs
for automatic travel recommendations. Collaborative filtering
(CF) is the most well-known approach. However, existing
approaches generally suffer from various weaknesses. For
example, sparsity can significantly degrade the performance of
traditional CF. If a user only visits very few locations, accurate
similar user identification becomes very challenging due to lack of
sufficient information for effective inference. Moreover, existing
recommendation approaches often ignore rich user information
like textual descriptions of photos which can reflect users’ travel
preferences. The topic model (TM) method is an effective way
to solve the “sparsity problem,” but is still far from satisfactory.
In this paper, an author topic model-based collaborative filtering
(ATCF) method is proposed to facilitate comprehensive points of
interest (POIs) recommendations for social users. In our approach,
user preference topics, such as cultural, cityscape, or landmark,
are extracted from the geo-tag constrained textual description of
photos via the author topic model instead of only from the geo-tags
(GPS locations). Advantages and superior performance of our
approach are demonstrated by extensive experiments on a large
collection of data.
Index Terms—Data mining, recommendation system, text

mining, travel recommendation.

I. INTRODUCTION

W HEN planning to visit a new city, many travel guide
websites like IgoUgo.com can provide a lot of content

such as travelogues and photos for users to arrange tours. How-
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ever, gaining useful information from fussy raw materials via
manual analysis can be very time consuming [28], resulting in
automated travel planning receiving increased attention the by
data mining and multimedia systems community. In particular,
there is a growing concern about personalized travel recommen-
dations, which can effectively integrate user preferences (e.g.,
cultural, cityscape, or landscape).
Collaborative filtering (CF) based recommendation is the

most well-known approach, and is widely utilized in products,
services [16], [29], and travel recommendations [8], [28], [30],
[32], [38]–[40]. Location based collaborative filtering travel
recommendation methods first mine POIs in a city which has
been visited by social users using geo-tags or GPS trajectories
[32]. Then similar users are detected by calculating the location
co-occurrences from users’ travel history. Then similar users
are detected by calculating the location co-occurrences from
users’ travel history. Finally, the POIs of a new city are recom-
mended according to similar users’ visiting history. CF-based
recommendation approaches are effective and efficient, but
suffer from the well-known “sparsity problem” in recommen-
dation systems, due to travel data being very sparse. In this
circumstance, it makes accurate similar user identification very
difficult if the user has only visited a small number of POIs.
Major efforts have been made to solve the CF sparsity

problem. Recently, topic model method (TM) has been intro-
duced into personalized travel recommendations [1], [13]. TM
is similar to the content-based method in product recommen-
dation systems [29]. TM analyzes tourist’s travel preferences
(such as culture, urban landscape, or landscape) and recom-
mends POIs which match the themes of user preferences.
Through interest category mapping, even if the user has visited
very few points of interest, we can still analyze user preferences.
The category topics is usually determined by the naive cate-

gory information from recommended systems in TM [1], [23].
For example, the original category information of social media
websites, such as Foursquare [23], ODP [5], andYelp [23], serve
as topics. From the predetermined categories, it is convenient to
calculate user preferences. Unfortunately, for rich photo sharing
networks like Flickr and Panoramio, there is no such defined cat-
egory information. Thus the naive topic-based recommendation
approach cannot be utilized directly in travel recommendations.
To solve the above problems, we propose an author topic

model-based collaborative filtering method (ATCF) to recom-
mend personalized POI when users plan to visit a new city.
In contrast to existing location based collaborative filtering
methods, we learn users’ travel preferences from the text
descriptions associated with their shared photos on social
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Fig. 1. Example of Flickr image information.

media, instead of from GPS trajectories or check-in records.
In addition, users’ similarities are measured with author topic
model (ATM) instead of location co-occurrence.
Users’ photos on social media record their travel history. As

shown in Fig. 1, a typical Flickr user’s photo contains meta-
data like “User Id”, “tags”, “Taken data”, and geo-tag including
“Latitude” and “Longitude”. Except for geo-tags, the textual de-
scription (such as tags and comments) that users attach to photos
when sharing them on social media networks are important for
inferring a user’s travel preferences. For example, if a user visits
a gym, the information about where he or she has been can be
observed from the GPS trajectory data of the shared photos.
His or her detailed preference information such as “football”
or “vocal concert” can be determined via visual analysis of the
images and related tags. Consequently, it is rational to apply the
user’s tags attached to photos to explore a user’s travel prefer-
ences instead of GPS trajectories.
An important part of ATCF is learnIing user travel interest

from ATM textual descriptions [27]. ATM is an extended
version of latent Dirichlet allocation (LDA) [2], [12], [33]
by considering author information for document collections
with user information [21], [26], [27], [31]. In our proposed
author topic collaborative filtering (ATCF) based approach,
the ATM directly annotates the user’s travel preference with
automatically divided semantic topics corresponding to the
distribution of the tags. The system framework of the proposed
approach is shown in Fig. 2.
This paper is an extension of our previous conference paper

on the same topic [9]. In this journal version, we propose a
coarse-to-fine based approach to mine city-level POIs and map
user travel history mining. In the experiment part, more discus-
sions and experiments in each part of the method are shown.
The four main contributions of this work can be summarized as
follows.
• We propose an effective author topic model-based col-
laborative filtering method for travel recommendations by
making full use of rich textual descriptions and user in-
formation. Tags contain richer information about users’ la-
tent travel preferences than GPS trajectories and are much
easier to obtain.

