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4D LUT: Learnable Context-Aware 4D Lookup
Table for Image Enhancement

Chengxu Liu , Huan Yang , Associate Member, IEEE, Jianlong Fu , and Xueming Qian , Member, IEEE

Abstract— Image enhancement aims at improving the aesthetic
visual quality of photos by retouching the color and tone, and
is an essential technology for professional digital photography.
Recent years deep learning-based image enhancement algorithms
have achieved promising performance and attracted increasing
popularity. However, typical efforts attempt to construct a uni-
form enhancer for all pixels’ color transformation. It ignores
the pixel differences between different content (e.g., sky, ocean,
etc.) that are significant for photographs, causing unsatisfactory
results. In this paper, we propose a novel learnable context-
aware 4-dimensional lookup table (4D LUT), which achieves
content-dependent enhancement of different contents in each
image via adaptively learning of photo context. In particular,
we first introduce a lightweight context encoder and a parameter
encoder to learn a context map for the pixel-level category and
a group of image-adaptive coefficients, respectively. Then, the
context-aware 4D LUT is generated by integrating multiple basis
4D LUTs via the coefficients. Finally, the enhanced image can be
obtained by feeding the source image and context map into fused
context-aware 4D LUT via quadrilinear interpolation. Compared
with traditional 3D LUT, i.e., RGB mapping to RGB, which is
usually used in camera imaging pipeline systems or tools, 4D
LUT, i.e., RGBC(RGB+Context) mapping to RGB, enables finer
control of color transformations for pixels with different content
in each image, even though they have the same RGB values.
Experimental results demonstrate that our method outperforms
other state-of-the-art methods in widely-used benchmarks.

Index Terms— Image enhancement, photo retouching, lookup
tables, neural networks.

I. INTRODUCTION

RECENT developments of high precision sensor equip-
ment witness a fast evolution in low-level computer
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vision fields and digital photography. However, the captured
digital photographs still suffer from low quality due to the
effects of illumination, weather, camera sensor, photographer
skill, and other factors. Image enhancement as an image
processing technique to improve the color, contrast, saturation,
brightness, and dynamic range can significantly improve the
aesthetic visual quality of photos. Compared with manual
photo retouching without professional skills and experience,
image enhancement algorithms can automatically produce
visual-pleasing photos that satisfy visual aesthetics. It can be
equipped in smartphones, digital single lens reflex (DSLR)
cameras, and professional-grade software (e.g., Photoshop,
Lightroom) to provide expert retouching results and has widely
promising applications [26], [35], [38].

Traditional image enhancement methods adopt hand-crafted
descriptors or filters to adjust the visual quality of an image
by feeding a low-quality input image. The hand-crafted global
descriptors (e.g., histogram equalization [45], color correc-
tion [29], etc.) can only be used to roughly change the tone of
the whole image by establishing color mapping relationships,
while the selectable local filters (e.g., Laplacian filter [1],
Guided filter [10], etc.) can finely adjust the visual quality of
the image according to the content differences. For example,
pixels belonging to natural landscapes, portraits, ancient archi-
tecture, etc. should adopt different local filters according to the
differences in their content. However, this traditional manual
adjustment depends on professional image retouching skills,
and retouching the image pixel-by-pixel is time-consuming
and not practical enough.

Benefiting from advances in deep learning, learning-based
image enhancement algorithms are gaining rapid develop-
ment [5], [46]. MIT-Adobe FiveK dataset [2] proposes an
experts-retouched dataset containing 5,000 image pairs of
natural landscapes, which is the first to establish a bench-
mark for the entire field. Further, to facilitate this important
and high-visibility task, PPR10K [25] proposes a larger-scale
portrait photo retouching dataset, where each portrait has
been retouched by three experts with professional experience,
separately.

Typical learning-based algorithms can be categorized into
three main paradigms. Reinforcement learning-based meth-
ods [13], [34], image-to-image translation methods [4], [9],
[28], and physical modeling-based methods [5], [31], [32],
[40], [51]. Among them, the reinforcement learning-based
methods [13], [34] attempt to decouple the whole process
and enhance the image through a step-wise retouching pro-
cess. The image-to-image translation methods [4], [9], [28]
try to establish a mapping from the input to the enhanced
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Fig. 1. A comparison between 4D LUT and 3D LUT [51]. (a) and (b) indicate
the illustration of the 3D LUT and 4D LUT, respectively. The enhanced
pixels (indicated by orange and blue) are retrieved from the index-value
correspondence of the defined LUT according to the original input pixels and
context (indicated by red). (c) shows a result comparison. They demonstrate
that 4D LUT achieves better results by introducing an additional dimension
for content-dependent image enhancement.

