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AJENet: Adaptive Joints Enhancement Network for
Abnormal Behavior Detection in Office Scenario

Chengxu Liu , Yaru Zhang, Yao Xue , and Xueming Qian

Abstract— With the increasing popularity of intelligent surveil-
lance systems, abnormal behavior detection of human beings
based on computer vision is attracting more attention. It aims
to classify and locate the abnormal behaviors and coordinates
of human beings, respectively, and is a fundamental technology
for intelligent security. Existing approaches mainly focus on
exploring abnormal behavior features through object detectors.
However, in office scenarios, almost all abnormal behaviors are
closely associated with the fine-grained feature around the nose,
wrist, elbow, and other human joint points regions. Detectors
for generic objects cannot adequately capture such differences
between abnormal behaviors, resulting in sub-optimal perfor-
mance. In this paper, we focus on human joints and take one step
further to enable effective behavior characteristics learning in
office scenarios. In particular, we propose a novel Adaptive Joints
Enhancement Network (AJENet), which includes two closely-
related components, Joints Predict block (JP) and Adaptive Key
Joints Enhancement block (AKJE). JP block is used to predict
the human joints and facilitates the feature learning around
them implicitly. By inputting the features around joints, the
AKJE block enhances the feature representations of key joints
according to the abnormal behavior characteristics adaptively.
Experimental results demonstrate that our method outperforms
other state-of-the-art methods on the collected real office scenario
Office Behavior Dataset. Besides, to verify the generalization
capabilities and potential of AJENet, we construct comparisons
on another generic dataset PASCAL VOC 2012 Action.

Index Terms— Abnormal behavior detection, object detection,
joint points, feature enhancement.

I. INTRODUCTION

ABNORMAL behavior can be defined as actions that are
unexpected and often evaluated negatively because they

differ from typical or usual behavior [1]. With the increasing
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safety awareness of the public, the demand for video surveil-
lance and abnormal condition detection has grown. Abnormal
behavior detection, as a subtask of object detection, is widely
used in fields such as intelligent security, human-computer
interaction, and intelligent surveillance systems [2].

Abnormal behavior is defined as behavior that is incon-
sistent with usual or expected behavior, which may be rare,
dangerous, or otherwise should not occur. Traditional abnor-
mal behavior surveillance is used to detect abnormalities
through the observation of the staff. Such an approach, which
only relies on the subjective judgment of the staff, is not only
not precise enough, but also time-consuming and inefficient.
Therefore, the study of algorithms for abnormal behavior
detection has significant commercial value in the field of
intelligent surveillance [2]. Besides, compared with abnormal
behavior detection of ordinary open scenes, the behaviors
in office scenarios are less visible and the characteristics
between different behaviors are less differentiated. Existing
research lacks adequate attention to abnormal behaviors in
increasingly common office scenarios and does not yield
good performance. For example, targeting the large flow of
people in real grid business offices, Qiao et al. [3] improve
YOLOv3 [4] and proposes a system for detecting the number
of people in grid business offices and judging whether there
is an abnormal situation currently. Different from them, in
this paper, we propose an abnormal behavior detection
network in real office scenarios, which can automatically
recognize abnormal behavior of employees during work,
which effectively improves work efficiency and reduces safety
risks. In our office scenario, we identify eating, lying on desk,
and fighting as abnormal behaviors.

Benefiting from significant progress of deep learning, recent
years have witnessed an increasing number of advanced algo-
rithms [5], [6], [7], [8], [9] to improve the performance of
abnormal behavior detection. Most efforts are based on generic
object detection algorithms [4], [10], [11], [12], [13], [14] to
obtain the category and location of abnormal behavior. They
mainly improve the detection performance by enhancing the
multi-scale feature and optimizing the positive/negative sample
selection mechanisms during training. However, the office
scenario of humans with abnormal behaviors is completely
different from the general object. As shown in Fig. 1, almost
all the important information about abnormal behaviors is
related to the fine-grained feature around joint points regions
of the human being. Specifically, here we are referring to
joint points as specific points that are significant in human
body images. These points are key parts of the human body,

1051-8215 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on May 24,2024 at 05:46:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8023-9465
https://orcid.org/0000-0003-1162-1120
https://orcid.org/0000-0002-3173-6307


1428 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 3, MARCH 2024

Fig. 1. An example of abnormal behavior ‘eating’ in office scenarios The
original input image is shown on the left. The response strength of the joints
is shown in the middle, which is indicated by points of different colors.
The corresponding heatmap is shown on the right. The abnormal behavior
of ‘eating’ focus on the joints of the mouth and hands, leading to a higher
response in the corresponding heatmap. It demonstrates the fundamental role
of joints in abnormal behavior detection.

such as left/right hands, left/right elbows, left/right shoulders,
etc. Especially for some challenging scenes (e.g., ‘eating’),
the characteristic representations are mainly concentrated near
the left hand, right hand, and mouth. This reflects that the
amount of visual representations of the abnormal behavior
is mainly concentrated around these three joints. Therefore,
to learn the abnormal behavior representation better, the
characteristics representations should be learned in the area
where the three joints are located. Different from ‘eating’, the
abnormal behavior of ‘lying on desk’ is mainly judged by
the spatial relationship between the head and the table. With
the head close to the table, the joints of the head and back
can be clearly recognized, which is beneficial for abnormal
behavior detection. Even more, some normal behaviors are
very ambiguous (e.g., ‘normal’). The network mainly focuses
its attention on the hands and detects ‘normal’ work behavior
by determining whether the hands are touching the keyboard,
mouse, or laptop. In general, these existing state-of-the-art
detectors for general objects still lack optimization for impor-
tant joints and cannot capture fine-grained feature differences
between abnormal behavior. Learning the fine-grained feature
representations of various behaviors in office scenarios through
the spatial locations and coordinate relationships of key joints
is essential.

While some works are based on images-based behavior
recognition algorithms [15], [16], [17], [18] to complete
the abnormal behavior recognition. They attempt to train a
powerful feature extraction network to extract behavior repre-
sentations. However, those methods focus more on scenarios
with a single behavior as the primary objective in an open
field of view (e.g. jumping) and ignore spatial fine-grained
features that are critical in the real office with subtle motion
and multiple objectives.