• We focus on solving the sparse problem of classical loca-
tion-based collaborative filtering (LCF). In our proposed
ATCF-based personalized travel recommendation system,
we utilize users’ topic preferences as the law for collabora-
tive filtering instead of location co-occurrences. Even for
the user with very sparse POI records, our ATCF can still
mine more related resource than LCF to carry out travel
recommendation.

• We introduce an author topic model to adaptively elicit
topic categories from tags associated with photos. Using
the scheme, topics about user preferences can be ac-
curately extracted and applied to personalized travel
recommendations.

• We propose a coarse-to-fine based approach to mine city
level POIs and map user travel history mining. In POI
mining, we first coarsely cluster city-scale photos by geo-
tags and then refine POIs from clusters using visual fea-
tures. In travel history mining, we set a transition of map-
ping user’s geo-tagged photos between coarse clusters and
refined POIs.

The rest of paper is organized as follows: Section II reviews
the related work on travel recommendations. In Section III we
introduce the offline “Coarse-to-fine POIs and User History
Mining” method. Section IV introduces the “Author Topic
Model Learning” method, followed by “Author Topic Model
based Collaborative Filtering” in Section V. Evaluation and the
visualization of the system are shown in Section VI. Conclu-
sions are drawn in Section VII.

II. RELATED WORK

The flourishing of social media has promoted research on
travel recommendations. There are four different major kinds
of data used for travel recommendations: blogs [11], [14],
GPS trajectories [30], [32], check-ins [28], and geo-tags [4],
[7], [36]. Zheng et al. [32] use GPS trajectories to mine and
recommend travel routes. However, a GPS trajectory is rela-
tively difficult to obtain. Blogs and travelogues are also used
to mine landmarks and travel routes. In [11], Kori et al. pro-
posed a route extraction system based on entries. Multimedia
contents describing those routes are also presented. There
is rich information in user-generated travelogues. However,
work with blogs and travelogues does not consider users’
preferences or automatically recommended personalized travel
plans. Check-in data are very helpful for mining service
like restaurant [6], [20], [28], [37]. Yuan et al. focused on
time-aware POI recommendation problem. They proposed a
Geographical-Temporal influences Aware Graph which aims at
recommending POIs to a user when he or she wants to visit at a
given time [37]. It mainly focuses on local inhabitant instead of
travelers and does not have rich landmark information. Besides
travelogues, GPS, and check-in data, community-contributed
geo-tagged photos would be good sources to facilitate the travel
recommendation system [7], [36].
Recently, personalized travel recommendation has attracted

much attention. Collaborative filtering (CF) and Content-based
(CB) are the most widely used methods. Clements et al. recom-
mended POIs according to user’s travel history via collaborative
filtering [4], [8], [38]. They used the number of users who have
visited both places to measure the similarity between two land-
marks. However, with an increasing number of locations and
users, the complexity also increases. Moreover, if the location
is not famous and, to be more extreme, if no geo-tag is marked
here, this location will never be recommended. CFmethodsmay
face a “data sparsity” problem.
Applying a topic model method is effective to the “data

sparse” problem [1], [13]. Bao et al., presented a location-based



JIANG et al.: AUTHOR TOPIC MODEL-BASED CF FOR PERSONALIZED POI RECOMMENDATIONS 909

Fig. 2. System containing offline module (pink) and online module (blue). The offline module aims at mining city level POIs and users’ travel histories from
social community contributed photos and their coherent descriptions including tags and geo-tags by a coarse-to-fine mapping method. The online module is to
recommend POIs to the query user who plans to visit a new city based on his or her travel preferences. The input of the online module is the query user’s textual
description (i.e., tags) of his or her shared photos. The online recommendation module consists of the following three steps: 1) author topic model learning. The
category of latent travel topics of city 1 are adaptively mined, and travel topic distributions of a new user are mined simultaneously; 2) similar users detection
according to their topic distributions; and 3) city-level POI ranking.

and preference-aware travel recommendation system [1]. They
used a weighted category hierarchy to model each individual’s
personal preferences from learning an iterative learning model
in their offline module. Probabilistic photographer behavior is
mined by topic model via PLSA and Markov models [13].
In contrast to existing POIs recommendation methods based

on CF or TM, our author topic model-based collaborative fil-
tering method learns users’ travel preferences from text descrip-
tions associated with geo-tagged photos by author topic models.
Users’ similarities are then measured by the learned author topic
model instead of location co-occurrence, meaning accurate sim-
ilar users can still be mined even if users have visited very few
POIs.

