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a b s t r a c t 

By sorting channel-minimized values in an ascending order, we individually put the values of several ex- 

isting image dehazing priors on the curve of sorted values to propose a framework for unifying and un- 

derstanding these priors. Then we propose a confidence ratio to specify the probability of each channel- 

minimized value within a range, and thus we can intuitively find a suitable point from the curve, which 

is actually defined as a novel prior. Although our novel prior and existing ones are perfectly unified un- 

der the same framework, our prior has an important advantage that it can freely control the suppression 

degree of outliers by directly adjusting the confidence ratio of channel-minimized values. In this way, we 

can remove influence of outliers in a controllable manner. To solve the problems caused by heterogene- 

ity of pixel values and abrupt jumps of scene depths in hazy images, we adopt a regression method to 

adaptively learn the relationship between patch appearance and confidence ratios for all pixels. To fur- 

ther improve robustness, we use a Gaussian kernel to smooth the estimated confidence ratios for local 

consistency. Extensive experiments on both natural and synthetic images show that our confidence prior 

achieves significantly better performance than existing state-of-the-art methods. 

© 2021 Elsevier Ltd. All rights reserved. 
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ntroduction 

Images taken in outdoor environments often suffer poor visi- 

ility and low contrast due to the presence of haze and dust in 

he atmosphere. If a camera is far from scene objects, tiny parti- 

les suspended in the atmosphere inevitably degrade image qual- 

ty. The faint color and shifted luminance of images have an ad- 

erse impact on vision applications, such as object detection [1] , 

ecognition [2] , and classification [3] . Haze removing is a critical 

ssue for image processing and computer vision. 

Existing haze removal methods are usually based on the forma- 

ion model of hazy images. The formation model divides the light 

eflected by objects in hazy scenes into an attenuation term and 

n airlight one. However, the dehazing physical model is a severely 

ll-posed problem. To make the problem solvable, researchers have 

roposed several priors based on statistical observation of hazy im- 

ges. The accuracy and rationality for prior selection are crucial for 

mage dehazing. Some methods utilize certain features of local pix- 

ls in hazy images as priors for transmission estimation, while oth- 

rs adopt the geometry of pixel cluster distributions for transmis- 
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031-3203/© 2021 Elsevier Ltd. All rights reserved. 
ion estimation. However, these priors are significantly influenced 

y outliers or noises in hazy images, so dehazed results are usually 

nsatisfactory in some cases. 

In this paper, we first propose a unified framework for better 

nderstanding of several well-known priors, including the color el- 

ipsoid prior by Bui and Kim [4] , the dark channel prior by He 

t al. [5] , and the filtering prior by Tarel and Hautiere [6] . Then

e propose a confidence prior to accurately estimate scene trans- 

issions for image dehazing. We take a minimization operation 

n each patch among channels, and then use Gaussian models to 

tatistically fit channel-minimized values of pixels in the patch. To 

ontrol the removal degree of outliers or noises, we propose to use 

 ratio to compute our confidence priors. Considering heterogene- 

ty of image signals and abrupt depth jumps in hazy images, we 

dopt a regression method to learn the relationship between patch 

ppearance and confidence ratios. Once we obtain these confidence 

atios, we can easily compute scene transmissions to robustly gen- 

rate dehazed images. 

Our confidence prior is completely different from existing 

ethods under the unified framework. Bui and Kim [3] used an el- 

ipsoid geometry to fit the distribution of pixel values, and embed- 

ed a fuzzy process into the construction of color ellipsoids. Unlike 

he color ellipsoid prior, we learn a ratio to adaptively adjust the 

https://doi.org/10.1016/j.patcog.2021.108076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108076&domain=pdf
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onfidence prior for each pixel. Our method is also different from 

he dark channel prior, which is actually the minimum value of 

ixels in each patch but sensitive to noises. Our method can re- 

ove the influence of outliers and noises in a controllable man- 

er in a viewpoint of statistics. Tarel and Hautiere [6] proposed a 

median of median” filter for prior estimation. However, it lacks 

easonable explanation of statistical analysis, and it cannot control 

he removal degree of outliers or noises. The main contributions of 

ur method are summarized as follows: 

1) We propose a framework to unify several well-known pri- 

ors. By ascendingly sorting channel-minimized values in lo- 

cal patches, we find that each of the priors is perfectly re- 

lated to a certain point on the curve formed by the sorted 

values. In this way, we put these well-known priors under a 

unified framework for better understanding. 

2) According to the unified framework, we present a confidence 

prior that is determined by a ratio. The confidence ratio is 

multiplied with a standard deviation to control the confi- 

dence of values that are statistically located in a range. The 

ratio can adjust the removal degree of outliers. Thus, we can 

statistically remove influence of outliers or noises, and ac- 

cordingly obtain more robust estimation of priors than ex- 

isting methods. 

3) To solve the drawback of fixed ratios, we propose to use a 

learning method for adaptive estimation of confidence ra- 

tios. Our confidence prior determined by a fixed ratio usu- 

ally fails in regions with abrupt depth jumps, so we need to 

adaptively estimate confidence ratios. For the sake of sim- 

plicity, we use a regression method to learn the relationship 

between patch appearance and confidence ratios in our im- 

plementation. Thus, we can use patch appearance to infer a 

ratio for adaptively estimating a confidence prior. The adap- 

tive confidence prior is more robust than a fixed confidence 

prior. 

The structure of this paper is organized as follows. We intro- 

uce previous work on image dehazing in section 2. In section 3, 

e first present a unified framework of channel-minimized values. 

hen, under the unified framework, we propose a confidence prior 

or efficient removal of outliers or noises. Section 4 compares our 

ethod with state-of-the-art methods on different image datasets. 

inally, we summarize the proposed method and draw the conclu- 

ion in section 5. 

elated work 

Most image dehazing methods obtain restored images by in- 

ersely solving the formation model of hazy images. To recover 

aze-free images, dehazing algorithms usually estimate the param- 

ters of the haze formation model, including the transmission of 

cenes and the intensity of atmospheric light. 

Early methods mainly rely on additional information about the 

cene to remove the veiling layer of haze, such as depth infor- 

ation, polarization angles of multiple images. Narasimhan et al . 

7] presented a geometric framework for scene understanding un- 

er hazy weather conditions, and computed the three-dimensional 

tructure and color of the scene from two or more hazy images. 

chechner et al. [8] proposed an image defogging algorithm using 

wo polarization images, because the airlight scattered by atmo- 

pheric particles is partially polarized. These two polarization im- 

ges are captured through parallel and perpendicular orientations, 

espectively. To implement haze removal, Kopf et al . [9] used scene 

epth information, which is directly accessible in geo-referenced 

igital terrain or city models. Haze removal methods from several 

mages are very flexible, but they are highly dependent on appli- 

ations. 
2 
Compared to restoration methods from multiple hazy images, 

isibility restoration from a single image has received more atten- 

ion in recent years, but it is a very challenging problem. Solutions 

or single image dehazing have been intensively developed in re- 

ent years. Tan [10] maximized local contrast in every patch of in- 

ut images to increase the visibility of images, because image con- 

rast is usually reduced by haze. By assuming that surface shad- 

ng and transmission are locally uncorrected, Fattal [11] used Inde- 

endent Component Analysis (ICA) to estimate scene albedos. The 

ethod uses statistical property to estimate parameters for single 

mage dehazing, but it fails in the case of dense fog. To further im- 

rove performance, Fatal [12] proposed a color line model by as- 

uming that pixel values in a small patch typically exhibit a linear 

elationship in the RGB color space. Unfortunately, the color line 

odel does not always hold. He et al. [5] observed a phenomenon 

hat the minimum color components of haze-free patches are usu- 

lly small and prone to zero. The phenomenon is called dark chan- 

el prior. He et al. [5] computed dark channel priors by using two 

inimization operations in local patches. The dark channel prior 

rovides an efficient way to enhance the visibility of hazy images, 

ut it cannot accurately handle bright areas and it is sensitive to 

oises. Many methods have been proposed to improve the dark 

hannel prior [13] . For example, Meng et al. [14] added a bound- 

ry constraint on the transmission function by exploring scene ra- 

iance. Ancuti et al. [15] implemented image dehazing based on 

ulti-scale fusion. Nishio et al. [16] proposed a Bayesian defog- 

ing algorithm, according to the fact that scene albedos and depths 

re two statistically independent variables. Mutimbu and Robles- 

elly [17] proposed an evidence combining method that exploits 

he ability of factor graphs. Some dehazing methods [18,19] com- 

ine the physical model with the Retinex assumption. Choi et al. 