In this paper, we target to intelligent monitoring in office
scenarios, and propose a novel joints-guided abnormal behav-
ior detection method, called AJENet, as shown in Fig. 2.
Firstly, AJENet uses a network to extract features from the
input image. Secondly, it predicts the human joints by the
proposed joints predict (JP) block and enhances the features
based on human joints by the proposed adaptive key joints
enhancement (AKJE) block. The enhanced features are ulti-
mately used to detect abnormal behavior in office scenarios.
In general, AJENet focuses on exploring the representation of
abnormal behaviors by using key joints of the human being
to assist the learning of spatial information. In particular,

Fig. 2. Overview of the AJENet. Feature extraction is a network to extract
features F from the input image. The proposed joints predict (JP) block and
adaptive key joints enhancement (AKJE) block are used to predict the human
joints J and output the enhance the features F ′ around joints. The RoI head
is used to output the abnormal behavior result.

to enhance the feature representations of key joints, we design
two components JP block and AKJE block to learn the
abnormal behavior features separately with two strategies,
explicit and implicit.

For the strategy of explicit learning, we propose a novel
Adaptive Key Joints Enhancement block (AKJE), which is
used to enhance the feature around the key joints by the
obtained joints position. This design can adaptively output
the importance of different joint features in each kind of
abnormal behavior firstly. Then it enhances features through
an adaptive attention mechanism. The two main advantages of
explicit learning are as follows. 1) It can enhance the feature
of different joint points by an adaptive mechanism and achieve
a better feature representation of each kind of abnormal
behavior. 2) The adaptive importance of joint points makes the
enhanced feature robust, despite suffering from the inaccurate
joint position. However, the inaccurate joint position leads to a
deviation in the response of joint point features. It is equivalent
to weakening the feature representation of behaviors, resulting
in lower detection ability.

To solve this issue, we further propose the strategy of
implicit learning, which is used as a complement to improve
the accuracy of joint points. We propose a Joints Predict
block (JP) to potentially improve the accuracy of joint points
by sharing the feature extraction part. Specifically, we add
a branch for predicting joints in front of the AKJE block
and optimize them using the well-designed JointsLoss. This
design enables the high-level semantics learning of joint
features and improves the accuracy of joint points and feature
representations at the same time. In our proposed AJENet,
the two closely-related components promote each other and
achieve more significant improvement than other state-of-the-
art (SOTA) methods in the office scenario.

Our contributions are summarized as follows:
• We propose a novel adaptive joints enhancement network

(AJENet) for abnormal behavior detection. It can enhance
the behavior-related spatial features and enable better
abnormal behavior representation learning. The extensive
experiments demonstrate that the proposed AJENet can
significantly outperform existing SOTA methods on the
collected real office scenario dataset.

• We propose an adaptive key joints enhancement block,
which can explicitly enhance the feature representations
of joint points according to the characteristics of each
kind of behavior adaptively.

• We propose a joints predict block, which introduces the
joint points prediction abnormal behavior detection and
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optimizes the feature extraction jointly by well-designed
JointsLoss.

The rest of the paper is organized as follows. Related work
is reviewed in Sec. II. The proposed method is elaborated in
Sec. III. The collection and construction of the dataset are
described in Sec. IV. Experiments and analysis of the related
parameters are presented in Sec. V. Discussions are described
in Sec. VI. Finally, we conclude this work in Sec. VII.

II. RELATED WORKS

In this section, we discuss four main areas related to
abnormal behavior recognition in the literature, i.e., abnormal
behavior detection, object detection, image-based behavior
recognition, and feature enhancement.

A. Abnormal Behavior Detection

The core technology of abnormal behavior detection is to
recognize the category and location of abnormal behaviors in
the image captured by the camera monitoring. In the field
of abnormal behavior detection of monitoring, there are an
increasing number of studies emerging. Typically, Ko et al. [5]
propose a unified framework based on a DNN to detect abnor-
mal behavior from a standard RGB image and improve detec-
tion speed while maintaining accuracy. Tay et al. [6] propose a
CNN-based abnormal behavior detector to automatically learn
the most discriminative characteristics. Fang et al. [19] and
Ji et al. [7] propose a real-time abnormal behavior detection
method using improved YOLOv3 [4]. These methods attempt
to handle abnormal behavior detection through improved deep
learning-based generic object detection methods and temporal
information in surveillance.

Besides, depending on the specific scenario, many methods
try to pre-define different kinds of abnormal behavior in
advance. Mehmood et al. [20] define human falls, some kinds
of suspicious behavior, and violent acts as abnormal activities
and provides a lightweight framework (LightAnomalyNet) to
effectively represent and differentiate between normal and
abnormal events. Aiming at the crowd abnormal behavior
detection [21], Lentzas et al. [8] connect abnormal behavior
detection into ambient assisted living systems for elderly peo-
ple and provide a review of recent studies focusing on abnor-
mal behavior detection specifically for seniors. Hao et al. [9]
propose an end-to-end abnormal behavior detection framework
for abnormal or violent behavior by people with mental
disorders. Alairaji et al. [22] propose a system to help monitor
the activities of students and recognize abnormal/suspicious
behavior instantly. Modified from YOLOv3 [4], Qiao et al. [3]
propose an abnormal behavior detection system for a
large flow of people abnormal detection of grid business
offices.

In this paper, based on the behaviors of real office scenarios,
we define eating, lying on desk, and fighting as abnormal
behaviors. We focus on human joints that promote the detec-
tion of abnormal behavior in office scenarios and propose
an adaptive joints enhancement network to better abnormal
behavior detection in office scenarios.

B. Object Detection

With the development of deep learning recently, a series of
object detectors emerge in an endless stream and are widely
used in the industrial field, especially in intelligent surveillance
systems. There are an increasing number of studies on abnor-
mal behavior detection through detection algorithms [23].

Among these algorithms, one-stage detectors have emerged
as a popular paradigm, such as SSD [12], YOLOv3 [4],
RetinaNet [13], etc. These methods predict the classification
and localization of the bounding box directly based on the
extracted features. Typically, SSD [12] and YOLOv3 [4]
introduce anchor mechanisms on multi-scale features and
directly predict the category and confidence scores of bound-
ing boxes. RetinaNet [13] solves the imbalance of positive
and negative samples by a specific loss function. Many
top-performing frameworks still adopt the proven two-stage
pipeline, such as Faster R-CNN [10], Cascade R-CNN [11],
etc. Faster R-CNN [10] proposes to generate RoI by using
fully convolutional networks as a region proposal network
(RPN) which greatly improves the detection speed. Cascade
R-CNN [11] further proposes a multi-scale detection frame-
work based on it, which greatly improves the performance
of small objects. ATSS [14] finds the essential differences
between the anchor-free and anchor-based algorithms and
creatively proposes to automatically select positive and nega-
tive samples according to the statistical characteristics of the
object. Recently, TOOD [24] designs a novel Task-aligned
Head (T-Head) that offers a better balance between learning
task-interactive and task-specific features. In addition to the
general object domain, detection algorithms are also very
important in the industrial field. Including medical cancer cell
detection [25], face detection [26], product detection [27], and
so on.

