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Tis paper investigates the distributed H∞ consensus fltering issue for a class of distributed parameter systems with bounded
disturbance. In a framework of optimizing performance, a new approach to improving flter performance is proposed by
employing mobile sensor networks. Moreover, the information missing in mobile sensor networks is modeled as a conditional
probability distribution. Te aim of the fltering challenge is to construct a distributed consensus flter such that the fltering error
system is globally asymptotically stable in the mean square, and what disturbances do to the estimation accuracy is attenuated at
the H∞ consensus performance level. Utilizing the Lyapunov direct approach and the spatial operator technique, several sufcient
criteria are given for the proposed flter to satisfy the H∞ consensus performance constraint. Finally, a numerical simulation is
given to demonstrate the efectiveness of the design scheme of the proposed flter.

1. Introduction

Over the last decade or so, wireless sensor networks (WSNs)
have been successfully applied in a wide range of areas, such
as environmental monitoring, military applications, smart
buildings, and health management [1]. A sensor network, in
general, comprises a group of sensing devices that can
communicate wirelessly to coordinate their task and collect
data. Sensor network observations are required to be pro-
cessed in order to ensure decision-making. As a result, the
problem of state estimation for a wide variety of systems has
attracted considerable attention. A centralized data pro-
cessing method can be used to estimate the state of a system,
determine its parameters, and identify its detection sources.
To study the state estimation problem of discrete linear
systems with Markovian delay and packet losses, a class of
limited received history estimators based on the idea of jump
linear estimators was proposed in [2].

Yet each sensing node is equipped with an embedded
device which has a limited power. Te use of distributed
estimation is an efective way to save energy. A sensor
scheduling strategy was proposed in [3] based on energy
conservation while focusing on distributed state estimation
for wireless sensor networks under energy constraints. In
[4], a robust performance-preserving state estimator was
designed to obtain state estimation of discrete-time complex
networks with estimation errors satisfying mean-square
exponential convergence for real networks with packet losses
and noise interference in data transmission. To further
extend the estimation accuracy in case of data missing, H∞
estimation is considered. An H∞ estimator was designed in
[5], which achieved the state estimation of a class of time-
varying neural networks under measurement degradation
and randomly occurring deception attacks, such that the
predefned probabilistic constraints of error dynamics were
satisfed and that H∞ performance was guaranteed. It is
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noted that the systems to which these state estimates are
applied are lumped parameter systems.

Also, the estimation of distributed parameter systems is
receiving more attention recently. Te work to predict the
water quality concentration distribution in the water supply
appeared in [6], where the system was modeled by the re-
action difusion equation. For distributed parameter pro-
cesses [7], optimal state estimators are provided based on
optimal sensor locations. An adaptive consensus flter was
proposed in [8] for fltering in distributed parameter systems
with fxed sensors located in the system in a spatially dis-
tributed way.

Data collected by a network of mobile sensors are an-
other type of estimate in spatially distributed systems. In [9],
an output feedback controller was designed using a mobile
sensor network with actuators to stabilize a class of ran-
domly distributed parameter systems faster. With the in-
troduction of this mobile actuator-sensor network, the
control performance of the spatially distributed process is
enhanced, and thus, an optimization framework for the
control problem of distributed parameter systems is built. In
[10], the estimation problem of spatially distributed pro-
cesses described by a partial diferential equation was studied
using a group of sensors which could move in the spatial
domain in order to enhance the performance of the state
estimator. Compared to a group of immobile sensors, mobile
sensors have the fexibility to move around when collecting
data. Terefore, the number of sensors in the system can be
reduced, which reduces energy consumption and increases
efciency. Te state estimator designed with the guidance of
mobile sensors is capable of achieving better estimating
performance as shown in [10]. Related research work has
been further extended to other aspects. In [11], an accuracy
reconstruction of the trafc fow was achieved using data
collected by a mobile sensor network for the Light-
hill–Whitham–Richards model described by partial difer-
ential equations. And the parameter estimation of
distributed processes by optimizing sensor locations was
studied in [12].

Unfortunately, it is often the case that information re-
garding the system states is only partially available in
practice. In real-world engineering, sensor temporal failure

or network transmission delay are the main causes of the
missing measurement phenomenon in networked envi-
ronments. Te frst study addressing the fltering problem
with missing measurements defned by Bernoulli distribu-
tions appeared in [13], and works addressing other lumped
parameter systems with probabilistic missing data followed
in [14–16]. Te studies mentioned above brought up the fact
that the observed output from fxed sensors was incomplete.
In the measured output produced by mobile sensor net-
works, missing data have, however, often been ignored up to
this point. A potential challenge of this issue is that the
coefcients of the evolution equation which represent the
spatial distribution process are operators and need to be
dealt with by functional analysis.

As was previously stated, few studies have been un-
dertaken to deal with distributed H∞ consensus fltering
systems with missing measurements. Our motivation for
writing this paper is to focus on the problem of distributed
H∞ consensus fltering for parabolic distributed parameter
systems with multiple missing measurements utilizing
mobile sensor networks. Our approach aims to derive the
state of spatially dispersed processes from the output with
missing data in such a way that the fltering error reaches
zero asymptotically stable in the mean square and that a
certain H∞ perturbation rejection attenuation level is en-
sured. For each moving sensing device, optimal trajectory
planning can be produced with the use of spatial operators
and the Lyapunov direct method. After which, a distributed
flter subject to H∞ consensus performance is constructed
while taking into account the use of mobile sensors to
improve the flter’s performance. To demonstrate the ef-
fectiveness on the proposed conditions, the simulation is
ofered as an example.