20] achieved haze removal based on fog density perception. Their 

trategy is the same as haze density estimation also used by Jiang 

t al. [21] and Ling et al. [22] . 

Filtering based dehazing methods have been proposed. Li and 

heng [23] introduced a globally guided image filtering to preserve 

ne structures of dehazed images. By assuming that scene depths 

re smooth in a local region, Tarel and Hautiere [6] proposed a fast 

mage restoration algorithm by using median filtering. The algo- 

ithm can achieve real-time performance. Locally Adaptive Wiener 

ilters were used by Gibson and Nguyen [24] to refine estimation 

f fog amount in an image. 

With the rapid development of machine learning and deep 

earning, haze-relevant priors are recently investigated in a learn- 

ng framework. Tang et al . [25] investigated features related to the 

roperties of hazy images, and then used random forests to learn 

 mapping function between the haze-relevant features and trans- 

ission in every patch. Zhu et al . [26] created a linear model to 

stimate scene depths of hazy images under a color attenuation 

rior. According to the prior, the parameters of a linear function 

ere learned using a supervised learning method. Berman et al . 

27] focused on hazy lines derived from the linear color blend- 

ng of similar pixels collected from entire images, and then pro- 

osed a non-local prior that restores haze-free images using vari- 

us patch-based local priors. The prior is obviously different from 

raditional patch-based methods. Yang and Sun [28] proposed a 

eep learning approach for single image dehazing. Gandelsman et 

l . [29] proposed an unsupervised coupled deep-image-prior net- 

ork for haze removal. Cai et al . [30] proposed an end-to-end CNN 

etwork with a novel BReLU unit for intelligently extracting haze 

eatures and estimating transmission. Ren et al . [31] proposed a 

ulti-scale deep neural network to learn a mapping function be- 

ween hazy images and corresponding transmission maps. Li et al. 

32] proposed an All-in-One Dehazing Network (AOD-Net) for im- 

ge dehazing. Chen et al. [33] restored clear images using an adap- 

ive model, which can automatically select a patch size for each 
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Fig. 1. The airlight model. 
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ixel. Ren et al . [34] designed a network to learn confidence maps 

nd propose a fusion-based approach for haze removal. 

Recently, Generative Adversarial Networks (GAN) have achieved 

reat successes in many computer vision applications. Zhang and 

atel [35] used a GAN model to remove haze in images. Santra 

t al. [36] proposed a CNN-based comparator for image dehazing. 

ong et al. [45] recovered clear images by using a ranking CNN. 

en et al. [37] proposed a single image dehazing via multi-scale 

onvolutional neural networks with holistic edges, which consists 

f a coarse-scale net to predict a holistic transmission map, and a 

ne-scale net to locally refine dehazed results. Wu et al. [38] pro- 

osed a learning interleaved cascade of shrinkage fields to achieve 

aze removal for avoiding the weakness of noise sensitivity in 

ost existing methods. Liu et al. [39] proposed a Grid dehazing 

etwork (GridNet) for single image dehazing. Li et al. [40] pro- 

osed a level-aware progressive network for single image dehaz- 

ng, which can progressively learn the gradually aggravating haze. 

eng et al . [41] presented a multi-model fusing network for boost- 

ng the single-image dehazing. Qu et al . [42] designed an enhanced 

ix2pix dehazing network (EPDN) to generate clear results. Li et 

l . [43] restored haze-free image based on a conditional genera- 

ive adversarial network (cGAN). Chen et al . [44] proposed an end- 

o-end gated context aggregation network for visibility restoration 

rom a single haze image. Dudhane et al . [46] proposed a varicol- 

red end-to-end image de-hazing network to recover a haze-free 

mage from a given varicolored hazy image. Li et al . [47] proposed 

 task-oriented network for image dehazing, which involved a hy- 

rid network containing an encoder and decoder network and a 

patially variant recurrent neural network motivated by the image 

ormation of haze process. 

In this paper, we also propose a single image dehazing method. 

he main idea is to propose a confidence prior by freely controlling 

he removal degree of outliers or noises. Different from previous 

ingle image dehazing approaches, our method is built on a statis- 

ical analysis and a probability model of local patches. A Gaussian 

odel is used to fit the probability distribution of each patch, and 

 learning method is adopted to adaptively learn a prior ratio by 

atch appearance. 

he proposed algorithm 

According to the Mie scattering theory [48] , McCartney pro- 

osed the atmospheric scattering physical model in the 1970s. The 

cattering theory models a hazy image I as a linear combination of 

n attenuation term I att and an airlight one I air : 

 = I att + I air (1) 

The attenuation term describes the decay of scene radiance. 

nly a part of light reflected from the scene reaches the camera, 

nd other part of light changes its direction several times by parti- 

les in the atmosphere. The attenuation is exponentially related to 

he distance between the object and the camera: 

 att (x ) = J (x ) e −βd(x ) (2) 

here d ( x ) is the depth from the camera to the scene object for

ixel x , β is a scattering coefficient, and J ( x ) denotes the intensity

f the reflected light. 

The airlight term I air is described by an airlight model, as 

hown in Fig. 1 . The scene light propagates in straight lines, 

ut the light direction may be changed several times because of 

erosols in the atmosphere. A part of the airlight finally reaches 

he imaging equipment, and this reached light is often considered 

s the fog component of the image. The airlight model is formu- 

ated as follows: 

 (x ) = A (1 − e −βd(x ) ) (3) 
air 

3 
here A is a 3D vector of RGB values denoting the global atmo- 

pheric light. Further assuming that the atmosphere is homoge- 

ous, we can define a scene transmission t ( x ) as: 

(x ) = e −βd(x ) (4) 

Combining Eq. (2) , Eq. (3) and Eq. (4) , the atmospheric scatter- 

ng model can be rewritten as: 

 (x ) = J (x ) t(x ) + A (1 − t(x )) (5)

According to Eq. (5) , the key to obtain a clear image is to esti-

ate the transmission t ( x ) and the global atmospheric light A from 

 single input hazy image I ( x ). The global atmospheric light is of-

en assumed as a known global constant and it is independent of 

patial coordinates. If we get the airlight term I air , the transmission 

or each channel is computed by: 

(x ) = 1 − I c 
air 

(x ) 

A 

c 
(6) 

here c denotes one channel of RGB colors. So RGB images have 

hree transmissions. To obtain only one transmission from RGB im- 

ges, a channel-wise minimization operation on a hazy image I ( x ) 

s usually used to produce a channel-minimized image I m1 ( x ): 

 

m1 (x ) = min 

c∈{ r , g , b } ( I 
c (x )) (7) 

here I c is a channel c of I ( x ). We adopt Eq. (7) to rewrite

q. (6) to obtain a unique transmission for pixel x : 

(x ) = 1 −
min 

c∈{ r , g , b } (I c 
air 

(x )) 

min 

c∈{ r , g , b } ( A 

c ) 
= 1 − I m1 

air 
(x ) 

A 

m1 
(8) 

The above equation is usually unstable and sensitive to noises 

ince it considers only one pixel. This problem is usually solved by 

erforming the minimization operation again over a local region. 

he overall flowchart of our method 

Fig. 2 shows the overall flowchart of our method consisting of 

earning and dehazing stages. In the learning stage, we compute 

he mean and deviation of channel-minimized pixel values in a 

atch to represent the appearance of the patch, and then learn the 

elationship between patch appearance and confidence ratios for 

daptive removal of outliers or noises. In the dehazing stage, we 

se the learned model to infer a confidence ratio for each pixel, 

hen smooth confidence ratios with a kernel to remove noise, and 

nally we use the ratio to adaptively estimate a transmission map 

or computing a dehazed image. For the sake of simplicity, we use 

 linear regression for learning in our implementation. Other lin- 

ar or nonlinear models can be used to learn a mapping function 

etween appearance features and confidence ratios. 
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Fig. 2. The overall processing flowchart of our method. 