However, these current state-of-the-art detectors are inef-
fective for abnormal behavior detection in office scenarios.
It is because these methods cannot capture the fine-grained
feature differences around key joint differences, which are
critical for the classification and localization of abnormal
behavior in office scenarios. So these algorithms are necessary
to be improved to get better performance, and in this paper,
we propose an adaptive joints enhancement network to enable
the behavior feature learning of joint points and get better
abnormal behavior detection results in office scenarios.

C. Image-Based Behavior Recognition

Image-based behavior recognition aims to recognize the
behavior in the still image. Compared to the more com-
mon video-based behavior recognition [28], image-based
behavior recognition is a more challenging task, due to
large appearance variations and lack of motion descriptions.
Some traditional image-based behavior recognition meth-
ods [29] capture the features of different behaviors through
hand-crafted feature descriptors. Most of the existing work
focuses on scene-object contexts [30], [31] or human parts-
poses-attributes [32], [33], [34], [35]. Among them, the
methods based on scene-object contexts consider the image
or target as an entirety and utilizes spatial information to
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recognize behaviors. Oquab et al. [30] utilize an eight layers
CNN network to obtain the texture representation of the target.
Simonyan et al. [31] obtain scene features by combining 16-
layer and 19-layer CNNs, and then connecting SVMs to
acquire behavior recognition results. The other approach,
focusing on human parts-poses-attributes, is more concerned
with behavior-related local region information. Hoai [32]
divides the scene into various regions at different scales and
then inputs the features and positions of each region into
the eight layers network to obtain the behavior recognition
results. Action Part [33] designs individual classifiers for the
head, torso, legs, and whole person on the basis of Poselets.
R*CNN [34] utilizes the framework of RCNN to make better
use of spatial texture information by extracting features from
multiple behavior-related regions. Multi-branch [35] combines
scene features and the local region features for behavior
recognition.

Different from the above methods, by introducing human
joints, our approach enables better classification and local-
ization with behavior-related features and texture information.
We adaptively enhance the relevant region features for various
behaviors with better robustness.

D. Feature Enhancement

Feature enhancement is an efficient method to enhance
feature representation [36], [37], it is generally imple-
mented by an attention mechanism. It is an effective mod-
ule that can focus on the regions of interest with limited
weights and calculations and is widely used in various
fields [26], [38], [39], [40], [41]. In essence, the attention
mechanism is to filter out the important information from
a large amount of redundant information and focus on the
important ones, ignoring most of the unimportant ones. Non-
local [42] is an effective attention mechanism that performs
feature refinement to expand the receptive field from a local
area to the whole image. Self-attention mechanism [43]
reduces the dependence on external information and is bet-
ter at capturing the internal correlation of data or features.
To better recalibrate the channel-level characteristic response,
SENet [36] proposes to use the global average pool to extract
the global descriptors, which explicitly model the interdepen-
dence between the channels.

In the feature enhancement associated with the human
joints, AdaSGN [44] reduces the computational cost of the
inference process by adaptively controlling the input number
of the joints, achieving better video-based action recognition
performance. CD-JBF-GCN [45] proposes a correlation-driven
joint-bone fusion graph convolutional network as an encoder
to learn more discriminative feature representations. PoseC-
onv3D [46] relies on a 3D heatmap volume as the base
representation of human skeletons and is more effective in
learning spatiotemporal features. Different from these methods
that use the correlation within the features themselves, we add
joint points information and reconstruct the feature in the
spatial dimension. Our method enhances the characteristic
response of joint point areas by adaptive modeling the feature
interdependence between the joints.

III. METHOD

A. Overview

The overview of the proposed adaptive joints enhancement
network (AJENet) is shown in Fig. 2. The whole network can
be divided into four steps. 1) Feature extraction composed
by FPN [13] is used to extract the feature of the input
image. 2) Obtaining the joints information from the feature
by using the joints predict (JP) block. 3) Inputting the joints
information into adaptive key joints enhancement (AKJE)
block to adaptive enhance the feature around the joints. 4)
Inputting the enhanced feature into the RoI head to output
the regression and classification results. The highlight of our
approach is the proposal of two closely-related components,
JP and AKJE, to enable the joints to feature representation
learning.

B. Feature Extraction

We follow existing works [10], [11], using the ResNet50
to extract multi-scale features which combine with FPN [13],
as the feature extraction part in our AJENet. Finally, this part
outputs features with five scales.

Different from them, in our network, the feature extraction
part can be constrained indirectly by the joint information
at the same time during training. This indirect supervision
of joints enables the network to focus more on the features
learning around the joints to some extent.

C. Joints Predict Block

To better capture fine-grained feature differences between
abnormal behavior, we propose a joints predict (JP) block
following the feature extraction to predict the human joints,
as shown in Fig. 2. It is worth noting that our proposed JP
block and behavior detection share the same feature extraction
network, since the supervision of the joints during training can
simultaneously facilitate the feature learning around the joints.
Besides, to stabilize the optimization of joints, we propose the
JointsLoss in training to constrain the learning of the network.
In this section, We describe the network structure and the
proposed JointsLoss during training.

1) Structure: As shown in Fig. 3, JP block can be composed
of stacked residual blocks, denoted as RBs(·). In detail, the
RBs(·) includes four residual blocks with 3 × 3 kernel size
and one residual block with 1 × 1 kernel size. Among them,
the 3 × 3 residual blocks are applied to extract the joint
features from the input feature F. The 1 × 1 residual block
pays attention to local joints and is used to output the joints
result J ∈ RH×W×K . The joints result J indicates the position
distribution of joints, which includes K categories belonging
to K output channels. It is worth noting that there are 17 types
of joint points used in our method, referring to specific points
of importance in the human body, such as eyes, shoulders,
elbows, wrists, etc. The experimental analysis of the selection
of joint point types and the number of choices can be found
in Sec. VI-B.4. In detail, the process can be expressed by:

J = RBs(F), (1)
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Fig. 3. The structure of the Joints Predict (JP) block. During inference, the
JP block is used to predict human joints J . During training, the JointsLoss,
which generates the Gaussian Joints Ĵg and Masked Joints J ′, is used to
supervise the training of the entire network.

where RBs(·) denotes the stacked residual blocks. F is the
input feature, which outputs from the features extraction
network. J is the joints result. In J, if one position is in
proximity to a joint, then its output will have a larger value.

2) JointsLoss: The joints result J has the same size as the
input image and the largest pixel value at each joint coordinate.
If we directly use sparse ground truth of joints to supervise JP
block during training, it will result in fewer positive samples.
It may cause unstable training and unexpected output in the
background area irrelevant to the behavior. To further suppress
irrelevant samples and boost the stability of the training of
the joints predict block, we specially design the JointsLoss.
The JointsLoss is capable of removing false outputs from
the background and expanding the original sparse joints to
increase the number of positive samples.