output directly through a neural network. That method can
yield globally optimized results with an end-to-end train-
ing manner. However, those algorithms lack interpretability
and reliability, like a “black box”, and they also consume
lots of computational costs, sacrificing their effectiveness in
practical applications. To address the limitations of those
existing methods, another category of physical modeling-based
methods [5], [31], [32], [40], [51] attempt to enhance images
using human-interpretable physical models (e.g., Retinex the-
ory [21], bilateral filtering [39], etc). These methods usually
adopt a two-step solution, which includes 1) predicting the
relevant physics coefficients based on the proposed physical
model and assumptions, and 2) adjusting the original pixels
to form an enhanced image through physical theory. These
efforts not only fail to distinguish the physics coefficients of
different content transformations, but also make it difficult to
learn in an end-to-end training manner. Therefore, the physical
model-based methods do not provide sufficient enhancement
capability.

Recently, some outstanding works [25], [41], [51] propose
to enhance images by improving the fundamental physical
model 3D lookup tables in digital image processing. These
methods try to spend fewer runtimes on the enhancement
process and focus on learning a uniform enhancer to achieve
a globally overall average over all regions of the enhanced
result. Although the enhanced results can obtain in real-time,
they lack the ability to finely control the color transformation
of pixels with different content in each image, and can only
obtain globally sub-optimal results. This issue significantly
limits the color richness of enhanced images and cannot be
handled by 3D lookup tables. For example, as shown in
Fig. 1(a), during retouching, the experts often make the sky
(indicated by orange) bluer and the sea (indicated by blue)
greener in order to improve the color contrast and enhance

the aesthetics. That is, even if they have the same RGB
values in the unexposed input image, they should be adjusted
with different transformations, instead of being treated equally.
Intuitively, the content of natural landscapes and portraits
should have high color contrast and luminance, respectively,
while ancient architectures require lower color temperatures
and additional optical effects to describe their history.

Based on the above observation and motivation, we propose
a novel learnable context-aware 4D lookup table (4D LUT),
which enables content-dependent image enhancement without
a significant increase in computational costs, achieving better
visually pleasing results (as shown in Fig. 1(c)). As shown
in Fig. 1(b), 4D LUT extends the 3-dimensional lookup
tables to a 4-dimensional space by introducing an additional
contextual dimension, where the input index of 4D LUT
(i.e., RGBC) varies with the context map, which increases
the color enhancement capability of 4D LUT and enabling
finer control of color transformation and stronger image
enhancement. In particular, as shown in Fig. 2, it includes four
closely-related components. 1) We propose a context encoder
to generate context maps through end-to-end learning. The
context map represents the pixel-level category in an image
based on their content difference, which can extend the image
from RGB to RGBC. 2) A parameter encoder for generating
a group of coefficients through end-to-end learning. These
coefficients can be adaptively changed according to the input
image for assisting the final context-aware 4D LUT generation.
3) Based on multiple pre-defined learnable basis 4D LUTs and
coefficients obtained above, we propose a 4D LUTs fusion
module that crosses different color spaces and integrates them
into a final context-aware 4D LUT with stronger enhanced
capabilities. 4) We propose to use quadrilinear interpolation,
which can convert the input image and context map into
four-dimensional spatially indexed for input into the context-
aware 4D LUT, and finally outputs the enhanced image
after the interpolation operation. Compared with traditional
3D LUT (i.e., RGB mapping to RGB), the design of context-
aware 4D LUT (i.e., RGBC mapping to RGB) encourages
a content-dependent manner to enable finer control of color
transformations, thereby enhancing the pixels’ color from an
input image to enhanced image.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to
extend the lookup table architecture into a 4-dimensional
space and achieve content-dependent image enhancement
without a significant increase in computational costs.
More specifically, we propose a learnable context-aware
4-dimensional lookup table (4D LUT), which consists
of four closely-related components context encoder,
parameter encoder, 4D LUTs fusion, and quadrilinear
interpolation.

• The extensive experiments demonstrate that the pro-
posed 4D LUT can obtain more accurate results and
significantly outperform existing SOTA methods in three
widely-used image enhancement benchmarks.