Fig. 3. Prior points of different methods under the unified framework of sorted 

channel-minimized values in a local patch. 
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 unified framework of existing priors 

The transmission estimation is a highly ill-posed problem since 

he number of unknowns is more than the number of equations. 

here are many dehazing priors based on channel-minimized val- 

es to solve the ill-posed problem. We use Eq. (7) to obtain a 

hannel-minimized version I m1 from a hazy image I , and then sort 

ixel values in a local patch �i of I m1 in ascending order. We dis- 

over that several existing priors can be unified under a framework 

f sorted channel-minimized values, as shown in Fig. 3 . 

he dark channel prior under the framework 

In Fig. 3 , a diamond point a stands for the minimum value I m1 
a 

f pixels in �i , which is just the dark channel prior (DCP) proposed 

y He et al . [5] , defined as: 

 

m1 
a = min 

x ∈ �i 

(
I m1 (x ) 

)
= min 

x ∈ �i 

(
min 

c∈{ r , g , b } 
( I c (x )) 

)
(9) 

Fig. 4 (a) and (b) are an input image I and its channel- 

inimized version I m1 , respectively. Fig. 4 (c) and Fig. 4 (i) show 

he dark channel prior I m1 
a and corresponding dehazed image, re- 

pectively. The dehazed image by DCP [5] has block artifacts on 

bject boundaries, and halo artifacts in the sky region. The mini- 

al value of I m1 is not suitable for depth discontinuity and bright 

egions. 

he filtering prior under the framework 

The value of the sorted curve at point c , denoted as a triangle,

s the filtering prior (FP) proposed by Tarel and Hautiere [6] . The 
4 
alue I m1 
c at the triangular point c is computed by: 

 

m1 
c = m − median 

x ∈ �i 

(∣∣I m1 (x ) − m 

∣∣) (10) 

here m stands for the median of I m1 in �i that is the value at a

ircular point f , defined as: 

 = I m1 
f = median 

x ∈ �i 

(
I m1 (x ) 

)
(11) 

Tarel and Hautiere [6] viewed image dehazing as a filtering 

roblem, and then proposed a prior I m1 
c by using a “median of 

edian” filter, formulated by Eq.(10) and Eq.(11). Fig. 4 (d) and (j) 

how the prior image I m1 
c and its corresponding dehazed image [6] , 

espectively. The “median of median” filter can greatly reduce halo 

rtifacts, but the median of I m1 in a patch lacks statistical basis 

nd it cannot accurately estimate scene depths. Dehazed images 

y [6] also suffer from color distortion and are not visually satisfy- 

ng due to lack of depths. Comparing Fig. 4 (a) with Fig. 4 (j), we

nd that the haze was not effectively removed. 

he color ellipsoid prior under the framework 

As shown in Fig. 3 , we use a point e marked as a rectangle to

old the mean of values I m1 in a local patch �i , defined as: 

i = I m1 
e = mean 

x ∈ �i 

(
I m1 (x ) 

)
= 

1 

| �i | 
∑ 

x ∈ �i 

I m1 (x ) (12) 

here | �i | denotes the pixel number of the local patch �i . The 

alue I m1 
d 

at point d , denoted by an ellipse, is actually the color 

llipsoid prior (CEP) proposed by Bui and Kim [4] , defined as: 

 

m1 
d = μi − σi (13) 

i = 

√ 

1 

| �i | 
∑ 

x ∈ �i 

(
I m1 (x ) − μi 

)2 
(14) 

Under the proposed framework, the Color Ellipsoid Prior (CEP) 

4] is actually the difference between the mean μi and the devia- 

ion σ i of channel-minimized values in a patch. Fig. 4 (e) and (k) 

how the color ellipsoid prior and its corresponding recovered im- 

ge, respectively. The color ellipsoid prior, defined as μi - σ i , actu- 

lly makes only 68.3% of pixel values in a range of [ μi - σ i , μi + σ i ].

n other words, the half of 31.7% pixel values, i.e. 15.85%, make con- 

ributions to the location of the prior. 

We observe the above-mentioned priors from a point view of 

tatistical histograms. Fig. 5 shows the histogram of I m1 in a patch 

i in Fig. 3 . The horizontal axis denotes pixel values, while the ver- 

ical axis shows the frequency of corresponding pixel values. The 

bscissa value of I m1 
a is the dark channel prior by He et al . [5] . I m1 

a 

s the minimum value of I m1 in �i . However, I m1 
a is possibly the 

alue of an outlier that is rarely correlated to the majority of pixel 

alues, and an outlier leads to an inaccurate estimation. The value 
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Fig. 4. Priors and corresponding dehazed images. (a) An input hazy image. Images of (b) minimized-channel values, (c) DCP [5] , (d) FP [6] , (e) CEP [4] that is actually our 

confidence prior with λ equal to 1, (f) our confidence prior with λ equal to 2, (g) our confidence prior with λ equal to 3, and (h) our confidence prior with learned λ. 

Dehazed images by (i) DCP [5] , (j) FP [6] , (k) CEP [4] equivalent to our method with λ equal to 1, (l) our method with λ equal to 2, (m) our method with λ equal to 3, and 

(n) our method with learned λ. 

Fig. 5. The distribution analysis of priors in a local region. 
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f I m1 
e denotes the median value of I m1 in the patch. I m1 

e is em-

edded in the prior proposed by Tarel and Hautiere [6] to estimate 

he airlight. The estimated airlight is just the abscissa value of I m1 
c . 

he prior I m1 
c seems statistically robust in the view of random vari- 

bles due to the difference of two median filtering results (Eq.10). 

owever, the prior lacks intuitionistic explanation, and it also fails 

n some hazy images. Bui and Kim [4] proposed the prior I m1 
d 

by 

tting the channel-minimized values I m1 in a patch to a unit el- 

ipsoid. The prior can reduce noises, but it is actually obtained by 

 fixed confidence ratio for every pixel according to our unified 

ramework. Hence, it does not adapt to patches with different dis- 

ributions. 

he proposed confidence prior 

To obtain more reliable estimation of transmission maps, we fit 

he histogram of I m1 by a normal distribution to easily remove out- 

iers or noises. Fig. 5 shows a dashed curve standing for a Gaussian 

istribution, which is used to statistically approximate the distribu- 

ion of channel-minimized values. Each channel-minimized value 

 

m1 ( y ) at y in �i is regarded as a random variable with a Gaussian

istribution: 

 

m1 (y) ∼ N( μi , σ
2 
i ) (15) 

The mean μi is a positional parameter describing the center 

f the normal distribution, while the deviation σ i measures the 

ispersion degree of data distribution. The probability density of 

 = I m1 ( y ) in �i can be fitted by a Gaussian function: 

f (v ;μi , σi ) = 

1 √ 

2 πσi 

e 
− ( v −μi ) 