As shown in Fig. 3, the joints only appear in the human body
and are also in the detected bounding box (i.e., the foreground
region). Therefore, to mitigate the effect of irrelevant or incor-
rect joint samples (i.e., negative samples) in the background,
we add the mask generation mechanism to suppress the joints
that output in irrelevant regions. Specifically, we first generate
the foreground mask M by utilizing the bounding box of
abnormal behavior, which come from the ground truth. This
process can be expressed by:

M(x, y) =

{
1, i f (x, y) ∈ bbox;

0, else,
(2)

where bbox denotes the ground truth of bounding boxes.
We multiply the joints result J and foreground mask M to
get masked joints J′. It can be expressed as:

J′
= J ⊗ M, (3)

where ⊗ denotes the multiplication of corresponding locations.
Compared with not performing the operations on the joints
result J, this design can obtain masked joints J′ that effec-
tively reduce the impact of negative or incorrect samples in
extraneous regions outside the behavior bounding box during
training, thus yielding more accurate and robust joint locations.

Then, to increase the number of positive samples during
training, we filter the ground truth of joints Jg (i.e., the GT
joints in Fig. 3) with a Gaussian kernel to expand the pixel
of joints, as shown in Fig. 3. This operation can boost the

number of positive samples during training, and effectively
stabilize the training of the JP block. In detail, we use the
Gaussian kernel to filter the ground truth of joints Jg. The
Gaussian kernel can be represented as:

G(x, y) = A · exp(−(
(x − x0)

2

2σ 2 +
(y − y0)

2

2σ 2 )), (4)

in which x0, y0 denote the coordinates of the central joints in
the x-axis and y-axis, respectively, σ is the standard deviation,
and A is the intensity of the Gaussian filter. The filtered joints
(i.e., the Gaussian joints in Fig. 3) can be expressed as:

Ĵg = 8G(Jg), (5)

where 8G(·) is a filter operation with kernel G. Jg is the
ground truth of joints. Ĵg ∈ RH×W×K denotes the outputted
Gaussian joints and has the same size as the Jg ∈ RH×W×K ,
where each category of joints belongs to a channel and takes
the value of 1 at the joints location and 0 at other locations.
Such a design of increasing positive samples through a Gaus-
sian distribution can significantly alleviate the imbalance of
positive and negative samples during training. In our method,
we set σ as 4 times the standard deviation and A as 1.

Finally, after the above operations to obtain the masked
joints J′ and Gaussian joints Ĵg, we further use the MSE loss
function to constrain the JP block. It can be expressed as:

l joint (̂Jg, J)

= lmse (̂Jg, J′)

=
1

H · W · K

K∑
k=1

H∑
x=1

W∑
y=1

(̂Jg(x, y, k)−J(x, y, k))2
· M(x, y),

(6)

where l joint denotes the proposed JointLoss. Ĵg and J represent
the Gaussian joints obtained from ground truth and joints result
predicted from JP block, respectively. M is the foreground
mask of abnormal behavior in the bounding box. x , y, and
k denote the coordinates of the elements in joints result
J. The whole design of JointsLoss is enabled to eliminate
background interference during training, while increasing the
positive sample of joints for training. It not only can stabilize
the training effectively, but also can enhance the robustness of
the network.

Besides, this JointsLoss can also be stacked on multiple
scales. Specifically, we use the interpolation to transform
these Gaussian joints Ĵg to different scales s and obtain
multi-scale Gaussian joints Ĵs

g. During training, we use the
multi-scale Gaussian joints Ĵs

g to constrain the predicted joints
J. The adoption of a multi-scale structure is mainly in two
considerations. 1) The multi-scale joints can further stabilize
the training of joints predict block. 2) The multi-scale structure
enhances the robustness of the model to joint location shifts.
In the following part, we describe this structure only at one
scale for brevity.

D. Adaptive Key Joints Enhancement Block

To achieve a better feature representation around joints of
each kind of abnormal behavior, we propose the adaptive key
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Fig. 4. The structure of the Adaptive Key Joints Enhancement (AKJE) block.
During the joint feature extraction process, this block is used to extract features
around each joint. During the adaptive enhancement process, this block uses
an adaptive attention mechanism to enhance and fuse these features.

joints enhancement (AKJE) block to enhance the features.
In particular, as shown in Fig. 4, we first extract features
around joints based on the joints result J obtained from the JP
block. Then, the features F from the feature extraction network
are further fused to output the enhanced features F′ by an
adaptive attention mechanism.

This design enables the model to learn the confidence scores
of joints based on their features, and thus adaptively enhances
the important joints among them. In the following, we divide
it into joint feature extraction and adaptive enhancement to
describe them separately.

1) Joints Feature Extraction: To extract the features around
joints, we take the joints result J ∈ RH×W×K as input to
provide the joints’ position. In particular, we use F to denote
the feature that is output from the feature extraction network.
For the joints k, the extracted joints feature Fj

k can be obtained
by:

Fj
k = Jk ⊗ F, (7)

where Fj
k represents the extracted joints feature of the kth

joints. Jk is the kth joints in J ∈ RH×W×K . F is the feature
output from the feature extraction network. ⊗ denotes the
multiplication of corresponding locations. We can obtain all
the extracted joints feature Fj

k ∈ RH×W×C in the same way,
where k ∈ {1, 2, . . . , K } represents the kth joints in all K
categories.

Besides, we can extract joint features on multiple scales
to obtain more accurate and robust features around joints.
Specifically, we first use Fs to denote the feature F at scale
s that is output from the feature extraction network. Then,
we downsample the joints J to the scale s. Compared to
other down-sampling methods (e.g., convolution), this method
has a smaller computational effort while localizing accurately.
Finally, we obtain the extracted joints feature Fj

s at scale s in
the same way as in Equ. 7. In the following part, we describe
the extracted joint features only at one scale for brevity.

2) Adaptive Enhancement: Based on the extracted joints
feature Fj

k of the kth joints, we propose to squeeze it to
generate a confidence score of joints, and then enhance the
joints features by weighted fusion. The j in Fj

k represents a
symbol that indicates that Fj

k is the feature of joints.