III. COARSE-TO-FINE POIs AND USER HISTORY MINING

Most existing works related to the mining of POIs apply
density-based clustering (e.g. mean-shift clustering) towards
geo-tags attached to community-contributed photos [3]. For
example, Cheng et al., used mean-shift clustering with a band-
width of 0.001 to find locations where many photos are taken.
The reason to set the bandwidth as 0.001 is that the radiuses of
a large amount of POIs are roughly at that value. However, it
is known that the radiuses of different POIs are different. The
basic mean-shift based POIs mining approaches may face the
following two problems: 1) POIs with small radii may not to be
mined when the bandwidth is set to be too large, and 2) several
POIs are close to each other may be clustered into one POI
when the bandwidth is set to be too small. To solve these
problems, we propose coarse-to-fine city-level POI mining
and coarse-to-fine user history mining. In this section, we will
introduce the gathering of travel data first. Then the POI mining
and user history mining methods are described in detail.

A. Travel Data Gathering
Flickr.com is a famous photo sharing website with more

than 10 billion photos uploaded by more than 80 million users.
We have collected more than 7 million social images from
Flickr by using its open API [15], [17], [24]. According to our
statistics, 79.19% of photos have tags, 31.94% photos have
geo-tags, and 28.34% photos have both tags and geo-tags [24].

Tags are one of the most important sources for social media
mining and retrieval. Thus, we use tags instead of geo-taggs to
mine user travel preferences and carry out personalized travel
recommendations.
It is likely that user-shared photos have noises. For example,

some photos have incorrect tags and geo-tags. The geo-tag can
be corrected by image location estimation [15] and the tags can
be enhanced by tag enrichment [22]. In this paper, a simple
strategy is utilized. In our city level POI mining, we use both
tags and geo-tags to process the crawled dataset.
Let denote an image. Each has three attributes

tags, geo-tags, visual . First, we compare each tag of
the photo with the name of the city like “London”. We select
the photos whose tags contain the city name. Then, we use
mean-shift clustering [3], [15] towards all the geo-tags of the
crawled photos at a very large bandwidth to get photos for each
city. We set the bandwidth of mean-shift to be 0.5, which is
almost the radius of a city [3], [15]. We only select the cluster
whose center is close to the real location of the city to construct
the dataset. Photos with incorrect city names or geo-tags are
removed.
Let denote the number of photos that meet our require-

ments. Let , , and denote tags, geo-tags, visual features of
the image separately. We use to denote
the collection of images of a city, to de-
note the collection of all the tags of ,
to denote the collection of all the geo-tags of , and

to denote the visual feature of .

B. Coarse-to-Fine City Level POIs Mining

In this section, we propose a coarse-to-fine method to mine
POIs by carrying out the following two steps: (a) city level
coarse POI clustering, and (b) visual matching based city level
POI refinement. After that, for each city we get a set of POIs
of the city which is denoted as ,

where is the number of POIs in , and denotes the
-th POI of the city.
1) City Level Coarse POI Clustering: For a set of

geo-tagged images , first
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Fig. 3. Sketch map of coarse-to-fine method of POI mining.

mean-shift clustering is utilized towards their geo-tags
at a very small bandwidth to

discover landmarks with a small radius. In [3], Cheng et al.,
set the bandwidth as 0.001, which is roughly the radius of a
landmark. In our method, the bandwidth is set as 0.0005 instead
of 0.001. That is to say, for most landmarks, the bandwidth
of mean-shift is much smaller than the radius. In this circum-
stance, POIs with a large radius may be scattered to several
clusters. Each cluster contains a specified view of the POI [10].
As shown in Fig. 3, are the three clusters of the POI
“Big Ben”. Considering that community-contributed photos
are noisy and crowded with erroneous geo-tags and tags, for a
valid POI, it should contain enough users and have sufficient
photos. In this paper, a simple post processing approach is
utilized in POI verification. For example, each cluster must
contain at least 20 photos and the number of different users who
upload photos into this cluster must be larger than 10. After
coarse clustering, we get a list of clusters of a city denoted
as , where denotes the
number of clusters of , and denotes the -th cluster.
and are latitudes and longitudes of the center of .
2) Visual Matching Based City Level POIs Refine-

ment: From the coarse clustering, we get a list of clusters
of . It is possible that photos

from one landmark may be divided into several clusters. We
are required to merge them with the help of visual features

of . The visual matching
based POIs refinement approach consists of the following two
steps: “visual feature extraction and cluster representation”,
and “cluster merging”.
Visual feature extraction and cluster representation: SIFT

performs robustly in landmark image description especially for
buildings like towers and cathedrals [15], [18], [29]. In this
paper, we use SIFT to carry out a visual feature matching-based
cluster merging. First, we extract the 128D SIFT features for
each image . Then we use bag-of-words
(BoW) to present the SIFT descriptor via hierarchical quanti-
zation [35]. The size of the codebook is 61,724. Finally, each
image is represented by its BoW histogram . The dimen-
sion of is 61,724.
Cluster merging: Assume that the total number of POIs of
is . The corresponding POIs list is denoted as

, . For each , its center

of location is denoted by and . For simplicity, we in-
troduce a binary matrix to present the mapping from

to . if is mapping to , otherwise,
.