2. Problem Formulation

In chemical reactors, parabolic partial diferential equations
can often be used to model changes in concentration in
chemical reactions and the evolution of temperature in heat
exchange [17]. Te spatial distribution of temperature in a
chemical reactor can be described by the following parabolic
partial diferential equation:

zL(t, η)

zt
�

z

zη
a(η)

zL(t, η)

zη
􏼠 􏼡 − φ(L(t, η))L(t, η) + d(η)w(t),

z(t) � 􏽚
l

0
b(η)L(t, η)dη,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

subject to the initial condition

L(0, η) � L0(η), (2)

and having the Dirichlet boundary condition as

L(t, 0) � L(t, l) � 0, t≥ 0, (3)

where L(t, η) indicates that the system is in the state of the
location η at the time t and η is a spatial variable, varying in
Ω � [0, l].Teother variable of the state is the time t ∈ [0, +∞).
Te difusion coefcient a(η)≥ a0 > 0. φ(L(t, η)) is a nonlinear
function and satisfes φm ≤φ(L(t, η))≤φM, where φm and φM

are known bounds. w(t) is an external disturbance, and d(η)
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denotes its spatial distribution. z(t) is the output to be estimated,
and b(η) denotes the output’s spatial distribution.

Te spatial measurements from n mobile sensors are as
follows:

y(t) �

y1(t)

y2(t)

⋮

yn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

β1(t) 􏽚
l

0
c1 η; ηs

1(t)( 􏼁L(t, η)dη

β2(t) 􏽚
l

0
c2 η; ηs

2(t)( 􏼁L(t, η)dη

⋮

βn(t) 􏽚
l

0
cn η; ηs

n(t)( 􏼁L(t, η)dη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

or

yi(t) � βi(t) 􏽚
l

0
ci η; ηs

i (t)( 􏼁L(t, η)dη, i � 1, 2, . . . , n, (5)

where yi(t) is the measurement result that the ith mobile
sensor collected. Te spatial distribution of the ith
moving sensing device is given by a nonnegative
bounded function ci(η; ηs

i (t)), where ηs
i (t) is the position

function of the ith sensor with respect to the time t,
varying in [0, l]. It should be noticed that ci(η; ηs

i (t))

indicates that each sensor may have a diferent
distribution.

Te stochastic variable βi(t) ∈ R, i � 1, 2, . . . , n has
values 1 and 0 for every i with

Prob βi(t) � 1􏼈 􏼉 � βi, and Prob βi(t) � 0􏼈 􏼉 � 1 − βi, (6)

where βi, i � 1, 2, . . . , n are given constants taking values in
[0, 1].

It is assumed that βi(t) is independent of the system’s
initial state and is also independent of w(t). Hence, it is easy
to draw the following results:

E βi(t) − βi􏽮 􏽯 � 0 as well asE βi(t) − βi􏼐 􏼑
2

􏼚 􏼛 � βi 1 − βi􏼐 􏼑.

(7)

Remark 1. Te distributed parameter control system in this
paper receives the measurement output from the mobile
sensor i. Probabilistic missing data are unavoidable in sensor
networks as sensing nodes can move around, and there is
only so much channel bandwidth for signal transmission.
Te new sensor network model includes missing data at
random and can more accurately depict mobile sensor
network reality. Note that such a data missing mode was
introduced in [13] frst by Nahi.

As a general matter, the spatial distribution of mobile
sensors at each time-varying position ηs

i (t) can be expressed
as

ci η; ηs
i( 􏼁 �

ci(η), if η ∈ ηs
i − εi, η

s
i + εi􏼂 􏼃,

0, otherwise,
􏼨 (8)

or

ci η; ηs
i (t)( 􏼁 � ci(η) H η − ηs

i − εi( 􏼁( 􏼁 − H η − ηs
i + εi( 􏼁( 􏼁􏼂 􏼃,

(9)

which are depicted as two diferent heaviside step functions.

Remark 2. Nowadays, most of the spatial distributions [8]
about mobile agents are described by the following
expression:

c η; ηs
i( 􏼁 �

1, if η ∈ ηs
i − ε, ηs

i + ε􏼂 􏼃,

0, otherwise.
􏼨 (10)

Te aforementioned expression of the assumption in-
dicates that the network of sensors is homogeneous. And the
distribution of sensors given in (8) shows that each moving
sensing device in the mobile sensor network may have a
diferent location distribution; that is, ci(η; ηs

i (t)) denotes a
nonhomogeneous network. Tus, since Assumption (8) is
employed, the result of this study would be less conservative.

More generally, the distribution of each sensor also can
be piecewise smooth in local. For instance, one sensor’s
distribution in a symmetric interval [ηs

i − ε, ηs
i + ε] can be

shown as

ci(η) �

1
ε
, if η ∈ ηs

i −
ε
3
, ηs

i +
ε
3

􏼔 􏼕,

1
2ε

, if η ∈ ηs
i −

ε
2
, ηs

i −
ε
3

􏼔 􏼓∪ ηs
i +

ε
3
, ηs

i +
ε
2

􏼔 􏼓,

0, if η ∈ ηs
i − ε, ηs

i −
ε
2

􏼔 􏼓∪ ηs
i +

ε
2
, ηs

i + ε􏼔 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Terefore, the more general distribution of each mobile
sensor can be taken into account within the proposed
framework as follows:

ci η; ηs
i( 􏼁 � 􏽘

n

j�1
cij(η) H η − ηs

i0 + (j − 1)Δh( 􏼁( 􏼁􏼂

−H η − ηs
i0 + jΔh( 􏼁( 􏼁􏼃,

(12)

where Δh � (ε+ + ε−)/m2, ηs
i0 � ηs

i − ε− , i, j � 1, 2, . . . , n.
It is advantageous to rewrite the parabolic system (1) in

an abstract way in order to apply the Lyapunov direct
method for H∞ performance analysis of the fltering error
system and the optimal moving strategy of mobile sensors.