2 

2 σ2 
i (16) 

To remove outliers or noises, we propose a novel prior based on 

he confidence of Gaussian distributions for improving robustness. 
5 
ccording to the unified framework as shown in Fig. 3 , we propose 

 confidence prior I m1 
b 

, defined as: 

 

m1 
b (i ) = μi − λσi (17) 

here λ is a ratio parameter that adjusts confidence degrees. For 

xample, if λ is set to 1, we have the confidence of 68.3% channel- 

inimized values that are in the range [ μi - σ i , μi + σ i ]. In fact,

he color ellipsoid prior is equal to our confidence prior with λ
qual to 1, as shown in Fig. 4 (e). If λ is set to 2 and 3, channel-

inimized values with the confidences of 95.4% and 99.7% are in 

he ranges [ μi -2 σ i , μi + 2 σ i ] and [ μi -3 σ i , μi + 3 σ i ], respectively. In-

reasing the confidence ratio λ magnifies the risk of introducing 

utliers and noises into the confidence prior. Fig. 4 (e), (f) and 

g) show our prior results by three different confidence ratios, and 

ig. 4 (k), (l) and (m) illustrate corresponding dehazed images for 

hese priors. As we can see, a larger ratio λ generates smaller pri- 

rs, and preserves more details. Corresponding dehazed images by 

maller prior values are more similar to the original image. 

Fig. 6 (a) and (b) show the histograms of I m1 for real world im- 

ges in Fig. 6 (c) and (d), respectively. Pixel values in most patches 

pproximately satisfy Gaussian distributions. In addition, the dis- 

ribution of I m1 can be more accurately fitted by Gaussian mix- 

ure models (GMM), but computations are also more complicated. 

herefore, we just use one Gaussian function to fit the histogram 

f I m1 . Fig. 6 (e) and (f) show the histograms of two nearby blocks.

ven if the two blocks are near to each other in the same image, 

hey also have totally different histograms. As shown in Fig. 6 (g) 

nd (h), the two patches denoted by two rectangles contain the 

ky and tree branches. 
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Fig. 7. Recovered images using different parameter p . (a) input image. (b) p = 0.75. 

(c) p = 0.85. (d) p = 0.95. 
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Unlike the above-mentioned priors, we use a confidence ratio 

to statistically control the removal degree of outliers to obtain 

 more reliable prior I m1 
b 

. The position of I m1 
b 

is determined by λ.

e can empirically specify a range for the ratio λ. As shown in 

ig. 5 , our confidence prior I m1 
b 

is within the prior range specified 

y λ= 1 and λ= 2. We can select a ratio λ to achieve an appropriate

onfidence prior for all local patches. In the case of Fig. 5 , we spec-

fy the confidence prior I m1 
b 

by setting λ to 1.8. The ratio λ should 

ot be set to the same value, since different patches may have dif- 

erent distribution of pixel values. Therefore, we propose to use a 

earning method, such as linear regression, logistic regression and 

eural networks, to adaptively estimate a confidence ratio λi for 

ach patch centered at pixel i . So, we rewrite Eq. (17) as: 

 

m 1 
b (i ) = μi − λi σi (18) 

To compensate the fitting errors by one Gaussian, a constant 

 (0 < p < 1) is introduced into Eq. (18) . Hence, Eq. (18) can be ex-

ressed as: 

 

m 1 
b (i ) = p ( μi − λi σi ) (19) 

The above modification allows us to adaptively preserve a small 

mount of haze for distant objects to reduce the loss of depths 

rought by human perception. Fig. 7 shows the haze removal re- 

ults with different parameters p . A smaller p leads to a result with

ore remained haze, and corresponding dehazed image is clearer 

or a larger p . The main reason is that the parameter p be respon-

ible for enhancing the perceptual depth. 

daptive estimation of confidence ratios 

An appearance feature vector ˆ v i extracted from a patch �i is 

losely related to the confidence ratio λi for the patch �i . For the 

ake of simplicity, we use a linear regression to fit the relationship 

etween λi and 

ˆ v i , formulated as: 

i = f ( ̂  v i ) = 

ˆ v T i ˆ w + b = 

[
v i 1 v i 2 ... v i j ... v iD 

][
w 1 w 2 ... w j ... w D 

]T + b 

(20) 

here v ij denotes the value I m1 of the j th pixel in the i th patch, D

epresents the number of pixels in the i th patch, w j is a weight for

 ij , and b is a bias coefficient. 

To simplify notations, we use an augmented feature vector 

 i = [ v i 1 v i 2 …v ij …v iD 1] T and an augmented weight vector 

 = [ w 1 w 2 …w j …w D b ] T , so the linear regression can be rewrit-

en as: 

i = f ( ̂  v i ) = f ( v i ) = v i T w (21) 

We aggregate all appearance feature vectors from each patch of 

ll images in a training dataset into a matrix, denoted as: 

 = [ v 1 v 2 ... v i ... v K ] (22) 

here K stands for the total number of patches for all images in 

he training dataset. To facilitate computation, the linear regression 

roblem can be further expressed as below: 

f (V ) = V 

T w (23) 
6 
To learn the augmented weight vector w , we need a training 

ataset containing haze-free images, corresponding hazy images 

nd transmission maps. It is very difficult to acquire these images, 

o we randomly selected 20 clean images and corresponding depth 

aps from the NYU Depth dataset [49] to generate synthesized 

raining samples. We used the physical model of Eq. (5) to synthe- 

ize hazy images. We used a random atmospheric light A = { k , k , k }

here k ∈ [0.7,0.99], and a random scattering coefficient β∈ [0.1,0.5] 

or synthesizing hazy images. 

Each training sample has a ground truth transmission t i for 

ixel i . Combining Eqs. (8) and (19) , we have the following equa-

ion for pixel i : 

 i = 1 − p · ( μi − λi σi ) 

A 

m1 
(24) 

here A 

m1 is the minimized channel of A . The ground truth t i is

nown for a training image I , so we solve the above equation to 

btain a confidence ratio λi for each pixel of the training image I : 

i = 

μi 

σi 

− 1 − A 

m1 t i 
p σi 

(25) 

From all patches on images of the training dataset, we use 

q. (25) to compute K confidence ratios λG = [ λ1 λ2 … λK ] 
T . Then 

e minimize the error between the ground truth ratio vector and 

he estimated ratio vector by the regression function ( Eq. 23 ) with 

nput appearance vectors V = [ v 1 v 2 … v K ]. The Mean Squared Error 

MSE) loss function l ( w ) is often used to measure the error: 

(w) = 

∥∥λG − V 

T w 

∥∥2 

2 
= ( λG − V 

T w) T ( λG − V 

T w) (26) 

Our goal in this paper is to find an optimized weight vector w 

o minimize the loss function l ( w ): 

 = argmin 

w 

( λG − V 

T w) T ( λG − V 

T w) (27) 

To solve the problem, we calculate the partial derivatives of l ( w ) 

ith respect to w and make them to be equal to zero: 

∂ l(w) 

∂w 

= −2 V ( λG − V 

T w) = 0 (28) 

Solving Eq. (28) , we can obtain w as: 

 = (V · V 

T + q E ) −1 · V · λG (29) 

here q is a small positive value (typically 0.0 0 01) to avoid divi- 

ion by zero, and E is an identity matrix. The learning framework 

f weights w is shown in Fig. 8 . Once the regression weight vector 

 is learned, we can easily predict λi for any appearance vector w i 

sing Eq. (21) . 