For each , first we randomly pick up a cluster to initialize
. The basic idea is to find an optimal cluster for as

(1)

where is the geo-distance of and , which is de-
termined as

(2)

where and is center of which is updated iteratively.
and are latitudes and longitudes of the center of .

Then we calculate the visual similarity between for as

(3)

where and are the average of the BoW histograms
of the images in and . If , we update

, otherwise we find another from the rest of
the clusters.
It is very time consuming to visually match all the clusters

for each . Actually, we find that if the clusters which are ge-
ographically near do not belong to according to visual
matching, thus it is very likely that the clusters which are far
away from do not belonging to either. Based on this ob-
servation, we introduce a fast cluster matching method. We in-
troduce a variable to record the number of clusters which
are geographically near , but failed in visual matching. If
is larger than the threshold , we terminate the progress for
finding other far away clusters for and we start to find clus-
ters for . In this paper, we set , by considering the eight
orientations (each with 45 degrees) of the POI. The impact of
parameter to POI mining is discussed in our experiments. The
final updated is defined as and the POIs set in is de-
noted as .
To illustrate the above steps intuitively, we give a sketch map

as shown in Fig. 3. There are six clusters obtained by coarse
clustering before merging, i.e. . After vi-
sual similarity based merging, we have three POIs, i.e.

. According to the merging, we find that be-
longing to are all photos with “Big Ben” (blue), and
belonging to are “St Paul’s Cathedral” (black). No other
cluster is merged with , which is “London Tower” (red). So
only belongs to .

C. Coarse-to-Fine User Travel History Mining

Assume there are users in city . Each has a set
of image . By vast observation, we
find that a photo on the border of a POI with a large radius is
often assigned to its neighboring POI. To solve this problem,
we make full use of the coarse layer clusters and assignment
vector to get an accurate travel history. We propose using
a coarse-to-fine mapping method to mine user travel history,
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which contains two steps: (1) coarse user’s travel history map-
ping from user’s images to clusters, and (2) refined user’s travel
history mapping from clusters to POIs.
1) Coarse User’s Travel History mapping: Assume that there

are POIs and clus-
ters in . We define a binary
assignment matrix to record the mapping from a user’s
photos to clusters. means at least one image of

belongs to as

(4)

where means that the -th image belongs to ,
while means does not belong to . is
determined by the geo-distance between image and the coarse
clusters as

(5)

where is calculated as

(6)

where and are the latitudes and longitudes of .
and are latitudes and longitudes of the center of .
In this paper, a simple and efficient approach is utilized by

introducing -ball based constrains on (7) to ensure only the
photos belonging to the specified POI are utilized for travel rec-
ommendations. When all the between and are
larger than , we determine that is irrelevant to any POIs of
the city. We then remove for representing the travel history
of the city by setting the distance as , and we have

if
if

(7)

2) RefinedUser’s Travel HistoryMapping: Assume that there
are POIs and clus-
ters in . The basic idea of
refined user’s travel history mapping is that of all the clusters
belonging to a POI, if at least one image of the user belongs to
these clusters, then the user is regarded as having visited this
POI.
We define to present the

travel history of . means the has visited , while
means the user does not visited . For each , is

calculated as

(8)

where is the mapping from to and is
the mapping from to .
The performance of coarse-to-fine POIs and the user his-

tory mining method are discussed in Section VI-D in our
experiments.

Fig. 4. Graphical model for the (a) LDA and (b) ATM [27].

IV. AUTHOR TOPIC MODEL LEARNING

For the users who have geo-tagged photos in their social com-
munities, it is comparatively easier to carry out travel recom-
mendations by mining GPS trajectories. However, according to
our figures, only 1/3 of images have GPS records, while more
than 90% users in social media sharing websites provide textual
descriptions for their photos [17], [24]. Thus, it is practical for
us to carry out travel recommendations by utilizing tags rather
than GPS.
In this paper, we propose an ATM based approach to model

social users to carry out personalized travel recommendations.
ATM is an extended version of latent Dirichlet allocation
(LDA) [2], [12], [25], [33] by considering author information,
for document collections with user information [19], [21], [26],
[27], [31]. The graphical models of LDA and ATM are shown
in Fig. 4(a) and Fig. 4(b) respectively [27]. In this figure, shaded
variables indicate observed variables and unshaded variables
indicate latent variables. The arrow indicates a conditional
dependency between the variables and plates represented by the
box. Different from the LDA based model that only discovers
which topics are expressed in a document, for the ATM model

is associated with two latent variables: the author (i.e. user)
and the topic . Through ATM, both the category and

user’s travel preferences are mined by eliciting the latent model
simultaneously.

A. Terminologies of ATM

To better describe the ATM model in the recommendation
system, the original terms of ATM [31] are used to define the
terminologies of LDA and ATM in this paper as follows.
• The vocabulary denotes a set of unique tags. Each
tag is presented by the corresponding label .

• The word represents the label of one
tag of the photo. Each tag of an image is mapped to
whose size is through character matching.

• The document corresponds to a tag set of the image.
A user with number of images in the photo set has
documents.