LetH be a Hilbert space that has the inner product 〈·, ·〉,
and its induced norm is | · |. Consider that B is a refective
Banach space, which is continuous and densely embedded in
H, ‖ · ‖ as a norm ofB.B∗ isB’s conjugated dual, whereas
‖ · ‖∗ is its induced norm. It followsB⟶H⟶B∗ with
both continuously and embedding dense, and as a result, we
have |h|≤ α‖h‖, h ∈B, where α [18] is positive constant.
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Here, the linear operator A: B⟶B∗ which is called
state operator satisfying the following assumptions [18]:

(A1) |〈h,Ag〉|≤ ϱ0‖h‖‖g‖, h, g ∈B, where ϱ0 > 0,
namely, A is bounded.
(A2) 〈h, −Ah〉≥ a0‖h‖2, h ∈B, where a0 > 0, namely,
−A is coercive.
Aside from that, the perturbation operator
D: R⟶B∗ can be defned as

〈Dw, h〉 � 􏽚
l

0
d(η)w(t)h(η)dη,

or,

Dw(t) � d(η)w(t).

(13)

Satisfying the following assumption:
(A3) D is bounded, that is, 〈h,Dh〉≤ d〈h, h〉, where
h ∈B.
In a similar way, the operator B: R⟶B∗ is ofered
by

〈Bh, g〉 � 􏽚
l

0
b(η)h(η)g(η)dη. (14)

with the underlying assumption:
(A4) 〈h,Bh〉≤ σb〈h, h〉, that is, B is bounded.

Ten, the distributed parameter system (1) can be re-
written to compact form as follows:

_L(t) � AL(t) + Dw(t),

z(t) � BL(t),

⎧⎨

⎩ (15)

whereH � L2(Ω) is the state space. Te current state of the
system is L(t, ·) � L(t, η): 0≤ η≤ l􏼈 􏼉. Te Sobolev spaceB �

H1
0(0, l) � g ∈ H1(Ω)|g(0) � g(l) � 0􏼈 􏼉 rules over the

space B, and its conjugate dual space is B∗ � H− 1(Ω).
Let the infnitesimal operatorA � (d/dη)(a(η)(d/dη))

−φ, and its proposed domain is established by D(A) �

g ∈ L2(Ω): g, g′are absolutely continuous,􏽮 g″ ∈ L2
(Ω) andg(0) � g(l) � 0}. Te domain D(A) of the oper-
ator A is dense in H and thus generates a strongly con-
tinuous semigroup T(t), t≥ 0 [18].

Remark 3. Te following calculation can be employed to
verify that the bounded and coercivity assumptions (A1) and
(A2) are valid:

|〈h,Ag〉| � 􏽚
l

0

d
dη

a(η)
dh(η)

dη
􏼠 􏼡 − φ(h(η))h(η)􏼢 􏼣g(η)dη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ a0 􏽚

l

0

dh(η)

dη
dg(η)

dη
dη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ φM 􏽚
l

0
h(η)g(η)dη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ a0

�������������

􏽚
l

0

dh(η)

dη
􏼠 􏼡

2

dη

􏽶
􏽴

�������������

􏽚
l

0

dg(η)

dη
􏼠 􏼡

2

dη

􏽶
􏽴

+ φM

����������

􏽚
l

0
h
2
(η)dη

􏽳 ����������

􏽚
l

0
g
2
(η)dη

􏽳

� a0‖h‖‖g‖ + φM|h||g|

≤ a0‖h‖‖g‖ + φMα2‖h‖‖g‖

� ϱ0‖h‖‖g‖,

(16)

where ϱ0 � a0 + φMα2. Te bounded assumption isestab-
lished. For coercivity, you can see the following proof:

〈h, −Ah〉 � 􏽚
l

0
−

d
dη

a(η)
dh(η)

dη
􏼠 􏼡 − φ(h(η))h(η)􏼢 􏼣h(η)dη

≥ a0 􏽚
l

0

dh η( 􏼁

dη
􏼠 􏼡

2

dη + φm 􏽚
l

0
h
2
(η)dη

� a0‖h‖
2

+ φm|h|
2

≥ a0‖h‖
2
.

(17)
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In the same way, the measurement output (4) is also
expressed as

y(t) � Λβ(t)C ηs
(t)( 􏼁L(t), (18)

where Λβ(t) � diag β1(t), β2(t), . . . , βn(t)􏼈 􏼉 and y(t) � [y1
(t), y2(t), . . . , yn(t)]T. Te operator C(ηs(t)): B⟶
R × R × · · · × R􏽼√√√√√√􏽻􏽺√√√√√√􏽽

n

which described the output is given by

〈C ηs
(t)( 􏼁h, g〉 �

􏽚
l

0
c1 η; ηs

1(t)( 􏼁h(η)g(η)dη

􏽚
l

0
c2 η; ηs

2(t)( 􏼁h(η)g(η)dη

⋮

􏽚
l

0
cn η; ηs

n(t)( 􏼁h(η)g(η)dη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where the vector of the sensor time-varying location
function as a parameter is then expressed as ηs(t) �

[ηs
1(t), ηs

2(t), . . . , ηs
n(t)]T. In fact, as nonnegative distribu-

tion ci(η; ηs
i (t))(i � 1, 2, . . . , n) is bounded, C(ηs(t)) sat-

isfes the following assumption:

(A5) C(ηs(t)) is bounded, that is, 〈h,C(ηs(t))h〉

≤ σc〈h, h〉.

One can directly see that the observation operator is self-
adjoint and that its norm is determined by the embedding
constant α and the measure of the spatial domain μ(Ω).

In this paper, the state of the target (1) is estimated by
taking into account a mobile sensor network with multiple
missing data. Here, the following flter structure for mobile
sensors i is given:

_􏽢Li(t) � A􏽢Li(t) + C
∗ ηs

i (t)( 􏼁ci yi(t) − βiC ηs
i (t)( 􏼁􏽢Li(t)􏽨 􏽩 − Gi 􏽘

j≠ i

􏽢Li(t) − 􏽢Lj(t)􏼐 􏼑,

􏽢zi(t) � B􏽢Li(t),

⎧⎪⎨

⎪⎩
(20)

where 􏽢Li(t) denotes the state estimation of ith mobile sensor,
􏽢zi(t) denotes the estimation of z(t) after applying the flter,
yi(t) is the output measurement of the ith moving sensing
device, that is, yi(t) � βi(t)C(ηs

i (t))L(t), and C∗(ηs
i (t)) is

the adjoint of the observation operator C(ηs
i (t)). Observer

gains are denoted by ci > 0, whereas consensus flter gains

are denoted by Gi. Furthermore, 􏽢Li(0) � 􏽢Li0 ≠L(0)for all i �

1, 2, . . . , n.
Letting ei(t) � L(t) − 􏽢Li(t) and 􏽥zi(t) � z(t) − 􏽢zi(t), (15)

and (20) can be employed to derive the fltering error system
as follows:

_ei(t) � Ac ηs
i (t)( 􏼁ei(t) − C

∗ ηs
i (t)( 􏼁ci βi(t) − βi􏼐 􏼑C ηs

i (t)( 􏼁η(t)

+Gi 􏽘
j≠ i

ej(t) − ei(t)􏼐 􏼑 + Dw(t),

􏽥zi(t) � Bei(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

where Ac(ηs
i (t)) � A − C∗(ηs

i (t))ciβiC(ηs
i (t)), also with

ei(0) � L(0) − 􏽢Li(0)≠ 0.
Given the fact that C(ηs

i (t)) is self-adjoint, it implies that
the closed-loop operatorAc(ηs

i (t)) is self-adjoint. Also,Ac(ηs
i

(t)) is invertible when (A1), (A2), and (A5) are combined.
Our goal in solving the issue raised is to build a dis-

tributed H∞ consensus flter that takes the form of (20) so as
to achieve the following conditions:

(1) Te fltering error system with w(t) � 0 has a zero
solution that is globally asymptotically stable in the
mean square.

(2) For the provided disturbance attenuation level c> 0,
under the zero initial condition, the H∞ consensus
performance constraint fts the following inequality:

1
n

􏽘

n

i�1
􏽥zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ c

2
|w(t)|

2
. (22)

For the purpose of obtaining meaningful results, the
defnition and lemmas stated below have been
introduced.

Defnition 1. Te fltering error system (21) with w(t) � 0 is
said to be globally asymptotically stable in the mean square if

lim
t⟶+∞

E ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� 0, (23)

which holds for any i ∈ 1, 2, . . . , n{ }.

Defnition 2. Te flters (20) are said to be distributed H∞
consensus flters if their fltering error 􏽥zi(t) satisfy the
following inequalities:

1
n

􏽘

n

i�1
􏽥zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ c

2
|w(t)|

2
, (24)

where the disturbance attenuation level c> 0 is given, for any
i ∈ 1, 2, . . . , n{ }.

Remark 4. Te average fltering error ought to satisfy the H∞
performance constraint in the sensor network when the value
of the fltering error 􏽥zi(t), i � 1, 2, . . . , n satisfes the H∞
consensus performance constraint. Moreover, the H∞
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consensus performance constraint will reduce the H∞ per-
formance constraint if only one sensor exists in the network.

Lemma 1. Assuming that ϵ be a positive scalar and that v1, v2
be any n-dimensional real vector. Te following inequality is
thus true:

2〈v1, v2〉 ≤ ϵ〈v1, v1〉 + ϵ− 1〈v2, v2〉. (25)

Lemma 2. (Barbalat’s lemma [19]). In the scenario that a
nonnegative function f(t) is the Lebesgue integer and uni-
formly continuous on [0, +∞), then limt⟶+∞f(t) � 0.

Te corresponding theorem contains the primary results
of this work.

3. Main Results and Proofs

3.1. Stability Analysis

Theorem 1. Te spatial distribution of the mobile sensors
(12) and the consensus flter (20) are given. If there exist two
positive constants pi and qi such that the following inequalities
hold:

qi ≥
1
2
,

pi ≥
c
2
i βi 1 − βi􏼐 􏼑σ4cα

2

4a0
,

(26)

and the following is the mobile sensor velocity law:

_ηs
i (t) � −ρiciβi 􏽘

n

j�1
Wij 1 + κi 􏽘

k≠ i

􏽘

n

j�1
Wkj

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (27)

where

Wij � 􏽚
ηs

i0+jΔh

ηs
i0+(j−1)Δh

zcij(η)

zη
cij(η)e

2
i (t, η)dη + c

2
ij ηs

i0 +(j − 1)Δh + 0( 􏼁e
2
i t, ηs

i0 +(j − 1)Δh( 􏼁

− c
2
ij ηs

i0 + jΔh − 0( 􏼁e
2
i t, ηs

i0 + jΔh( 􏼁, i, j, k � 1, 2, . . . , n,

(28)

with Δh � ε+ + ε− /m, ηs
i0 � ηs

i − ε− , and ρi > 0 denotes the
velocity gain of ith mobile sensor; the zero solution of a fl-
tering error system (21) with w(t) � 0 is globally asymptot-
ically stable in the mean square. Te mobile sensing scheme
improves the flter performance by accelerating the conver-
gence of the fltering error ei(t) to zero.

Proof. It is simple to verify the closed-loop operator
Ac(ηs

i (t)) from (A1) and (A2), which satisfes the following
criteria.

􏽘

n

i�1
〈h,Ac ηs

i (t)( 􏼁g〉
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽘

n

i�1
〈h, A − C

∗ ηs
i (t)( 􏼁ciβiC ηs

i (t)( 􏼁􏼐 􏼑g〉
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ϱ0n‖h‖‖g‖

+〈h,C
∗ ηs

(t)( 􏼁ΓΛβC ηs
(t)( 􏼁g〉

� ϱ0n‖h‖‖g‖ +〈ΛβΓC ηs
(t)( 􏼁h,C ηs

(t)( 􏼁g〉

≤ ϱ0n‖h‖‖g‖ + λmax ΛβΓ􏼐 􏼑α2μ2(Ω)‖h‖‖g‖

� ϱ‖h‖‖g‖,

(29)

where ϱ � ϱ0n + λmax(ΛβΓ)α2μ2(Ω)> 0, Λβ � diag β1, β2,􏽮

. . . , βn}, Γ � diag c1, c2, . . . , cn􏼈 􏼉, and ‖C(ηs(t))‖ � αμ(Ω).