Several methods introduce a filter to preserve details and 

mooth images simultaneously. To process patches with abrupt 

epth jumps, we use a kernel to smooth predicted ratios. If the in- 

ensity of a pixel i is bigger than the average intensity of pixels in 

 patch centered at pixel i , λi will be prone to be a negative num-

er, while confidence ratios tend to be large for pixels in smooth 

reas. Before convolving a filter with a map λ, we need to restrict 

ach ratio λi to a range defined by a lower bound γ 1 and an upper 

ound γ 2 , formulated as: 

i = G � min(max( λi , γ1 ) , γ2 ) (30) 

here � stands for a convolution operator, and G is a kernel. We 

hoose the Gaussian kernel for smoothing. For every input image, 

he weight and size of kernel are the same. In our implementation, 

1 and γ 2 are set to 0 and 3, respectively. The confidence ratio 

ap λ becomes smooth after filtering by Eq. (30) . In this way, we 

an significantly reduce halo phenomenon in final dehazed images. 

According to the physical property of Eq. (1) , we can derive that 

 

m1 
air 

is subject to the following constraint: 

 < I m1 (i ) = I m1 (i ) − I m1 
att (i ) < I m1 (i ) (31)
air 
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Fig. 8. Learning procedure of confidence ratios. 
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values. (c) Dehazed image by our approach. 
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Therefore, I m1 
air 

should be positive and cannot be higher than the 

hannel-minimized value I m1 . Combining Eqs. (19) and (31) , we 

an estimate the final airlight I air by: 

 

m1 
air (i ) = max ( min (p( μi − λi σi ) , I 

m1 (i )) , 0) (32) 

The atmospheric light A can be directly estimated from hazy 

mages, and then the transmission map can be obtained using 

q. (8) . 

Fig. 4 (h) shows I m1 
air 

by our method with learned ratio λ, which 

s different from the results by our method with fixed ratios λ, 

s shown in Fig. 4 (e), (f) and (g). Our prior with learned ratios

reserves more details in regions with abrupt depths. Our prior is 

 little similar to He et al. [5] ’s prior for such patches with small

ariance. In addition, Bui and Kim [4] ’s prior is a special case of

ur method with λ= 1. 

tmospheric light estimation 

In most dehazing algorithms, the atmospheric light A is consid- 

red as a global constant and obtained by the intensity of the most 

aze-opaque region. The atmospheric light A contains the diffuse 

eflections of the sky, sunlight and reflected light from the ground, 

s shown in Fig. 1 . The atmospheric light by the most haze-opaque 

egion is not always correct when the sunlight and other lights re- 

ected by the ground cannot be ignored. According to Eq. (3) , if a

cene point is very far away from the camera, the depth d becomes 

ery large, leading to a zero transmission t . In this case, the airlight

 air of pixels with a very large depth ( d → ∞ ) can be regarded as

he value of A : 

 = I air (x ) for d(x ) → ∞ (33) 

In addition, the intensity I ( x ) of a pixel with an infinity depth

s equal to the airlight value I air ( x ) of the pixel since t ( x ) = 0, i.e.

 air ( x ) = I ( x ). 

Eq. (33) shows a simple way to estimate the atmospheric 

irlight A . In some cases, images do not contain very distant ob- 

ects in practice, and the sunlight in different weathers and the 

ight reflected by the ground cannot be ignored. Since white ob- 

ects reflect all colors of lights, we can use the color of pixels in

oth white objects and haze-opaque regions to estimate the atmo- 

pheric airlight A . He et al . [5] selected a part of bright pixels in

he dark channel as the airlight. In this paper, we select the top 

.1% brightest pixels in the channel-minimized map I m1 , then we 

egard the average color of these pixels as the atmospheric light A . 

ixels marked in red color points provide a good approximation of 

 , as shown in Fig. 9 (a) and (c). 

aze removal 

Once the airlight term I m1 
air 

and the atmospheric light A are ob- 

ained, we can directly compute the transmission map t according 
7 
o Eq. (8) , and then adopt Eq. (5) to recover the scene radiance. To

void noisy results by transmissions near to zero, we introduce a 

ower bound t 1 to restrict the value of t ( x ), and then recover the

cene radiance J ( x ), formulated as: 

(x ) = 1 − max ( min (p( μi − λi σi ) , I 
m1 (i )) , 0) 

A 

m1 
(34) 

 (x ) = 

I (x ) − A 

max ( t( x ) , t 1 ) 
+ A (35) 

We set t 1 to 0.1 for all images in our implementation. Fig. 4 (n)

hows the dehazed result by our method with learned confidence 

atios. Observing the dehazed images in Fig. 4 , we can conclude 

hat our method can remove haze and is robust to noises and 

utliers. 

xperiments 

To evaluate the performance of dehazing methods, we com- 

ared our method with recent state-of-the-art methods. The 

atasets for comparisons include both natural and synthetic im- 

ges. We conducted qualitative assessments on synthetic and nat- 

ral images. In addition, we performed quantitative evaluations on 

ynthetic images. We compared our method with prior-based ap- 

roaches that are DCP [5] , CAP [26] , DHL [27] , PDN [28] and DDIP

29] , and also with data-driven methods including OTSFDE [22] , 

ODN [32] , LPQC [36] , GFN [34] , cGAN [43] , GCA [44] , GridNet [39] ,

PDN [42] and MSBDN [51] . Note that PDN [28] , DDIP [29] , AODN

32] , LPQC [36] , GFN [34] , cGAN [43] , GCA [44] , GridNet [39] , EPDN

42] and MSBDN [51] are CNN-based methods. In our implementa- 

ion, we set p to 0.85, and used local patches with a fixed size of

 × 3 around each pixel. Local patches are used for computation 

f channel-minimized values and appearance vectors. In this paper, 

ll results by our method share the same parameters. 
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Fig. 10. Comparison results of haze removal methods on natural images. (a) Hazy images. Dehazed results of (b) DCP [5] , (c) CAP [26] , (d) DHL [27] , (e) OTSFDE [22] , (f) 

AODN [32] , (g) LPQC [36] , (h) PDN [28] , (i) GFN [34] , (j)DDIP [29] , (k) cGAN [43] , (l) GCA [44] , (m) GridNet [39] , (n) EPDN [42] , (o) MSBDN [51] , and (p) our method. 
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omparisons on natual images 

We compared our method with fourteen excellent algorithms. 

ince these methods achieved good visibility of restoration on gen- 

ral outdoor images, we compared them with our method on chal- 

enging natural images [50] containing rich details, bright, and sky 

cenes. Fig. 10 shows the outcomes of ‘animal’, ‘architecture’, ‘hu- 

an’, ‘landscape’ and ‘plant’ images by different dehazing methods. 

DCP [5] produced clear and natural restored images. However, 

here still exist severe color distortions in bright regions. This is 

ecause the dark channel prior takes outliers into account and 

auses an over-estimation of transmission. In addition, DCP [5] is 

nvalid in bright regions, such as sky, leading to color distortion, 

s shown in the sky of the ‘plant’ image in Fig. 10 (b). Besides,

he choice of the atmospheric light by DCP [5] has its own limita- 

ions, such as ignoring the influence of sunlight, and this method 

s prone to produce darker results. 

To achieve the visibility recovery of hazy images, Zhu et al 

26] proposed a powerful color attenuation prior (CAP) for depth 

stimation from a single input hazy image. As shown in Fig. 10 (c), 

AP maintains original colors, but it also retains a part of haze 

nd loses textures in dark regions. However, CAP adopts a constant 

cattering coefficient β , leading to incorrect estimation of trans- 

ission. 
8 
Fig. 10 (d) shows the results of DHL [27] . The ‘haze-line’ 

ethod proposed by Berman et al. [27] significantly reduces 

aze, but it also erodes and clips bright regions. The main rea- 

on is that the ‘haze-line’ prior cannot perfectly model the for- 

ation of haze in bright regions. This causes the results to 

e over-saturated in distant objects, such as the ‘human’ and 

he ‘building’ regions in Fig. 10 (d). Obviously, there are over- 

aturations and color distortions in distant regions of these 

mages. 