• The author is a set of users who uploads the document
. In our paper, each has only one element, because each
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photo could only be uploaded by one user. Each user has a
unique label .

Among these four terminologies, is only used in ATM.
Three other terminologies are also used in LDA.

B. Data Preprocessing for ATM

For each city , first, in order to construct the vocabu-
lary , we filter all the tags with both “stop words” [34] and
“Flickr-style words”. A stop word can be identified as a word
that has the same likelihood of occurring in those documents not
relevant to a query as in those documents relevant to the query.
For example, the “stop words” could be “his”, “on” and etc.
“Flickr-style words” are a list of words that frequently appear in
Flickr tags like “Canon”, but not in ordinary “stop words”. After
ranking the words according to frequency and deleting the “stop
words”, we manually define the tags with higher frequency but
it is useless to distinguish categories as “Flickr-style words”.
After tag filtering, all the unique tags are constructed in the vo-
cabulary . Each tag in has a label .
Second, for each user who has uploaded document (cor-

responds to an image), we map his or her tag set image to the
to get the label for each tag. Thus all the tags of the city

have been mapped to corresponding labels.
Finally, we use three sparse binary matrixes , and

to record whether a document belongs to a user, whether
a word belongs to a document and whether a word belongs to a
user. For example, if means belongs to .

C. User ATM Learning

For each city , the input of this model contains two parts:
the query user ’s photo set with the corresponding tags
with photos, and community users’ photo sets with tags. The
output is the topic preference distribution for each user.
The generative process of ATM mainly consists of two main

steps: First is the probabilistic generative model and second is
the Bayesian estimation of the model parameters [31].
First, to generate the probabilistic model, we assume the au-

thor is associated with a multinomial distribution over the
topics. The author-topic distribution is denoted as .Meanwhile,
each topic is associated with a multinomial
distribution over the words. The topic-word distribution is de-
noted as .
For a word , we first choose an author uniformly from

conditioned on . Second, we choose a topic from condi-
tioned on . Third, we choose a word from conditioned on
the topic distribution . We repeat this three steps for times
to generate all the words in the document.
Second, to estimate the author-topic distribution and topic-

word distribution , a Morkow chain Monte Carlo algorithm,
the Gibbs sampler, is used to sample from the posterior distri-
bution over and . A more detailed method of ATM can be
inferred from [31].
Through ATM, we can determine the probabilities of each

word to different topics. We also get author topic matrix for
all users. is a sparse matrix, where is the number
of authors and is the number of topics. contains the

times that the words associated with author have been as-
signed to topic . The normalized presents the topic dis-
tractions of each user .

V. AUTHOR TOPIC MODEL BASED COLLABORATIVE FILTERING
Our recommendation system aims to recommend a series of

POIs for a user when he or she plans to visit a new city. To sim-
plify the description, let denote the query, denote the city
which has already visited and denote the new city which

plans to visit. In traditional location-based collaborative fil-
tering, first the user-POI matrix is generated to record the users’
travel histories. Then to each two users and , the simi-
larity between them is calculated by the cosine standard mea-
surement towards their corresponding vectors in the user-POI
matrix. In our author topic model based collaborative filtering,
we use the users’ author topic models to measure their simi-
larity. Our ATCF based POI recommendation approach consists
of the following two steps: 1) similar user detection, and 2) POI
ranking.
1) Similar User Detection: Assuming

are users who have both visited and
. is the topic distribution of in
. We calculate the similarity between and from their

author topic vectors with the cosine similarity measurement as

(9)

Other similarity measurement approaches are also discussed in
Section 6.5 in our experiments. According to similar scores, we
then rank the users according to . The top ranked
users are selected as the set of similar users to carry
out travel recommendations.
2) POI Ranking: Assuming

the set of POIs in . We rank according to
travel history of all the

users in , . For each ,
. , if the has

visited , otherwise . We define as the relevant
score of for by summarizing the visiting information of

POIs in the city as

(10)

Then we rank the POIs in according to the relevant scores
in descending order, and we recommend top-ranked POIs for

the user .

VI. EXPERIMENTS

In this section, first we introduce the dataset and criteria of the
experiments. We compare our proposed method (ATCF) with
Recommendation by Popularity (PO), Collaborative Filtering
(CF) and Recommendation by LDA (LDA) to evaluate the ro-
bustness of ATCF. Then we show the discussions of ATCF such
as the “sparsity problem”. At last, the example of a real Flickr
user is provided.
The detailed descriptions of PO, CF, and LDA-based travel

recommendation approaches are described as follows.
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Recommendation by Popularity: All the POIs of one city are
ranked according to degree of popularity. The popularity of each
POI is measured by how many users have uploaded photos of
this POI. Then to each user, we recommend the top ranked POIs.
To all users, the recommendation results are the same ones.
Collaborative Filtering: Location-based Collaborative Fil-

tering (LCF) is the most popular method that can be easily re-
alized [28], [32]. First a user-POI matrix is generated to record
user travel history. Then for a given two users, their similarity
is calculated by the cosine standard measurement towards their
corresponding vectors in the user-POI matrix. Finally, locations
are recommended based on similar users’ visiting histories.
Recommendation by LDA:We replace the ATMwith the LDA

model [2] to mine user travel topic preferences. Unlike ATM, in
LDA, we need to carry out an additional step to get a user’s topic
distribution. In the first step, all the tags of the photos in the city
are allocated to different topics using the LDA model [2]. How-
ever, in this step the relationship between authors and words,
and authors and documents are not yet considered. Therefore,
in the second step, we calculate the proportion of user’s tags al-
located to each topic, which is mined in the first step. The other
settings of the LDA-based approach are the same as ATM.