􏽘

n

i�1
〈h, −Ac ηs

i (t)( 􏼁h〉 � 􏽘
n

i�1
〈h, − A − C

∗ ηs
i (t)( 􏼁ciβiC ηs

i (t)( 􏼁􏼐 􏼑h〉 ≥ a0n‖h‖
2

+〈h,C
∗ ηs

(t)( 􏼁ΓΛβC ηs
(t)( 􏼁h〉 � a0n‖h‖

2

+〈ΛβΓC ηs
(t)( 􏼁h,C ηs

(t)( 􏼁h〉 ≥ a0n‖h‖
2

+ λmin ΛβΓ􏼐 􏼑 C ηs
(t)( 􏼁h

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 > a0n‖h‖

2
.

(30)
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Considering the following parameter-dependent Lya-
punov functional, we obtain

V(t) � − 􏽘
n

i�1
〈ei(t),Ac ηs

i (t)( 􏼁ei(t)〉 + 􏽘
n

i�1
〈L(t), piL(t)〉.

(31)

As defned by LV(t) � limΔ⟶0+ (E V(t + Δ)|t{ } −

V(t))/Δ, by applying the dynamics of the flteringerror (21), we
obtain LV that

LV(t) � − 􏽘
n

i�1
E〈 _ei(t),Ac ηs

i (t)( 􏼁ei(t)〉 − 􏽘
n

i�1
E〈ei(t),Ac ηs

i (t)( 􏼁 _ei(t)〉

− 􏽘
n

i�1
E〈ei(t),

dAc ηs
i (t)( 􏼁

dt
ei(t)〉

+ 􏽘
n

i�1
〈 _L(t), piη(t)〉

+ 􏽘
n

i�1
〈η(t), pi

_L(t)〉.

(32)

It was simple to arrive at the following conclusion by
taking into account (6) and (7) and noting thatAc(ηs

i (t)) is
self-adjoint.

− 􏽘
n

i�1
E〈 _ei(t),Ac ηs

i (t)( 􏼁ei(t)〉 − 􏽘
n

i�1
E〈ei(t),Ac ηs

i (t)( 􏼁 _ei(t)〉

� −2􏽘
n

i�1
E〈

Ac ηs
i (t)( 􏼁ei(t) − C

∗ ηs
i (t)( 􏼁ci βi(t) − βi􏼐 􏼑C ηs

i (t)( 􏼁L(t)

+Gi 􏽘
k≠ i

ek(t) − ei(t)( 􏼁,Ac ηs
i (t)( 􏼁ei(t)

〉

� −2􏽘
n

i�1
E〈Ac ηs

i (t)( 􏼁ei(t),Ac ηs
i (t)( 􏼁ei(t)〉

+ 2􏽘
n

i�1
E〈C∗ ηs

i (t)( 􏼁ci βi(t) − βi􏼐 􏼑C ηs
i (t)( 􏼁L(t),Ac ηs

i (t)( 􏼁ei(t)〉

− 2􏽘

n

i�1
E〈Gi 􏽘

k≠ i

ek(t) − ei(t)( 􏼁,Ac ηs
i (t)( 􏼁ei(t)〉.

(33)

Observing the assumption (A5) and Lemma 1, the fol-
lowing is true:

2􏽘
n

i�1
E〈C∗ ηs

i (t)( 􏼁ci βi(t) − βi􏼐 􏼑C ηs
i (t)( 􏼁L(t),Ac ηs

i (t)( 􏼁ei(t)〉

≤ 􏽘
n

i�1
qiE〈C

∗ ηs
i (t)( 􏼁ci βi(t) − βi􏼐 􏼑C ηs

i (t)( 􏼁L(t),C
∗ ηs

i (t)( 􏼁ci βi(t) − βi􏼐 􏼑C ηs
i (t)( 􏼁L(t)〉

+ 􏽘
n

i�1
q

−1
i E〈Ac ηs

i (t)( 􏼁ei(t),Ac ηs
i (t)( 􏼁ei(t)〉
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� 􏽘
n

i�1
qic

2
i βi 1 − βi􏼐 􏼑 C

∗ ηs
(t)( 􏼁C ηs

(t)( 􏼁L(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽘

n

i�1
q

−1
i E〈Ac ηs

i (t)( 􏼁ei(t),Ac ηs
i (t)( 􏼁ei(t)〉

≤ 􏽘
n

i�1
qic

2
i βi 1 − βi􏼐 􏼑σ4c |L(t)|

2

+ 􏽘
n

i�1
q

−1
i E〈Ac ηs

i (t)( 􏼁ei(t),Ac ηs
i (t)( 􏼁ei(t)〉,

(34)

for any scalar qi > 0(i � 1, 2, . . . , n).
Choosing the consensus flter here results in

Gi � A−1
c (ηs

i (t)) for simplicity, and we have

− 2􏽘
n

i�1
E〈Gi 􏽘

k≠ i

ek(t) − ei(t)( 􏼁,Ac ηs
i (t)( 􏼁ei(t)〉

� −2􏽘
n

i�1
〈􏽘

k≠ i

ek(t) − ei(t)( 􏼁, ei(t)〉

� −2 􏽘
k≠ i

〈ek(t) − ei(t), ek(t) − ei(t)〉

� −2 􏽘
k≠ i

ek(t) − ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
.

(35)

Substituting (34)-(35) into (36) leads to

− 􏽘

n

i�1
E〈 _ei(t),Ac ηs

i (t)( 􏼁ei(t)〉 − 􏽐
n

i�1
E〈ei(t),Ac ηs

i (t)( 􏼁 _ei(t)〉

� 􏽘
n

i�1
−2 + q

−1
i􏼐 􏼑E Ac ηs

i (t)( 􏼁ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽘
n

i�1
qic

2
i βi 1 − βi􏼐 􏼑σ4c |L(t)|

2
− 2 􏽘

k≠ i

ek(t) − ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
.