In detail, as shown in Fig. 4, we use the global average pool
to aggregate the local descriptors around joints. The obtained
descriptors wk corresponding to the joints k can be formulated
as:

wk =
1

H × W × C

H∑
x=1

W∑
y=1

C∑
c=1

Fj
k(x, y, c), (8)

where Fj
k represents the extracted joints feature of the kth

joints. wk ∈ R1×1×1 aggregates all the information in Fj
k. H ,

W , and C denote the dimension of the feature. We can obtain
the {w1, w2, . . . , wK } in the same way. k ∈ {1, 2, . . . , K }

represents the kth joints in all K categories. We use the
widely used Sigmoid(·) function to normalize the obtained
feature descriptors wk, k ∈ {1, 2. . . . , K }. This process can be
formulated by:

wk
′
= Sigmoid(wk)

=
1

1 + e−wk
, (9)

where wk
′ denotes the normalized feature descriptor, which

can represent the confidence score of kth joints between 0 and
1. We also can obtain the confidence score wg

′ of input feature
F in the same way. The use of the Sigmoid(·) function enables
the importance of each joint to be calculated separately and
adaptively, while alleviating the coupling that occurs when
multiple joints are related.

Then, we enhance the joints feature by weighted fusion, this
process can be formulated by:

F′
= (F ⊙ wg

′) ⊕

K∑
k=1

(Fj
k ⊙ wk

′), (10)

where F′ represents the enhanced feature, which has the same
dimensions as F. F and Fj

k indicate the input feature extracted
from the input image and the extracted joints feature of the
kth joints above-mentioned, respectively. wg

′ and wk
′ are the

confidence score obtained from the above calculation. ⊙ and ⊕

represent the scalar multiplication and element-wise addition,
respectively. The output enhanced feature F′ has the same
dimensions as the input feature F.

To demonstrate the function of the block intuitively,
we visualize the joints and the corresponding heat map in
Fig. 5. It can be seen that, for different abnormal behaviors,
AKJE can focus on the joints that are more important for
behavior detection and then effectively enhance the features
in key joints. Finally, as shown in Fig. 2, the enhanced feature
F′ can be fed into the classifier and regressor for abnormal
behavior detection.

E. RoI Head

Based on the enhanced features following the AKJE block,
we add two parallel modules for abnormal behavior classifi-
cation and regression, respectively.

For the behavior classification branch, we first extract the
classification feature from enhanced feature F′ using four
convolutional layers with 3 × 3 kernel size. Then we use a
convolutional layer with 1 × 1 kernel size to transform the
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Fig. 5. Visualization of key joints attention on the Office Behavior Dataset.
The first column is the original input image. The coordinate points in the
second column represent the joints with different weights output by the AKJE
block. The third column is heatmaps of the feature visualization, which denote
the spatial attention regions that the network pays more attention to when
detecting anomalous behavior. Where warm colors represent a large weight.

channel of the feature into a number of categories. Finally,
the branch outputs the classification results of the abnormal
behavior.

Similarly, for the regression branch, the regression feature
is first extracted by four convolutional layers with 3×3 kernel
size. Then we add a convolutional layer with 1 × 1 ker-
nel size and transform the channel of the feature to four.
Finally, we output the coordinates of the bounding box
(xt l, yt l, xbr, ybr) where the abnormal behavior is located,
where (xt l, yt l) and (xbr, ybr) represent the coordinates of the
top-left corner and the bottom-right corners of the bounding
box, respectively.

Finally, we use the Non-Maximum Suppression (NMS)
algorithm to remove the redundant detection results and retain
the bounding boxes with the highest quality. Finally, we sum-
marize and output their locations and classification results.

F. Training

As described above, during training, our approach includes a
total of three loss components, the classification and regression
loss for abnormal behaviors detection, and the JointsLoss for
enhancing the representation of learning around joints.

In detail, we follow RetinaNet [13], using FocalLoss as our
classification branch, as follows:

lcls(pt ) =

B∑
t

−αt (1 − pt )
γ log(pt ), (11)

where the definition of pt is described as:

pt =

{
p, i f y = 1,

1 − p, otherwise,
(12)

where B is the total number of samples, α, and γ are the
modulating factor, y ∈ {±1} specifies the ground-truth class.
We set α and γ as 0.25 and 2.0, respectively. p denotes the
score of the output of the classification branch. pt represents
the notation of a sample’s score for convenience.

The bounding box regression adopted smooth L1 loss
function can be represented by lreg as follows:

lreg =

N∑
i∈pos

∑
m∈{cx,cy,w,h}

smoothL1(b
m
i − gm

i ), (13)

where N is the number of matched positive boxes, b and g
are the predicted box and the ground truth box respectively as
the same as described in [10]. The box center (cx, cy), width
w, and height h are the offsets used for regression.

It is essential for the network to balance these three tasks.
Therefore, we multiply l joint , as described in Equ. 6, with
a weight λ to enable the validity of the joints’ prediction
branch while not harming the performance of classification and
regression. The total loss function is formulated as follows:

ltotal = lcls + lreg + λ · l joints, (14)

where lcls is the classification loss and lreg is the location
regression loss.

IV. DATASETS

As described in Sec. II mentioned above, the study of
abnormal behavior detection in office scenarios still remains
to be further explored. Therefore, in this paper, we col-
lect an abnormal behaviors detection dataset in the office
scenario, called Office Behavior Dataset. Besides, to super-
vise the feature learning around human joints, we propose
a joints generation strategy to generate the joint labels in
datasets.

A. Office Behavior Dataset

Based on the surveillance of real office scenarios, we collect
the dataset using high-definition cameras. The collected Office
Behavior Dataset contains 43,530 images with a resolution of
1920 × 1080, and each image contains at least three office
people. There are three categories of abnormal behavior in
this dataset, labeled as eating, lying on desk, and fighting, and
one normal behavior, labeled as normal.

Among them, eating and lying on desk are the abnormal
behaviors of single person, including a person labeled with its
bounding box and category. Fighting is the abnormal behavior
of multiple people, including two-person labeled with their
bounding box and category. Other behaviors are recognized
as normal. Among them, 80% is used as training data, and
the remaining 20% is used as test data.
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B. Joints Generation Strategy

The joints generation strategy can be divided into four
steps. 1) We chose the SOTA joints prediction models as
the joints prediction network to generate the coarse joints.
Specifically, for the abnormal behaviors of single person,
we use the top-down heatmap method HRNet [47]. For the
abnormal behavior between multiple people, we use the asso-
ciative embedding method HigherHRNet [48]. 2) We chose a
high-quality joints dataset (i.e., Microsoft COCO dataset) to
fine-tune the selected joints generation network for generating
the required joints. This dataset includes 250,000 people with
joints. The total number of joints categories is 17.1 3) We
use the chosen high-quality joints dataset to train the joints
prediction network and generate the coarse joints. Specifi-
cally, HRNet achieves an AP of 0.716 on COCO val2017.
HigherHRNet attains an AP of 0.772 on COCO val2017.
This performance demonstrates the accuracy of the generated
coarse joints. 4) To guarantee the accuracy of the output joints,
we refine them manually based on the joints output obtained
above. All these steps ensure the accuracy of the joints.