A. Dataset
We have collected more than 7 million Flickr photos through

Flickr’s open API. These photos are uploaded by 7,387 users
and heterogeneous metadata are associated with the photos
[17], [24].
We only retain photos with both tags and geo-tags from the

original Flickr dataset. Though only tags are used to mine a
user’s travel preferences, geo-tags are also important to the rec-
ommendation system and for evaluating experiments. On one
hand, in the offline module, geo-tags are involved in “city level
POIs mining” and “users’ travel history mining”. On the other
hand, in the experiments, the geo-tags, which users labeled orig-
inally, are regarded as the ground truth of what the user has ac-
tually visited.
We select nine popular cities to evaluate travel recommen-

dation performances [4]. Actually, in [4], there are 10 cities
in total. However, the data we crawl from Honolulu are far
less than the other 9 cities, so we remove this city. These nine
cities are Barcelona, Berlin, Chicago, London, Los Angeles,
New York, Pairs, Rome and San Francisco. We use the method
introduced in Section III-B. to mine POIs of these nine cities.
Table I shows the corresponding number of users, POIs and
photos in each city. There are 2,892 users, 307 POIs and 150,101
photos in total.
We further select users who have visited at least two cities

among these nine cities. Each user should have more than 5
photos with geo-tags and tags. These two cities are defined as a
city group . The label of the city conforms to Table I.
For example, city group means that the photos are up-
loaded by the users who have visited both Barcelona and Berlin.
After filtering, there are 1405 users conform to the requirements.
In order to find enough similar users, we further remove the city
group whose numbers of users are less than 20.
Finally, there are 23 city groups and 1156 users retained. Ac-

tually, to each city group , we could both use the

TABLE I
NUMBER OF USERS, POIS, AND PHOTOS IN EACH CITY

Fig. 5. Number of users in the city group.

Fig. 6. Number of photos in each city group. The blue part of each bar is the
number of photos of city1 uploaded by the users and the red part is of city2.

history of to do recommendation for and use the history
of to do recommendation for . So the number of city group
is doubled and there are 46 city groups in total. Thus, the pro-
cessing of the test dataset is completed. Fig. 5 and Fig. 6 show
the final number of users and photos in each city group in our
test dataset.

B. Ground Truth and Criteria
Ground Truth: We use the user’s history in to predict

which POIs he or she would visit in . And compare the rec-
ommendation results of different methods with what the user
actually visited in . As described in Section VI-B, all the
user photos contain both tags and geo-tags. We only use tags
as the online input to do recommendation. And geo-tags, which
records which POIs the user actually visited, are regarded as the
ground truth. We compare the POIs recommended by different
methods and the ground truth to measure the performance of
each method.
Criteria: We use MAP@n [4] to estimate the performance

of our method and four comparative methods. denotes the
number of POIs which we recommend to the user. MAP@n is
the mean average precision for a set of users in the test data
as

(11)
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TABLE II
POI RECOMMENDATION PERFORMANCES OF PO, CF, LDA, AND ATCF

where is Average Precision as

(12)

where is a relevance value. if user have actually
visited the recommended POI. Otherwise, .
We also provide the performance under MAP (without@n).

In MAP, the number of recommended POIs is the same as the
number that the user actually visited.

C. Performance

Table II shows the MAP and MAP@n of PO, CF, LDA and
ATCF respectively. Note that for all four methods, we use the
coarse-to-fine method to mine POIs and user travel history,
where is set as 0.01. In CF, LDA and ATCF, the number of
similar users is set to , and the distance metric is the
cosine distance. In LDA and ATCF, the number of topics
is set to 50.
The performance on MAP of ATCF is 0.4225, which outper-

forms PO, CF, and LDA by 8.17%, 0.88%, and 0.59% respec-
tively. As on MAP, the number of recommended POIs is the
same as those the user has actually visited. These results could
better reflect the performance of different methods.
Table II also shows performance under MAP@n with
, 5, 10, 20 and 30 for PO, CF, LDA, and ATCF. We can see
the performances of ATCF and LDA are higher than PO and
CF. We observe that when increases, the performance of all
methods decreases. As most users visit nearly five POIs in a city,
if is too large, the proportion of relevant POIs among all the
recommended POIs is declined.