(36)

Ten, the third term of (32) has

− 􏽘

n

i�1
E〈ei(t),

dAc ηs
i (t)( 􏼁

dt
ei(t)〉

� 􏽘
n

i�1
E〈ei(t),

d
dt

C
∗ ηs

i (t)( 􏼁ciβiC ηs
i (t)( 􏼁􏼐 􏼑ei(t)〉

� 2􏽘
n

i�1
ciβi〈C ηs

i (t)( 􏼁ei(t), _ηs
i (t)

dC ηs
i (t)( 􏼁

dη
ei(t)〉

� 2􏽘
n

i�1
_ηs

i (t)ciβi 􏽚
l

0
ci η; ηs

i (t)( 􏼁
zci η; ηs

i (t)( 􏼁

zη
e
2
i (t, η)dη

� 2􏽘
n

i�1
_ηs

i (t)ciβi 􏽘

n

j�1
􏽚
ηs

i0+jΔh

ηs
i0+(j−1)Δh

cij(η)
z

zη
cij(η) H η − ηs

i0 + (j − 1)Δh( 􏼁( 􏼁 − H η − ηs
i0 + jΔh( 􏼁( 􏼁( 􏼁􏽨 􏽩e

2
i (t, η)dη

� 2􏽘
n

i�1
_ηs

i (t)ciβi 􏽘

n

j�1
􏽚
ηs

i0+jΔh

ηs
i0+(j−1)Δh

zcij(η)

zη
H η − ηs

i0 + (j − 1)Δh( 􏼁( 􏼁 − H η − ηs
i0 + jΔh( 􏼁( 􏼁( 􏼁

+cij(η) δ η − ηs
i0 + (j − 1)Δh( 􏼁( 􏼁 − δ η − ηs

i0 + jΔh( 􏼁( 􏼁( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cij(η)e

2
i (t, η)dη

� 2􏽘
n

i�1
_ηs

i (t)ciβi 􏽘

n

j�1
Wij.

(37)
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Here, Wij, i, j � 1, 2, . . . , n are defned in Teorem 1.
Te selection

_ηs
i (t) � −ρiciβi 􏽘

n

j�1
Wij, (38)

yields in (37) negative defnite, where ρi > 0(i � 1, 2, . . . , n) is
the diagonal entries of the positive defnite diagonal matrix
Λρ. It is worth noting that _ηs

i (t) indicates the velocity of each
mobile sensing device.

Moreover, the choice of the velocity law for the mobile
sensing device is decoupled, meaning that it is only taken
into account for its own measurement. And in a real mobile
sensor network, not only its velocity depends on itself, but
also its neighbors contribute to its velocity law. Every mobile
sensor (38), regardless of its velocity law, can be modifed to

_ηs
i (t) � −ρiciβi 􏽘

n

j�1
Wij 1 + κi 􏽘

k≠ i

􏽘

n

j�1
Wkj

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (39)

where κi > 0, i, j, k � 1, 2, . . . , n.
Calculating the derivative of the second part of the

Lyapunov function yields

􏽘

n

i�1
〈 _L(t), piη(t)〉 + 􏽘

n

i�1
〈η(t), pi

_L(t)〉

� 2􏽘
n

i�1
pi〈L(t),AL(t)〉

≤ − 2􏽘
n

i�1
pia0‖L(t)‖

2 ≤ − 2􏽘
n

i�1

pia0

α2
|L(t)|

2
.

(40)

By substituting (36), (39)–(40) into (32), we obtain

LV(t)≤ 􏽘
n

i�1
−2 + q

−1
i􏼐 􏼑E Ac ηs

i (t)( 􏼁ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 􏽘
n

i�1
qic

2
i βi 1 − βi􏼐 􏼑σ4c − 2

pia0

α2
􏼠 􏼡|L(t)|

2

−2 􏽘
k≠ i

E ek(t) − ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

− 2􏽘
n

i�1
ρic

2
i β

2
i 􏽘

n

j�1
Wij

⎛⎝ ⎞⎠

2

1 + κi 􏽘
k≠ i

􏽘

n

j�1
Wkj

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(41)

Te inequalities (26) are feasible, which implies
LV(t)≤ 0.

Tus, it is easy to deduce from (41) and the embedding
that

LV(t)≤ − 􏽘
n

i�1
E Ac ηs

i (t)( 􏼁ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

≤ − α0 􏽘

n

i�1
E ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

(42)

where α0 > 0 is a constant that contains the embedding
constant α and the coercivity constant a0. By employing the
It􏽢o formula, combined with (42), we can obtain

EV(t) � EV(0) + 􏽚
t

0
LV(s)ds

≤EV(0) − α0 􏽚
t

0
􏽘

n

i�1
E ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2ds,

(43)

which implies that

􏽚
t

0
􏽘

n

i�1
E ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2ds≤

1
α0

V(0). (44)

In addition, it can confrm that 􏽐
n
i�1 E|ei(t)|2 is uni-

formly continuous on [0, +∞). Consequently, it follows
from Lemma 1 that

lim
t⟶+∞

E|e(t)|
2

� 0. (45)

Te proof is complete if the fltering error system (21)
with w(t) � 0 is globally asymptotically stable in the mean
square, as stated in Defnition 1. □

Remark 5. In theory, if we select the Lyapunov functional as

V(t) � −e
rt

􏽘

n

i�1
〈ei(t),Ac ηs

i (t)( 􏼁ei(t)〉 + e
rt

􏽘

n

i�1
〈L(t), piL(t)〉,

(46)

then the fltering error system (21) with w(t) � 0 can also be
proved to be globally exponentially stable in themean square
as the similar way in Teorem 1.

3.2.H∞ Consensus Performance Analysis. Next, we focus on
analyzing the H∞ performance of the fltering error system
(21) under the zero initial condition.