Fig. 10 (e) shows the dehazed results of OTSFDE [22] proposed 

y Ling et al . [22] . They first evaluated the fog density of a hazy

mage via a linear combination of three haze features, then mod- 

led a physics-based mathematical relationship between transmis- 

ion and fog density. However, as shown in Fig. 10 , the method 

enerates significantly over-enhanced images, and it is more prone 

o produce color distortion than other methods especially in ’ani- 

al’ and ’human’ regions. 

Li et al. [32] proposed a method based on CNNs by building 

 re-formulated atmospheric scattering model to obtain the haze- 

ree image from hazy images directly. This method avoids estimat- 

ng the transmission map and improves the object detection per- 

ormance on hazy images. However, color distortion also exists in 

he face of the woman and haze remains in distant regions, as 

hown in Fig. 10 (f). 
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Fig. 11. Comparison results of haze removal methods on realistic dense haze images. (a) Hazy images. Dehazed results of (b) DCP [5] , (c) CAP [26] , (d) DHL [27] , (e) OTSFDE 

[22] , (f) AODN [32] , (g) LPQC [36] , (h) PDN [28] , (i) GFN [34] , (j)DDIP [29] , (k) cGAN [43] , (l) GCA [44] , (m) our method with p = 0.85, and (n) our method with p = 0.95. 

Fig. 12. Comparison results of haze removal methods on realistic night images. (a) Hazy images; dehazed results of (b) DCP [5] , (c) CAP [26] , (d) DHL [27] , (e) OTSFDE [22] , 

(f) AODN [32] , (g) LPQC [36] , (h) PDN [28] , (i) GFN [34] , (j)DDIP [29] , (k) cGAN [43] , (l) GCA [44] , (m) our method with p = 0.85, and (n) our method with p = 0.95. 

Fig. 13. Results of dehazing methods on synthetic images. (a) Synthetic hazy images. Results of (b) DHL [27] , (c) OTSFDE [22] , (d) DDIP [29] , (e) GridNet [39] , (f) MSBDN 

[51] , (g) our method, and (h) Ground truth images. 
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Santra et al. [36] trained a CNN-based comparator (LPQC) and 

hen adopted it to directly find the ideal transmission map for haze 

emoval. As shown in Fig. 10 (g), the method achieved good results 

or most hazy images. But like most deep learning based meth- 

ds, the results remain some haze. This is because the transmission 

ap is obtained by binary search rather than physically modeling 

f haze formulation. 

PDN [28] uses CNNs to learn both dark channel and transmis- 

ion priors for single image dehazing. The method can significantly 

emove hazes from images and restore high color contrasts. How- 

ver, as shown in the sky region of the ‘architecture’ image in 

ig. 10 (h), PDN [28] cannot properly deal with sky regions and 

s prone to introduce artifacts. 
9 
GFN [34] is a deep learning network (Dehaze-net) using syn- 

hetic data for training. The approach achieves outstanding dehaz- 

ng performance due to investigating haze relevant features. It can- 

ot enhance the detail and visibility of images well, because it uses 

ynthetic image patches for training. As shown in Fig. 10 (i), the 

esults still remain some fog. 

DDIP [29] treats the dehazing problem as a layer-separation 

roblem, and uses a coupled ‘deep image prior’ network for haze 

emoval. Fig. 10 (j) shows restored images by DDIP. However, like 

he PDN [28] , it also tends to produce exaggerated sky regions. 

esides, DDIP [29] also produces over-enhancements and artifacts. 

GAN [43] adopts a conditional generative adversarial network to 

irectly estimate clear images from hazy images. Fig. 10 (k) shows 
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Fig. 14. Comparison results of dehazing methods on noisy images. (a) Noisy images. Results of (b) DHL [27] , (c) DDIP [29] , (d) GridNet [39] , (e) MSBDN [51] , and (f) our 

method. 

Fig. 15. Comparison results of dehazing methods on noisy images. (a) Noisy images. Results of (b) DHL [27] , (c) DDIP [29] , (d) GridNet [39] , (e) MSBDN [51] , and (f) our 

method. 

Fig. 16. Comparison results of dehazing methods on noisy images. (a) Noisy images. Results of (b) DHL [27] , (c) DDIP [29] , (d) GridNet [39] , (e) MSBDN [51] , and (f) our 

method . 
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he dehazed results of cGAN [43] . Although cGAN [43] is able to 

eserve structural details of objects, it also has limitations to han- 

le a dense haze scene, resulting in that the outputs are still hazy 

nd dark. In addition, color shift also occurs in the sky region of 

he last image. 

To avoid gridding artifacts, Chen et al . [44] used a smoothed 

ilated technique to propose a Gated Context Aggregation Net- 

ork (GCA) for dehazing and deraining, which utilizes a gated sub- 

etwork to fuse the features of different levels. As shown in Fig. 10 ,

CA [44] avoids the over-enhancement problem to some extent. 

owever, haze residue and color distortion still exist in the de- 

azed results, as shown in the second image of Fig. 10 (l). 

GridNet [39] consists of pre-processing, backbone, and post- 

rocessing modules. The backbone one implements attention- 

ased multi-scale estimation on a grid network, which allows ef- 

cient information exchange across different scales. As shown in 

ig. 10 , GridNet [39] succeeds in suppressing the halo artifacts to a 
ertain extent. 

10 
EPDN [42] transforms the problem of image dehazing to the 

roblem of image-to-image translation, and embeds a GAN in its 

rchitecture, which is followed by two well-designed enhancing 

locks. As shown in Fig. 10 , EPDN can remove haze effectively in 

eavily hazy scenes, while the method tends to cause severe color 

istortions (see the animal and the sky in Fig. 10 (n)). 

Dong et al . [51] proposed a multi-scale boosted dehazing net- 

ork (MSBDN) with dense feature fusion based on the U-Net ar- 

hitecture. MSBDN adopts the principle of boosting and error feed- 

ack, so it can preserve structural details of the objects, as shown 

n Fig. 10 (o). 

As shown in Fig. 10 (p), our method removed more haze and 

reserved clearer scenes than other methods. Our results are sim- 

lar to those produced by LPQC [36] and MSBDN [51] , but slightly 

ore natural in sky regions as exhibited in the ‘animal’ image. The 

eason why our method can achieve more natural results is that 

ur confidence prior can suppress outliers or noises. 
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Table 1 

Quantitative comparisons of average fog densities. 

Methods Datasets 

Daytime Night 

DCP 0.6657 0.4166 

CAP 1.078 0.535 

NLD 0.533 0.411 

OTSFDE 0.799 0.473 

AOD-Net 0.944 0.399 

LPQC 0.806 0.4323 

PDN 1.0312 0.5840 

GFN 0.598 ∗

DDIP 0.610 0.434 

cGAN 0.9491 0.4498 

GCA 0.8153 0.4507 

our method with p = 0.85 0.7680 0.4662 

our method with p = 0.95 0.4575 0.4227 
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To further demonstrate the effectiveness of our method, we 

lso randomly selected 30 daytime images and 30 night images 

rom the Real-world Task-driven Testing Set (RTTS) of RESIDE- β
or comparisons. Figs. 11 and 12 show the comparison results. The 

elected daytime images have dense haze, which are challenging 

o remove. The hazy images are given in Fig. 11 (a). DDIP still suf-

ers severe color shift as shown in the red rectangle of Fig. 11 (j),

nd the details of dehazed images by DDIP are still blurry. DHL 

nd OTSFDE can increase visual visibility, but they cannot produce 

olor-balanced results as illustrated in Fig. 11 (d) and (e). Fig. 11 (m)

nd (n) show the results by two variants of our method. The two 

ariants have the same parameters but with different p . Obviously, 

s p gets larger, the dehazed image becomes clearer. However, arti- 

acts are easily introduced in recovered results. From the Eq. (34) , 

e can conclude that decreasing the constant p makes the value 

f transmission to be close to 1. Larger transmission causes J ( x ) 

I ( x )- A + A . It means that the influence of the atmospheric light

s weakened on the restored image. This is the main reason that 

sing a lower p is able to obtain smoother images. On the con- 

rary, increasing p makes the value of transmission close to 0, but 

 lower transmission for recovering haze-free images magnifies the 

lobal atmospheric light and introduces halo artifacts. The dehazed 

ight image in Fig. 11 (e) denotes that OTSFDE is not robust to 

ight environment. 