V. EXPERIMENTS

We compare our method with other state-of-the-art behavior
recognition and object detection methods. We design sufficient
ablation experiments to demonstrate the effectiveness of each
block in our method and analyze the results in detail.

In this section, we first describe two behavior detection
datasets. We then present the detailed experimental design,
which includes compared methods, performance evaluation,
and implementation details. Finally, we show and analyze the
actual experimental results.

A. Dataset

1) Office Behavior Dataset: As described in Sec. IV-A, the
Office Behavior Dataset contains 43,530 images, all collected
from office scenarios. There are four categories labeled in this
dataset, namely eating, lying on desk, fighting, and normal.
We only detect the first three abnormal behaviors and use the
strategy in Sec. IV-B to generate the joints label of them.
Among them, 80% is used as training data, and the remaining
20% is used as test data.

2) PASCAL VOC 2012 Action Dataset: The PASCAL VOC
Action Dataset [49] serves as one of the PASCAL VOC
2012 challenges, containing a total of 4,588 images. There
are 11 types of behaviors, namely jumping, phoning, playing
instrument, reading, riding bike, riding horse, running, taking
photo, using computer, walking, and others. Each person is
marked with a bounding box for their position and category.
We use the strategy in Sec. IV-B to generate the joints label.
The ratio of the training set and validation set is 1:1.

B. Experimental Settings

1) Compared Methods: To verify the advantages of our
proposed AJENet, we compare our method with other behavior

1Including nose, left eye, right eye, left ear, right ear, left shoulder, right
shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip, left
knee, right knee, left ankle, right ankle.

recognition methods and object detection methods. The details
and settings of these methods are as follows:

Oquab et al. [30]: This method trains an eight layers
CNN network to behavior recognition based on the predicted
bounding box.

Hoai [32]: This method inputs the multiple regions with
different scales and locations into an eight layers network to
obtain their respective recognition results, and then integrates
them as the final output.

Action Part [33]: This method increases the number of
convolutional layers on the basis of Poselets [50], and simul-
taneously trains classifiers for the head, torso, legs, and whole
person.

Simonyan et al. [31]: This method combines a 16-layer and
a 19-layer network and trains SVMs on fc7 features to output
the behavior recognition results.

Faster R-CNN [10]: This method first detects the candidate
behaviors through the RPN subnetwork, and then refines the
candidate behaviors through the ROI head.

R*CNN [34]: Based on the RCNN [51], more regions are
used for prediction to use the context information better and
output the behavior detection results.

SSD [12]: This method takes VGG16 [31] as the backbone,
and extracts feature maps at different scales to do behavior
detection.

YOLOv3 [4]: The method adopts DarkNet53 [4] as the
backbone to detect targets on three different scales.

RetinaNet [13]: This method proposes the FPN to detect
targets at different scales and introduces FocalLoss to focus
on difficult samples.

Multi-branch [35]: This method adds two attention
branches, namely scene-level attention and region-level atten-
tion, to output the recognized behavior.

Cascade R-CNN [11]: It continuously raises the I oU
threshold of detection results by cascading the ROI head.

FCOS [52]: The method detects the target by predicting
these center points and four distances from the center point to
the rectangular boundary.

ATSS [14]: The method used an adaptive training sample
selection technique based on RetinaNet.

TOOD [24]: The method to solve the inconsistency of
classification and regression of detection and its performance
surpasses the recent one-stage detectors by a large margin.

(Ours): we proposed an abnormal behavior detection
method, which includes the Joints Predict (JP) block and
Adaptive Key Joints Enhancement (AKJE) block.

2) Performance Evaluation: For fair comparisons, we fol-
low existing works [31], [34], [35] to use VOC07 object
detection evaluation indicators to compare performance, which
including Recall, Precision, AP , and m AP . In this experi-
ment, the threshold of I oU is set to 0.5.

3) Implementation Details: Our experiment is conducted on
an NVIDIA 1080Ti GPU through PyTorch and mmdetection.
We use SGD as the optimizer and momentum is 0.9, and
weight decay is 0.0001. The initial learning rate is set to 0.01.
At the 8th and 11th epochs, the learning rate decays by a factor
of 10. The total number of epochs is 12. At the same time,
the warmup mechanism is adopted. In the first 500 iter, the
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TABLE I
RESULTS OF QUALITATIVE COMPARISON ON OFFICE BEHAVIOR DATASET.

‘LYING’ INDICATES THE ‘LYING ON DESK’ FOR BREVITY. RED

INDICATES THE BEST AND BLUE INDICATES THE SECOND BEST

PERFORMANCE (BEST VIEW IN COLOR)

learning rate increases from 0.001 to 0.01. Resize the input
images to 512 and keep the aspect ratio. Except for adding
random horizontal flips, no other data augmentation methods
are used.

C. Comparisons With State-of-the-Art Methods

To verify the effectiveness of our method, we compare
other state-of-the-art related behavior recognition methods
and object detection methods. Including Oquab et al. [30],
Hoai [32], Action Part [33], Simonyan et al. [31], Faster
R-CNN [10], R*CNN [34], SSD [12], YOLOv3 [53],
RetinaNet [13], Multi-branch [35], Cascade R-CNN [11],
FCOS [52], ATSS [14], and TOOD [24].

1) Quantitative Comparison: As shown in Tab. I, the
results for each algorithm on the Office Behavior Dataset.
Our proposed AJENet uses Cascade R-CNN [11] as the
base framework. For fair comparisons, we follow existing
works [13], [14] to use ResNet50 and FPN [13] as the
backbone. AJENet achieves a result of 80.7% m AP and
significantly outperforms the other algorithms by a large
margin. Compared with typical behavior recognition methods
(e.g., Multi-branch [35], R*CNN [34]), our method can effec-
tively focus on multiple objects in the image, which has high
superiority in office scenarios. Compared with generic target
detection methods (e.g., Cascade R-CNN [11], ATSS [14]),
AJENet can learn the fine-grained features of abnormal behav-
iors in office scenarios and thus has more accurate detection
results. Among them, the performance of fighting improved
significantly, by 1.5% higher, and eating increased by 1.0%.
It is because these methods cannot capture the fine-grained
feature differences around key joint differences, which are
critical for the classification and localization of abnormal
behavior in office scenarios. This large margin demonstrates
the power of AJENet in abnormal behavior representation
learning.

To further verify the generalization capabilities of AJENet,
we also demonstrate the effectiveness of our method on the
VOC Action 2012 val set [49], as shown in Tab. II. AJENet

can significantly outperform other methods by more than
1.0%. This large margin also demonstrates the generalization
capabilities of AJENet.