Theorem 2. Te disturbance attenuation level c> 0 and the
flter parameter ci and Gi are given. Under the assumption
(A1)–(A5), the zero solution of the fltering error system (21)
with w(t) � 0 is globally asymptotically stable in the mean
square.TeH∞ consensus performance (22) is achieved for all
nonzero w(t) if, with the initial condition, such that the
following matrix inequality holds:
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Ψ �
−α0 + σ2b dϱ

dϱ −c
2

⎡⎢⎣ ⎤⎥⎦< 0. (47)

Proof. (42) implies Ψ< 0, which is simple to prove. In
consideration ofTeorem 1, the fltering error system (21) is
globally asymptotically stable in the mean square. Let us now
concentrate on how the closed-loop system performs in
terms of the H∞ consensus. Likewise, as in Teorem 1, we
build the Lyapunov functional candidate V(t). Te same line
computation used in Teorem 1 results in

LV(t)≤ − α0 􏽘

n

i�1
E ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2􏽘

n

i�1
E〈Dw(t), −Ac ηs

i (t)( 􏼁ei(t)〉

≤ 􏽘
n

i�1
E〈ζ(t), 􏽢Ψζ(t)〉,

(48)

where ζ(t) � [e(t), w(t)]T and 􏽢Ψ �
−α0 dϱ
dϱ 0􏼢 􏼣.

In order to address the H∞ consensus performance of
the system (21), we provide

J � E􏽘

n

i�1
􏽚

T

0
􏽥zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− c
2
|w(t)|

2dt

� E􏽘
n

i�1
􏽚

T

0
〈􏽥zi(t), 􏽥zi(t)〉dt − nc

2
􏽚

T

0
〈w(t), w(t)〉dt.

(49)

For any nonzero external disturbances w(t) from (47) to
(48), under the zero initial condition, we obtain

J≤E􏽘
n

i�1
􏽚

Tf

0
〈􏽥zi(t), 􏽥zi(t)〉 − c

2
〈w(t), w(t)〉 + LV(t)dt

≤E􏽘
n

i�1
􏽚

Tf

0
〈Bei(t),Bei(t)〉 − c

2
〈w(t), w(t)〉 + 􏽘

n

i�1
E〈ζ(t), 􏽢Ψζ(t)〉dt

≤ 􏽘
n

i�1
􏽚

Tf

0
E〈ζ(t),Ψζ(t)〉dt,

(50)

where Ψ is defned in Teorem 2.
Along the same lines as in the argument of Teorem 1,

we can establish that J< 0. Letting Tf⟶∞, we have

􏽘

n

i�1
􏽚

T

0
〈􏽥zi(t), 􏽥zi(t)〉dt< nc

2
􏽚

T

0
〈w(t), w(t)〉dt, (51)

namely,

1
n

􏽘

n

i�1
􏽥zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 < c

2
|w(t)|

2
. (52)

Te theorem’s proof here is completed. □

4. Some Special Case Analysis

Owing to the generality of the result stated inTeorem 1, we
now discuss its few useful applications in the following
section.

Te argument for followingTeorem 3 is omitted since it
can be inferred from Teorem 1, Teorem 2, and the spatial
distribution of moving sensors (8).

Theorem 3. Te disturbance attenuation level c> 0 and the
flter parameter ci are given. Under assumptions (A1)–(A5)
and inequalities (26), for the distributed parameter system
(15), an H∞ consensus flter (20) is then constructed so that
the fltering error system (21) with w(t) � 0 is globally as-
ymptotically stable in the mean square and also satisfes (22)
under the zero initial condition for all non-zero w(t) if the
mobile sensing device has a spatial distribution as (8), and its
velocity law is as follows:

_ηs
i (t) � −ρiciβiWi 1 + κi 􏽘

j≠ i

W
2
j

⎛⎝ ⎞⎠, (53)

where

Wi � 􏽚
ηs

i
+εi

ηs
i
−εi

zci(η)

zη
ci(η)e

2
i (t, η)dη + c

2
i ηs

i − εi + 0( 􏼁e
2
i t, ηs

i − εi( 􏼁 − c
2
i ηs

i + εi − 0( 􏼁e
2
i t, ηs

i + εi( 􏼁, i, j � 1, 2, . . . , n, (54)
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where ρi > 0 denotes each sensor’s velocity gain, and the
matrix inequality (47) holds.

Hereafter, we discuss how to use a homogeneous mobile
sensor network to solve the H∞ fltering issue for the error
system (21).

Te spatial distribution of a homogeneous mobile sensor
with a time-varying location function of ηs

i (t) can be given
by

c η; ηs
i( 􏼁 �

μ, if η ∈ ηs
i − ε, ηs

i + ε􏼂 􏼃,

0, otherwise.
􏼨 (55)

AsTeorem 1 andTeorem 2 easily lead to this theorem,
the proof is omitted.

Theorem 4. Te disturbance attenuation level c> 0 and the
flter parameter ci are given. Under assumptions (A1)–(A5)
and inequalities (26), for the distributed parameter system
(15), an H∞ consensus flter (20) is then constructed so that
the fltering error system (21) with w(t) � 0 is globally as-
ymptotically stable in the mean square and also satisfes (22)
under the zero initial condition for all nonzero w(t) if the
mobile sensing device has a spatial distribution as (55), its
velocity law is as follows:

_ηs
i (t) � −ρiciβiμ

2
e
2
i t, ηs

i − ε( 􏼁 − e
2
i t, ηs

i + ε( 􏼁􏼐 􏼑 1 + κi 􏽘
j≠ i

e
2
j t, ηs

j − ε􏼐 􏼑 − e
2
j t, ηs

j + ε􏼐 􏼑􏼐 􏼑
2⎛⎝ ⎞⎠, i, j � 1, 2, . . . , n, (56)

where ρi > 0 denotes each sensor’s velocity gain, and the
matrix inequality (47) holds.

Remark 6. Actually, for an homogeneous mobile sensor
network, by taking μ � c(η), the location distribution of each
moving sensor can be generally given as follows:

c η; ηs
i( 􏼁 �

c(η), if η ∈ ηs
i − ε, ηs

i + ε􏼂 􏼃,

0, otherwise.
􏼨 (57)

In this case, c(η) is allowed to be constant or a piecewise
smooth function in local.