D. Discussion of the Impacts of Coarse-to-Fine POIs and
User History Mining

In order to evaluate the performance of the coarse-to-fine
method, we compare the performance of ATCF under three
cases: M1, M2 and M3. The impact of - ball and the threshold
of stop time of coarse-to-fine mapping are also discussed in
this section. The methods of M1, M2, and M3 are described as
follows.
M1: Both the POIs and user travel history are mined based on

the coarse-to-fine approach.
M2: POIs are mined by a coarse-to-fine approach. User travel

history is calculated by directly comparing the geo-tag of each
image with the geo-center of all the POIs, instead of applying
coarse-to-fine method.
M3: Neither POI and user travel history mining use the

coarse-to-fine approach. We directly regard the clusters which

Fig. 7. Performance of ATCF under M1, M2, and M3.

Fig. 8. Precision and recall of POI mining with the x-axis is in the range [1,
50].

contain more than 20 images uploaded by more than 10 users
as POIs.
1) Performances of ATCF Under M1, M2 and M3: In Fig. 7,

we offer performance of ATCF under M1, M2 and M3 under
MAP@n with , 5, 10, 20 and 30. The settings of other
parameters are the same as Section VI-C. For all three methods,
we do not use the - ball that constraints the geo-distance in user
history mining. We set .
From Fig. 7, we can see that under various of. MAP@n., the

performance of M1 is highest. M1 is almost.2%-4% higher than
M2 and 4% -6% higher thanM3. It proves that the coarse-to-fine
user history mining method is effective. Also, M2 is higher than
M3, which proves that the coarse-to-fine POI mining method is
also effective.
2) Impacts of in the Coarse-to-fine Method: is the

threshold of in POI mining. is set to be 8 in the baseline
method. In this section, we discuss the impact of . We use
precision and recall to measure the performance of POI mining
under different .
From Fig. 8, we find that recall is higher than 0.9, when
, indicating that only 10% clusters relevant to the POIs haven’t
been allocated to these POIs. Meanwhile, it greatly decreases
the time consumed by almost 30%. The main reason is that if the
nearest 8 clusters do not belong to the same POI, the calculation
of this POI will stop.
Fig. 8 also shows that precision reaches the highest value at

, which is 0.7465. When , precision reaches a
stable level of 0.5812, meaning that the effect of decreases
when is too large. When , precision is lower than
0.5812. There are many noise clusters around POIs, making it
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Fig. 9. Performance of ATCF on MAP@n under (x-axis) ranging from 0 to
0.1.

improper to stop the process if there are only one or two clusters
nearby that don’t belong to the POI ( or 2). However,
when is around 8, better performances are achieved.
3) Impacts of in Coarse-to-Fine Method : is the threshold

for coarse-to-fine based user travel history mining. When
, all images of users would be mapped to the cluster whose
center is the closest to the geo-tag of the image. In Fig. 9, we
show the result of ranging from 0-0.1. We can see that better
performances are achieved when ranges from 0.0001-0.001. It
meets the radiuses of almost all POIs. If the distances between
a photo and all the centers of POIs are larger than the radii of
POIs, the image is more likely to be a noisy image, instead of
the photo of POIs.

E. Impacts of Different Similarity Measurements and Number
of Similar Users
In the section, we discuss the impact of the number of sim-

ilar users and the standard of distance metric to the perfor-
mances of ATCF. In our baseline algorithm, we use ‘cosine stan-
dard’ to measure the similarity and set . Here, we eval-
uate the performances of ATCF under the following distance
metric standards: ‘cosine’ (denoted as CO), ‘cityblock’(denoted
as CI), ‘hamming’(denoted as HA), and ‘euclidean’(denoted as
EU) with various numbers of similar users . We utilize the
-ball constraint and set it as 0.01. We take the dataset of
London, New York to test performance. Fig. 10 shows per-
formance of our ATCF method under CO, CI, HA, and EU. The
topic number is set to be 50 and ranges from 10 to 100
at an interval of 10. Fig. 10 shows the MAP curves of ATCF
under from 10 to 100 with different similarity measurement
methods: EU, HA, CI, and CO.
Fig. 10 demonstrates that the difference in performance of

ATCF under different similarity measurement approaches is not
obvious. When , the differences are less than 10%.
When , the performances increase violently when
increases. When , performance is gradually stable.
From Fig. 10, we can also see that when is very small like

or 20, the performance is not good. We see that as
travel data is very sparse, the number of POIs that similar users
have visited is not large, and thus it is difficult to recommend
relevant POIs. When , the increase of does not
impact the performance significantly. This phenomenon shows
that finding enough relevant users can improve recommenda-
tion performances.

Fig. 10. MAP curves of ATCF under various number of similar users with dif-
ferent similarity measurement methods: EU, HA, CI, and CO.

Fig. 11. MAP curves of CF and ATCF under sampled user travel history of
different percentages.

Fig. 12. MAP curves of CF and ATCF under users with sparser travel history.