2) Qualitative Comparison: To further compare the visual
qualities of different approaches, we visual results generated
by AJENet and other SOTA methods on Office Behavior
Dataset and PASCAL VOC 2012 Action Dataset in Fig. 6
and Fig. 7. For fair comparisons, we take the original result or
author-released code to get those results with the same training
strategies. It can be observed that AJENet has great accuracy
in visual results. For example, in the first column of Fig. 6,
behaviors ‘eating’ and ‘normal’, have very similar visual
features. AJENet guides the network to learn mouth region
features by introducing joints, leading to better detection
performance. It indicates the necessity of introducing joint
information to learn the feature representation.

3) Model Complexity: To further demonstrate the superior-
ity of our approach, we analyzed the Params and FLOPs of
each component. In particular, as described in Sec. III-C.1,
our proposed JP block consists of four residual blocks with
3×3 kernel size and one residual block with 1×1 kernel size.
The total Params and FLOPs of the JP block are 0.591M and
19.13G, respectively. As described in Sec. III-D, the AKJE
block enhances the features by a two-part operation of joints
feature extraction and adaptive enhancement, and it does not
contain any Params. The Params and FLOPs of the AKJE
block are 0.0M and 0.58G, respectively.

It is worth noting that our approach does not require
additional joint points as input during the inference, and the
two blocks achieve a significant performance improvement by
adding smaller Params and FLOPs compared to the whole
method. It demonstrates the superiority of each component
of AJENet, which can get better performance for behavior
detection in office scenarios.

D. Ablation Experiments

To verify the effectiveness of each component in our
method, we conduct ablation experiments on the Office Behav-
ior Dataset and PASCAL VOC 2012 Action Dataset. The
experimental results are shown in Tab. III. The ‘Base’ denotes
the method of RetinaNet [13], which uses the backbone as
ResNet50. On the Office Behavior Dataset, the results show
that the m AP value has increased by 1.8% by joining the
JP. It demonstrates that the addition of a supervised JP block
enables the backbone network to learn features that are more
useful for behavior detection and improve the performance of
behavior classification tasks. When the AKJE block is added,
the m AP is increased by 1.9%. It demonstrates that the block
utilizes the location information of human joints and enhances
the feature representation of joint regions. By adaptively
adjusting the weights of different joints and assigning greater
weights to important key joints, the network can better learn
the essential representation of the behavior. Adding JP and
AKJE at the same time, m AP increased by 2.7%. To show
the detection performance of our method, we also visualize
the detection results of AJENet in Fig. 8. It demonstrates the
superiority of each component of AJENet, which can get better
performance for behavior detection in office scenarios.
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TABLE II
RESULTS OF QUALITATIVE COMPARISON ON VOC ACTION 2012 VAL SET [49]. ‘INSTRUMENT’ INDICATES THE ‘PLAYING INSTRUMENT’, ‘PHOTO’

INDICATES THE ‘TAKING PHOTO’, AND ‘COMPUTER’ INDICATES THE ‘USING COMPUTER’ FOR BREVITY. RED INDICATES THE BEST AND BLUE

INDICATES THE SECOND BEST PERFORMANCE (BEST VIEW IN COLOR)

Fig. 6. Comparison of visualization results on the Office Behavior Dataset. (a) results by R*CNN [34]. (b) results by YOLOv3 [4]. (c) results by
Multi-branch [35]. (d) results by Cascade R-CNN [11]. (e) results by ATSS [14]. (f) results by TOOD [24]. (g) results by AJENet(Ours). (h) ground-truth.
Each abnormal behavior is labeled in the detected bounding box, where the detected category of abnormal behavior is labeled in the upper left corner of the
box. The abnormal behavior ‘eating’ indicated by green, ‘lying on desk’ indicated by orange, ‘fighting’ indicated by red, and the ‘normal’ behavior indicated
by yellow.

VI. DISCUSSIONS

To further demonstrate the reasonableness of AJENet,
we first discuss the generalizability of AJENet under

different generic object detection frameworks, then we dis-
cuss the structures of JP and AKJE on the Office Behavior
Dataset.
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Fig. 7. Comparison of visualization results on the PASCAL VOC 2012 Action Dataset. (a) results by Multi-branch [35]. (b) results by Cascade R-CNN [11].
(c) results by TOOD [24]. (d) results by AJENet(Ours). (e) ground-truth. Each behavior is labeled in the detected bounding box, where the detected category
of behavior is labeled in the upper left corner of the box. The behavior ‘phoning’ indicated by orange, ‘running’ indicated by red, and the ‘other’ behavior
indicated by purple.

TABLE III
RESULTS OF ABLATION EXPERIMENTS. AJENET CAN BE INTERPRETED

AS ‘BASE+JP+AKJE’. ‘LYING’ INDICATES THE ‘LYING ON DESK’
FOR BREVITY

TABLE IV
RESULTS COMPARISON OF DIFFERENT DETECTION APPROACHES. ‘LYING’

INDICATES THE ‘LYING ON DESK’ FOR BREVITY

A. Discussion About Different Detection Frameworks

To demonstrate the generalizability of AJENet under differ-
ent frameworks, we add our proposed AJENet under different
generic detection frameworks. As shown in the Tab. IV, the
addition of the AJENet increases the model performance by
2.7%, 6.8%, 2.0%, 1.4%, 1.1%, 2.8%, and 1.3%. No matter
what detection framework is used, our approach brings sig-
nificant improvements. However, it is worth noting that with
the use of a stronger detection framework, the effect of the

AJENet is weakened. It is because the stronger framework has
a stronger ability to extract features, the smaller the capacity
of the AJENet can enhance. Among them, the addition of
AJENet makes the performance improvement more obvious
for the prominent joints information such as ‘eating’. This
also confirms the effectiveness of our methods.

B. Discussion About Joints Predict Block

In this section, we discuss the multi-scale structure, the loss
functions used in the proposed JP block, the weights of α

during training, and the categories of joints used.
1) Multi-Scale Structure: As described above in

Sec. III-C.2, our proposed JP block can be adopted for
multi-scale. To constrain the output joints on the appropriate
feature layer, we choose different layers to join the JP
for experiments, and the experimental results are shown
in Tab. V. Experiments show that adding JP to all layers
has the best performance. Besides, the experimental results
show that compared with other branches, the performance
of adding joints predict branches in the P7 layer is more
obvious. It is because the joints’ output from the P7 layer
has a smaller scale. There is no need to predict very detailed
joint positioning information and more guidance for joint
classification. This further significantly improves the feature
extraction capability of the model.