Remark 7. In this paper, the case of data missing from the
sensor network is taken into consideration for the distributed
H∞ consensus flter for the distributed parameter system (1).
Specially, let us consider that the measurement output (4) has
no randomly occurred missing measurements, i.e.,
βi(t) ≡ 1 ∈ R, i � 1, 2, . . . , n, and we choose μ � 1, a common
spatial distribution of a mobile sensor, as follows:

c η; ηs
i( 􏼁 �

1, if η ∈ ηs
i − ε, ηs

i + ε􏼂 􏼃,

0, otherwise.
􏼨 (58)

In the light of Teorem 4, each moving sensor’s velocity
(56) is able to be further simplifed as

_ηs
i (t) � −ρici e

2
i t, ηs

i − ε( 􏼁 − e
2
i t, ηs

i + ε( 􏼁􏼐 􏼑 1 + κi 􏽘
j≠ i

e
2
j t, ηs

j − ε􏼐 􏼑 − e
2
j t, ηs

j + ε􏼐 􏼑􏼐 􏼑
2⎛⎝ ⎞⎠, i � 1, 2, . . . , n, (59)

where ρi > 0 is the velocity gain of each sensing device. Tis
result is the same as the one in [8], which implies that the
main results of this paper are extended to the earlier work.

Remark 8. Let us assume that the homogeneous sensor
network has all of the sensors fxed. In other words,
ηs

i (t) ≡ ηs
i (0): � ηs

i is a constant that is independent of time.
In this way, the time-spatial operator of the measurement

output operator C(ηs(t)) is changed to the spatial operator
C(ηs

i ). Since C(ηs
i ) is a constant operator, we can also

express C(ηs
i ): � C. Te measurement output equation (4)

can be rewritten as

y(t) � Λβ(t)CL(t). (60)

For the ith stationary sensor, the suitable flter is

_􏽢Li(t) � A􏽢Li(t) + C
∗
ci yi(t) − βiC

􏽢Li(t)􏽨 􏽩 − Gi 􏽘
j≠ i

􏽢Li(t) − 􏽢Lj(t)􏼐 􏼑, 􏽢zi(t) � B􏽢Li(t),􏼨 (61)
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where 􏽢Li(0) � 􏽢Li0 ≠L(0) for all i � 1, 2, . . . , n. As a result,
(15) and (61) can be used to establish the fltering error
system in the lines as follows:

_ei(t) � Acei(t) − C
∗
ci βi(t) − βi􏼐 􏼑CL(t) + Gi 􏽘

j≠ i

ej(t) − ei(t)􏼐 􏼑 + Dw(t),

􏽥zi(t) � Bei(t),

⎧⎪⎪⎨

⎪⎪⎩
(62)

where Ac � A − ciβiC
∗C and ei(0) � L(0) − 􏽢Li(0)≠ 0. Te

following corollary is easily shown in Teorem 3.

Corollary 1. Te disturbance attenuation level c> 0 and the
flter parameter ci and Gi are given. For the distributed
parameter system (15), an H∞ consensus flter (61) is then
constructed so that the fltering error system (62) with w(t) �

0 is globally asymptotically stable in the mean square and also
satisfes (22) for all nonzero w(t) under the zero initial
condition if assumptions (A1)–(A5), inequality (26), and the
matrix inequality (47) hold.

5. Numerical Examples

To illustrate the usefulness of the distributed H∞ consensus
flter created in this work, we give a simulated example in
this section. Te spatial distribution process of temperature
in a chemical reactor having Dirichlet boundary conditions
and initial conditions is L(0, η) � sin(πη)e− 9η2 , η in [0, 1].
Te evolution of the system is illustrated in Figure 1. Te
difusion coefcient is a0 � 0.004. Te bounded function is
φ(L(t, η)) � 1.2 sin(0.6L(t, η)). In a kind of spatially dis-
tributed process, threemobile sensing devices are considered
to collect data and ηs

1(0) � 0.15, ηs
2(0) � 0.5, and ηs

3(0) �

0.85 are selected for their initial positions.

Te spatial distribution of each moving sensing device in
ηs

i (t) is described by the time-varying location function,
which is provided by

c η; ηs
i( 􏼁 �

1, if η ∈ ηs
i − 0.07, ηs

i + 0.07􏼂 􏼃,

0, otherwise.
􏼨 (63)

Teprobabilities are considered to be β1 � 0.9, β2 � 0.85,
and β3 � 0.8. As shown in Figure 2, the measurement with
missing random data is observed by moving sensors.

Initial conditions are assumed to be 􏽢L1(0, η) � 􏽢L2(0, η) �
􏽢L3(0, η) � 0 for the distributed H∞ consensus flter. Te
flter gains are given by c1 � 80, c2 � 85, and c3 � 90. Tree
distributed H∞ consensus flters are employed to illustrate
the evolution of the fltering error system in Figures 3–5.Te
fltering error 􏽥zi(t) is given in Figure 6. Te output z(t) and
associated estimates for mobile sensors are shown in Fig-
ure 7. Te output z(t) of the ith flter (i � 1, 2, 3) in the
moving sensing device and its estimated value are shown in
Figure 7.

Tree fxed-in-space sensors are considered to be a
comparison, which are located at ηs

1 � 0.15, ηs
2 � 0.50, and

ηs
3 � 0.85. Te trajectories of the three sensors in stationary

and moving scenarios are illustrated in Figure 8.
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Figure 1: Te state evolution of parabolic distributed parameter processes.
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Figure 2: Te output of moving sensors with random missing data.
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6. Conclusions

Te H∞ distributed consensus fltering issue has been in-
vestigated in this paper for an array of parabolic distributed
parameter systems with multiple missing measurements. An
efective Lyapunov direct approach, which ensures a specifc
level of H∞ consensus disturbance rejection attenuation, has
been proposed to build the fltering error system that is
globally asymptotically stable in the mean square for all
permissible randomly occurring missing data. Several suf-
fcient conditions can be obtained within the optimized
framework, including the velocity law of the moving sensor,
which can ensure a faster convergence of the fltering error
to zero. Finally, a numerical simulation is adopted to
demonstrate the usefulness of the obtained results of the
study.
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