F. Discussion of the Sparsity Problem

We conduct two experiments in order to evaluate the robust-
ness of ATCF under “sparsity” conditions. In the first experi-
ment, we randomly sample POIs from the user travel history
we mine in the baseline experiment. User travel history in this
experiment will be much sparser than the baseline experiment.
In Fig. 11, the x-coordinate means the proportion that we sam-
pled towards the user travel history.
In the second experiment, we select the users whose travel

histories are much sparser to construct the experimental dataset.
In Fig. 12, the x-coordinate means users whose number of vis-
ited POIs is less than the certain value would be selected as ex-
perimental dataset. In both experiments, , ,

, and the distance metric is the cosine distance.
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TABLE III
FAMOUS AND NON-FAMOUS POIS IN PARIS

TABLE IV
POIS IN NEW YORK

From Fig. 11 and Fig. 12, we find that the performances of
both CF and ATCF decrease when the data is much sparser.
Under the “sparsity” condition, the performances of ATCF is
higher than CF in the two experiments.

G. Example POIs in Two Cities
Table III shows ten example POIs with their latitude and lon-

gitude we mine in Paris. The top ranked five POIs are famous
POIs, such as Eiffel Tower, Notredame, Louvre, Musee Dorsay,
andMontmartre respectively. They could also bemined by basic
mean-shift clustering under the bandwidth of 0.001 set as the
paper [3]. However, by [3], non-famous POIs can not be mined,
as shown in the last five rows, such as Eglise Saint-eustache. In
our proposed “coarse-to-fine POI mining” approach, not only
the famous but also the non-famous POIs can be mined. This
shows that the coarse-to-fine POI mining method is better than
the basic mean-shift clustering method [3].
In Table IV, we show the mined 37 POIs in New York with

POI ID and POI names, including “Brooklyn bridge”, “Wash-
ington Square park”, “Times Square”, and etc. This table is also
used in Section VI-I.

H. Example Topics of ATM
Table V illustrates three example topics, which are selected

from 100 topics (i.e. the topic number ) learned by
ATM in London. Each topic is illustrated with its top 10 words
with the highest probabilities such as “Thames” and “River”,
and the probabilities of these words (in short PROB).

TABLE V
ILLUSTRATION OF THREE MINED TOPICS IN LONDON

Fig. 13. Photos with tags of the Flickr users.

TABLE VI
POIS RECOMMENDED UNDER GT, PO, CF, LDA,

AND TPM FOR USER “15960635@N05”

From Table V we can see that some topics correspond to or-
dinary categories like “museum”, “beach” or “mountain”. For
example, in Topic 41, words like “alcohol” and “drinks” are
related to “bar” category. Also, we see that some topics ex-
tracted with ATM do not like ordinary categories. For example,
in Topic 76, there are some landmarks near the “Thames River”
like “Stpauls” and “Bigben”. As these landmarks are quite near
each other, users may visit them together when they are trav-
eling to London. It is also rational that these words often appear
at the same time in the textual descriptions of their photos.

I. Example of a Flickr User
In this section, we show an example of a real Flickr user.

The user’s ID is “15960635@N05”. This user has visited both
London and New York. We show four example photos with cor-
responding tags in his or her album in London in Fig. 13. The
top four POIs in London detected by the system of this user are
“Canary Wharf”, “London Aquarium”, “Tower Bridge” and “St
Paul’s Cathedral”. They are compliant with the POIs which we
evaluated ourself from his album.
In the experiment, we recommend POIs in New York for a

user based on his or her travel history in London. What the
user actually visits is shown in the row “Ground Truth” in
Table VI. In Table VI, we show the IDs of POIs in New York
recommended for this user under different methods: PO, CF,
LDA, and ATCF. The corresponding 37 names of these IDs
are shown in Table III in Part VI-G. As the user has visited
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10 POIs, we show the top 10 POIs we recommended of each
method. Bold font is used to mark POIs that also appear in
ground truth.
According to Table VI, among PO, CF, LDA, and ATCF,

ATCF has the best performance. It recommends 8 POIs that ap-
pear in the ground truth. Both CF and LDA recommend 6 POIs
in the ground truth but the rank orders are different. To PO, only
3 POIs are in the ground truth, which shows that personalized
recommendations outperform generalized recommendations.

VII. CONCLUSIONS

In this paper, we proposed an author topic model-based col-
laborative filtering (ATCF) method for personalized travel rec-
ommendations. User’s topic preference can be mined from the
textual descriptions attachedwith his/her photos via author topic
model (ATM). Through ATM, travel topics and a user’s topic
preference can be elicited simultaneously. In ATCF, POIs are
ranked according to similar users, who share similar travel topic
preferences, instead of raw GPS (geo-tag) data as is the case
of most previous works. Unlike location-based collaborative
filtering, even without GPS records, similar users can still be
mined accurately according to the similarity of users’ topic pref-
erences.What’s more, the coarse-to-fine city level POIs and user
history mining approaches are both contributive.
In future work, we will first deeply combine the tags and

GPS coordinates to mine user travel preferences. In our cur-
rent work, we use the textual information of geo-tag photos to
carry out travel recommendations. The geo-tags are only served
as constraints in our recommendation. Combining tags and geo-
tags would be an interesting and challenging task. What’s more,
we continue enlarging our dataset, especially by adding some
less famous places. To less famous places, the data would be
even sparser and noisier, which poses an even greater research
challenge.
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