We also used the average fog density [20] as a quantitative 

mage quality metric for realistic haze images. Table 1 shows the 

verage fog densities of dehazed results. Our method surpasses 

he fourteen State-of-the-Art methods in terms of fog density. For 

ight hazy images, our method also defeats most of them. 

omparisons on synthetic images 

In order to evaluate the performance of the proposed method, 

e compared our results with the results by several state-of-the- 

rt methods on synthetic hazy images with ground truth images. 

hese synthetic images include seven datasets. The first and sec- 

nd dataset are 30 indoor images (I-HAZE dataset [52] ) from the 

TIRE2018 dehazing challenge [53] denoted as NTIRE/IN , 45 out- 

oor images (O-HAZE dataset) from NTIRE2018 as NTIRE/OUT . The 

hird dataset including 23 images of the D-Hazy dataset. The D- 

azy [54] dataset is synthesized from Middlebury [55] and NYU 

ataset [49] . The images for comparisons in this paper are synthe- 

ized from Middlebury. The fourth dataset is 66 images from Foggy 

oad Image Database ( FRIDA ) [56] . The FRIDA dataset consists of 

RIDA and FRIDA2. The images used for comparisons are uniform 

og (U080) of FRIDA2. We also used the recent large-scale RESIDE 

REalistic Single Image DEhazing) dataset for comparisons. The fifth 

nd sixth datasets denoted as RESIDE/IN and RESIDE/OUT are from 
11 
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Fig. 17. Comparison results of dehazing methods on noisy images. (a) Noisy images. Results of (b) DHL [27] , (c) DDIP [29] , (d) GridNet [39] , (e) MSBDN [51] , and (f) our 

method. 

Fig. 18. Comparison results of dehazing methods on noisy images. (a) Noisy images. Results of (b) DHL [27] , (c) DDIP [29] , (d) GridNet [39] , (e) EPDN [42] , and (f) our 

method 

Table 3 

Quantitative comparisons of average CIEDE20 0 0s. 

Datasets Methods 

DCP CAP DHL OTSFDE AODN LPQC PDN GFN DDIP cGAN GCA Grid EPDN MSBDN Ours 

NTIRE/IN 22.57 14.60 13.21 17.56 15.06 14.84 15.58 16.42 13.35 15.08 15.66 19.26 14.96 12.93 16.29 

NTIRE/OUT 20.53 16.19 16.70 21.12 17.52 15.93 15.68 17.40 16.50 14.59 16.93 21.28 14.30 15.54 15.77 

D-HAZY 13.80 14.56 16.11 19.80 16.82 15.24 13.85 15.42 19.34 12.69 15.60 12.01 15.67 12.86 12.49 

FRIDA 15.16 17.40 14.74 12.81 15.36 17.21 15.81 17.94 12.72 14.63 15.15 16.73 17.19 15.94 13.94 

RESIDE/IN 12.19 8.26 12.35 18.82 9.67 6.99 7.16 6.85 10.89 11.09 2.47 1.89 8.73 6.88 7.27 

RESIDE/OUT 15.96 10.11 10.15 16.85 8.45 8.69 8.69 5.50 8.58 4.22 7.27 2.32 8.74 3.31 8.98 

HazeRD 17.93 16.08 13.79 14.72 13.21 15.78 14.25 16.12 14.99 13.14 15.01 20.99 15.44 13.39 13.23 
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00 synthetic indoor images and 500 synthetic outdoor images of 

he test set of RESIDE. The seventh dataset used for comparisons is 

5 images from hazeRD , which contains fifteen real outdoor scenes 

ith five different simulated weather conditions. The first, second, 

hird and fourth rows of Fig. 13 (a) and (j) show some examples 

nd corresponding ground truths, respectively. In Fig. 13 (a) and (l), 

ach row shows examples and corresponding ground truths from 

ifferent dataset, respectively. 

Fig. 13 shows the results of DHL [27] , OTSFDE [22] , DDIP [29] ,

ridNet [39] , MSBDN [51] and our method. DDIP [29] ’s results 

ave the color shift problem and the over-saturation problem. DHL 

27] is prone to produce halo aircrafts, as shown in the bright re- 

ion of the first row of Fig. 13 (b). OTSFDE [22] leads to bad re-

ults on edges and severe color distortion. As we can see from 

ig. 13 (c), OTSFDE [22] ’s results are quite different from the 

round truth images. As shown in Fig. 13 (f), our results are a lit-

le similar to MSBDN [51] ’s results, but our method removes more 

aze than MSBDN [51] , such as distant regions in the fourth im- 
12 
ge. As shown in the fifth and sixth rows of Fig. 13 (e), Dehazed

mages by GridNet [39] are most similar to corresponding ground 

ruths on the datasets of RESIDE/IN and RESIDE/OUT, but there 

re artifacts and obviously remained haze in dehazed images for 

ther datasets. Our confidence prior has better generalization per- 

ormance on most of the test datasets. 

Then, we quantitatively assess our confidence prior. The in- 

icators for evaluation are the average peak signal-to-noise ratio 

PSNR) and the structural similarity (SSIM). PSNR and SSIM are 

idely used in image objective evaluation. Higher PSNR and SSIM 

sually means better quality, but it is based on the pixel-wise error 

etween dehazed image and corresponding ground truth. In some 

ases, it is inconsistent with human perceptional quality assess- 

ent. Table 2 shows comparisons of average PSNRs. Our method 

chieves very good PSNR results. Our method cheeringly ranks in 

he first position for hazeRD , and it has the best performance of 

aze removal in term of the SSIM metric on the hazeRD dataset. 

lthough our method is not the best one on other datasets, our 
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Fig. 19. Sensitivity to different noises over synthetic images with ground truths. Comparisons (a) on Ntire/IN, (b) Ntire/OUT, (c) D-Hazy, (d) FRIDA, (e) RESIDE/IN, (f) RE- 

SIDE/OUT, and (g) hazeRD. 

m
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t

t

o
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t

and FRIDA datasets. 
ethod outperforms most methods, and average PSNRs and SSIMs 

f our method are very similar to the best results. It is worth men-

ioning that our method exceeds almost all traditional methods on 

he seven datasets. In addition, our method even outperforms most 

f deep learning dehazing methods. 

To further validate the superiority of our method, we used 

IEDE20 0 0 [57] , Universal Quality Index (UQI) [58] and Learned 
13 
erceptual Image Patch Similarity (LPIPS) [59] as dehazed perfor- 

ance metrics. Smaller CIEDE20 0 0 and LPIPS mean better dehazed 

erformance, while a larger UQI means a better result. The com- 

arison results are listed in Tables 3 –5 . Our method achieved the 

ighest UQI on the D-HAZY, and FRIDA datasets. Our method has 

he best performance in the LPIPS metric on the HAZERD, D-HAZY 
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Table 4 

Quantitative comparisons of average UQIs. 