Besides, in order to constrain the output human joints at
multi-scale structures using the proposed JointsLoss, we con-
duct related experiments on how to match the scale of the
output joints and ground truth at different scales. The scale of
the ground truth is larger than the scale of the output joints,
the experimental method mainly includes scaling the output
joints by deconvolution kernel or interpolation, and scaling
the ground truth by connecting the convolution kernel or inter-
polation. The experimental results are shown in Tab. VI, the
‘Base’ denotes the method without the multi-scale structure.
From the experimental results, the method of transforming the
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Fig. 8. Image visualization of real/suspected abnormal behaviors in our
collected Office Behavior Dataset and its detection results. (a) contains real
‘fighting’ and suspected ‘fighting’, (b) contains real ‘lying on desk’ and
suspected ‘lying on desk’, and (c) contains real ‘eating’ and suspected ‘eating’.
All the images are sampled randomly. It can clearly show the diversity
and difficulty of the office scenario dataset, while demonstrating effective
classification and localization of behaviors in our AJENet.

TABLE V
RESULTS COMPARISON OF DIFFERENT JOINTS PREDICT SCALES. ‘W/O’

INDICATES WITHOUT

TABLE VI
RESULTS COMPARISON OF DIFFERENT MATCH MECHANISMS BETWEEN

OUTPUT JOINTS AND GROUND TRUTH

ground truth scale has better performance than the method
of transforming the output joints scale. Among them, the
method of interpolating ground truth has the highest m AP .
It is because the joints are the low-dimensional information,
and the output joints are only different in scale, and there
is no difference in feature space. Therefore, the interpolation
method can achieve the goal. It is simpler, more effective, and
can reduce the difficulty of model learning.

TABLE VII
RESULTS COMPARISON OF DIFFERENT LOSS FUNCTIONS IN JP BLOCK

TABLE VIII
RESULTS COMPARISON OF DIFFERENT JOINTSLOSS WEIGHTS λ

TABLE IX
RESULTS COMPARISON OF DIFFERENT JOINT TYPES

2) Loss Function: To verify the effectiveness of the pro-
posed JointsLoss, we compare other loss functions commonly
used to constrain joints. As shown in Tab. VII, the results
indicate our proposed JointsLoss has the best performance. It
demonstrates that JointsLoss can supervise JP more effectively
and enable the model to attain better convergence. Besides,
in JointsLoss, the use of mean squared deviation improved by
0.7% compared to MSELoss. It demonstrates that our designed
mask generation mechanism and Gaussian filtering operation
can effectively suppress the effect of the background region on
the model and increase the number of positive samples, respec-
tively. Thus, we balance the number of positive and negative
samples during training and achieve better performance.

3) The Weights of λ: As described in Equ. 14 in Sec. III-F,
to select the appropriate weight λ of JointsLoss, we perform
the experiment by setting the weight values distributed in
[0, 100]. As shown in Tab. VIII, the experiments show that
when the loss of weight is 10, the m AP is the highest. It can
be seen that when the λ is too small, the JP cannot achieve
the purpose of optimizing feature extraction. On the contrary,
if the λ is too large, the model deviates from the focus and
puts more optimization on the joint prediction, which in turn
has a negative impact on the classification and location of the
object. Therefore, we set λ as 10 in the final model.

4) The Categories of Joints: To explore the effect of the
categories of joint points, we experimented with four types of
skeleton point types: CrowdPose [55]2 with 14 joint points,

2https://github.com/Jeff-sjtu/CrowdPose
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TABLE X
RESULTS COMPARISON OF DIFFERENT FEATURE ENHANCEMENT SCALES.

‘W/O’ INDICATES WITHOUT

MHP [55]3 with 16 joint points, COCO4 with 17 joint
points, and COCO-WholeBody [57]5 with 133 joint points.
Each one contains a different number and category of joints.
As shown in Tab. IX, the experiments show that using
COCO and COCO-WholeBody [57] have the best perfor-
mance. It is mainly because some behaviors in the Office
Behavior Dataset focus on the joints of the face, and COCO
and COCO-WholeBody pay more attention to the joints of
the face than CrowdPose [55] and MHP [55], so the perfor-
mance of COCO and COCO-WholeBody is better. In addition,
based on the COCO, COCO-WholeBody has carried out a
more detailed division of the human joints. Moreover, it is
worth noting that we obtain the highest results for both
experiments using two types of skeleton point, COCO and
COCO-WholeBody [57], thanks to the adaptive importance
of joint points in JP block that makes the enhanced features
robust enough. However, with the increase of the categories
of joint points, the parameters and calculation amount of
the model increase correspondingly. Therefore, the trade-off
between computational cost and performance, using COCO
has better performance.

C. Discussion About Adaptive Key Joints Enhancement Block

In this section, we discuss the multi-scale structure of fea-
ture enhancement and the different enhancement mechanisms.

1) Multi-Scale Structure: As described above in Sec. III-D,
our proposed AJJE block can be adopted for multi-scale. We
choose different layers to join the AKJE block for experiments.
As shown in Tab. X, the experiments show that adding
AKJE to all layers has the best performance. Besides, the
experimental results show that compared with other scales, the
performance improvement of feature fusion in the P6 layer is
more obvious. This is mainly related to the object scale, the
objects in the Office Behavior Dataset are distributed on the
P6 layer, so feature enhancement in this layer is more helpful
for subsequent classification and localization tasks.

2) Feature Enhancement Mechanisms: To verify the effec-
tiveness of the feature enhancement, we compare common
attention methods [36], [37], [42], [43] for feature enhance-
ment. As shown in Tab. XI, the experiments show that our
proposed AKJE block performs better than other methods. It
is mainly related to the fact that AKJE pays more attention

3https://github.com/ZhaoJ9014/Multi-Human-Parsing
4https://cocodataset.org/#keypoints-2017
5https://github.com/jin-s13/COCO-WholeBody

TABLE XI
RESULTS COMPARISON OF DIFFERENT ENHANCEMENT METHODS. ‘W/O’

INDICATES WITHOUT

to joints, and joint information is very important for behavior
detection. In addition, the AKJE can adaptively learn more
important joints. Therefore, compared with SENet [36] and
CBAM [37], which directly uses joints for channel-by-channel
enhancement, the performance is better.

VII. CONCLUSION

In this paper, we propose an Adaptive Joints Enhancement
Network (AJENet) for abnormal behavior detection in office
scenarios. AJENet enables the model to pay more attention
to more recognizable joint features, which consists of two
closely-related components, the Joints Predict (JP) block and
the Adaptive Key Joints Enhancement (AKJE) block. These
two blocks guide the network learning of behavior-related
joints from both implicit and explicit perspectives, and enable
the network to focus on essential joint features of the behavior.
In our collected Office Behavior Dataset, AJENet gets the
state-of-the-art performance of abnormal behavior detection
in office scenarios and improved the m AP by a large margin.
Further, based on the existing work, our work will continue in
the following two directions. Firstly, enrich feature representa-
tion with combined modalities of joints. Secondly, extending
the human joints to other multi-modality tasks.
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