Datasets Methods 

DCP CAP DHL OTSFDE AODN LPQC PDN GFN DDIP cGAN GCA Grid EPDN MSBDN Ours 

NTIRE/IN 0.374 0.449 0.565 0.401 0.419 0.510 0.511 0.436 0.457 0.463 0.373 0.289 0.341 0.508 0.499 

NTIRE/OUT 0.633 0.579 0.733 0.494 0.542 0.679 0.720 0.638 0.590 0.642 0.526 0.446 0.582 0.542 0.719 

D-HAZY 0.626 0.657 0.629 0.525 0.602 0.631 0.662 0.609 0.513 0.540 0.546 0.613 0.637 0.646 0.675 

FRIDA 0.570 0.535 0.674 0.646 0.666 0.463 0.638 0.444 0.599 0.350 0.434 0.297 0.332 0.089 0.691 

RESIDE/IN 0.706 0.734 0.695 0.430 0.719 0.818 0.790 0.537 0.676 0.155 0.875 0.904 0.225 0.240 0.791 

RESIDE/OUT 0.592 0.636 0.690 0.531 0.689 0.819 0.722 0.783 0.680 0.779 0.614 0.913 0.743 0.728 0.723 

HazeRD 0.441 0.497 0.587 0.451 0.527 0.511 0.562 0.434 0.458 0.496 0.524 0.296 0.334 0.471 0.577 

Table 5 

Quantitative comparisons of average LPIPSs. 

Datasets Methods 

DCP CAP DHL OTSFDE AODN LPQC PDN GFN DDIP cGAN GCA Grid EPDN MSBDN Ours 

NTIRE/IN 0.296 0.276 0.239 0.349 0.310 0.228 0.237 0.282 0.327 0.277 0.271 0.364 0.246 0.257 0.242 

NTIRE/OUT 0.314 0.360 0.291 0.402 0.394 0.304 0.284 0.379 0.451 0.360 0.372 0.452 0.318 0.399 0.287 

D-HAZY 0.183 0.190 0.215 0.270 0.241 0.194 0.182 0.225 0.371 0.194 0.247 0.185 0.228 0.201 0.167 

FRIDA 0.288 0.334 0.282 0.265 0.319 0.384 0.287 0.360 0.271 0.351 0.299 0.405 0.327 0.295 0.236 

RESIDE/IN 0.138 0.023 0.111 0.316 0.146 0.077 0.078 0.068 0.191 0.077 0.023 0.012 0.046 0.028 0.083 

RESIDE/OUT 0.196 0.135 0.153 0.275 0.141 0.075 0.106 0.139 0.230 0.169 0.146 0.020 0.119 0.107 0.119 

HazeRD 0.230 0.229 0.203 0.283 0.226 0.210 0.197 0.257 0.303 0.221 0.237 0.328 0.233 0.214 0.270 
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omparisons of robustness to noises 

In order to prove that our method is robust to noises and out- 

iers, we added independent and identically distributed Gaussian 

oises with a mean of 0.1 and variances of 0.01, 0.025 and 0.05 

o the hazy images in the seven synthetic datasets. Fig. 14 (a), 

ig. 15 (a), Fig. 16 (a), Fig. 17 (a), and Fig. 18 (a) are the noisy 

mages synthesized from the first, third, fourth, sixth and seventh 

ows of Fig. 13 (a). The variances of added noises in each row of

ig. 14 (a), Fig. 15 (a), Fig. 16 (a), Fig. 17 (a), and Fig. 18 (a) are 0.01,

.025 and 0.05, respectively. As shown in Fig. 18 , DHL [27] ’s results

ave higher contrast than our results, while their results also suf- 

er color distortions. As shown in Fig. 14 (d), Fig. 15 (d), Fig. 16 (d),

nd Fig. 18 (d), GridNet [39] cannot produce clear images, and this 

henomenon gets worse for more noise. It is worth mentioning 

hat with noise levels becoming higher, dehazed results are more 

imilar to Gaussian noisy hazy images. This is because high level 

oises make the real imaging model inconsistent with the original 

ne. The corrupted imaging model causes our method to fail for 

mages with high level noises. 

We used the same comparison methods on noisy hazy images 

o demonstrate dehazing sensitivity to noises. Fig. 19 shows the 

eport of average PSNRs obtained by the fourteen methods as the 

ensitivity indicator. LPQC [36] fails in dealing with heavy noisy 

mages due to its specific mechanism of estimating transmission. 

ur method almost yields the best results among traditional meth- 

ds (DCP [5] , CAP [26] , HLD, OTSFDE [22] ) for all datasets with

ifferent-level noises. Although we do not achieve the best results 

mong the seven CNN-based methods, we obtain high PSNR val- 

es that are very near to the best values. According to the quan- 

itative comparisons on noisy images, we find that our results are 

ery similar to the ground truths and have less noises than those 

f many methods. This indicates that our method is more robust 

o noises. 

Extensive experiments on both natural and synthetic images 

alidate that our method achieves significantly better performance 

han state-of-the-art methods. In summary, our method signif- 

cantly outperforms most of existing methods, including deep 

earning methods. However, our method needs to compute fea- 

ures of local patches, so it has high computational complexity. We 

an design efficient feature extraction algorithms or adopt GPUs to 

peed up our method in the future. 
14 
onclusions 

Due to tiny particles suspended in the air, images taken in out- 

oors usually have low contrast and poor visibility. To obtain clear 

mages from hazy images, many image dehazing methods have 

een proposed in recent years. Existing methods usually assume 

ome priors that hazy images have special properties. However, 

hese priors are not always robust enough, and most of them of- 

en fail in some cases due to high brightness of some regions, out- 

iers or noises. To better understand these priors, we first generate 

 curve of sorted channel-minimized values computed in a local 

atch, and then put the values of several well-known priors on the 

urve to propose a framework for unifying them. Then we propose 

 novel prior under the framework by specifying a ratio, which is 

sed to adjust the confidence degree of channel-minimized values 

n local patches. Thus we can freely remove the influence degree 

f outliers or noises. In addition, we adopt a regression method 

o adaptively learn the relationship between patch appearance and 

onfidence ratios for all pixels. Thus, we can solve the problem on 

eterogeneity of pixel values and abrupt jumps of scene depths 

n hazy images. To further improve robustness of the estimated 

onfidence ratios, we use a kernel for smoothing. We conducted 

ery extensive experiments on both natural and synthetic images. 

xperimental results also show that our method achieves signifi- 

antly better performance than existing state-of-the-art methods. 

n addition, we can adjust the ratios to control the removal degree 

f outliers or noises. In this way, we make a good balance between 

ehazing quality and noise suppression. 

Although our confidence prior achieves excellent results for 

aze removal, there are still some common problems to be solved. 

irstly, the hyperparameter p in our method highly depends on 

xperiences and is set to be constant in our implementation. A 

onstant hyperparameter p is not suitable in inhomogeneous at- 

ospheric conditions, since different image patches possess differ- 

nt feature distributions. Therefore, dehazing algorithms are prone 

o obtaining incorrect transmissions in some cases. Although the 

arameter selected by experiences can obtain outstanding dehaz- 

ng effects, a more flexible method to estimate the hyperparame- 

er p is highly desired. Secondly, the dehazed results by the pro- 

osed method still have much remaining haze and noise for dense 

aze images. Thirdly, although our method outperformed most ex- 

sting methods, it did not obtain the best performance on night- 
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ime haze images in terms of fog density. The main reason may 

e that objects at nighttime are illuminated by man-made lights 

otally different from the sun light and nighttime images usually 

ontain many pixels with low intensity directly leading to a lot 

f zero channel-minimized values. Therefore, it is worth exploring 

ore robust priors for nighttime or low intensity images. Fourthly, 

mages captured in poor weather, like sandstorm condition, gen- 

rally exhibit serious color distortion problems. Our method may 

eglect image degradation caused by the varicolored appearance 

f the haze in captured images. In future work, it is necessary for 

s to explore an image dehazing approach to keep color balance 

or haze removal. We will investigate these problems in the future. 
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