The rest of the paper is organized as follows. Related work
is reviewed in Sec. II. The proposed context-aware 4D LUT is
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elaborated in Sec. III. Experimental evaluation, analysis, and
ablation study are presented in Sec. IV. The discussions of the
related parameters and components are presented in Sec. V.
The limitations and failure cases are elaborated in Sec. VI.
Finally, we conclude this work in Sec. VII.

II. RELATED WORK

In this section, we first briefly review the traditional algo-
rithms for image enhancement and then review the recent
popular study on deep learning-based algorithms.

A. Traditional Algorithms

Traditional image enhancement methods improve the visual
quality of images by using hand-crafted global descriptors
and local filters. For example, color correction [29] and color
histogram equalization [45] adjust image colors by estab-
lishing color mapping relationships. Local laplacian filter [1]
and Guided filter [10] enhance the image visual quality by
operations such as detail smoothing/sharpening. However,
only experienced experts can use these hand-crafted feature
descriptors or filters, and they are costly in time.

B. Learning-Based Algorithms

Recently, the learning-based image enhancement algorithm
has been developed rapidly. These main algorithms can be cat-
egorized into three paradigms. Reinforcement learning-based
methods, image-to-image translation methods, and physical
modeling-based methods. Typical approaches are summarized
in Tab. I.

1) Reinforcement Learning-Based Methods: The enhance-
ment methods based on reinforcement learning [13], [20],
[34], [49] improve the visual quality by simulating the human
step-by-step retouching process. Typically, White-Box [13]
proposes to decouple the image enhancement process into
a series of suitable parameters. And the deep reinforcement
learning approach is used to learn the decision of what action
to take next in the current state. Distort-and-Recover [34]
casts a color enhancement process as a Markov Decision
Process where actions are defined as global color adjustment
operations. The agent is then trained to learn the optimal global
enhancement sequence of the actions. DeepExposure [49] and
UIE [20] employ similar reinforcement learning strategies to
learn an unpaired photo-enhanced model in an adversarial
manner and severely sacrifice efficiency.

2) Image-to-Image Translation Methods: The Image-to-
image translation enhancement methods [3], [4], [15], [16],
[27], [28], [50], [53] learn a mapping relationship between
input and enhanced images through convolutional networks.
Representatively, with the popularity of generative adversarial
mechanisms [6], some existing works [14], [27], [53] use the
residual network [11] to style transfer and enhance unpaired
images. Pix2Pix [15] investigates conditional adversarial
networks as a general-purpose solution to image-to-image
translation problems and learns a loss function to train the
mapping from the input image to the output image. MIE-
GAN [33] presents a multi-module cascade generative network

TABLE I
IMAGE ENHANCEMENT METHODS BASED ON DEEP LEARNING. RL:

REINFORCEMENT LEARNING-BASED. I2I: IMAGE-TO-IMAGE

TRANSLATION. PM: PHYSICAL MODELING-BASED

and an adaptive multi-scale discriminative network to capture
both global and local information of a mobile image. DPE [4]
improves U-Net [37] into a photo enhancer that transforms an
input image into an enhanced image with the characteristics
of given a set of photographs. GSGN [19] proposes the
first practical multi-task image enhancement network, that is
able to learn one-to-many and many-to-one image mappings.
Focusing on the fact that subjectively people have diverse
preferences for image aesthetics, PieNet [17] proposes the first
deep learning method for personalized image enhancement
that can enhance images for users by selecting preferences.
MIRNet [50] proposes an architecture with the collective
goals of maintaining spatially-precise high-resolution repre-
sentations through the entire network and receiving strong
contextual information from the low-resolution representa-
tions. CSRNet [9], [28] analyzes the mathematical formulation
of image enhancement and proposes a lightweight framework
consisting of 1×1 convolutional layer. However, these methods
suffer from a lack of transparency in the whole enhancement
process and obscure their reliability.

3) Physical Modeling-Based Methods: Inspired by the
parametric (graduated, radial filters), brush tools, etc.
in professional-grade software (e.g., Photoshop, Lightroom),
the enhancement based on physical model [5], [7], [8], [23],
[31], [32], [40], [43], [51] adjust the image color by pre-
dicting the relevant physics parameters and variables based
on the proposed physical model and assumptions. Inspired
by bilateral grid processing and local affine color trans-
forms, HDRNet [5] predicts the coefficients of a locally-affine
model in bilateral space to approximate the desired image
transformation. RetinexNet [24], [43] assumes that observed
images can be decomposed into reflectance and illumination
to enhance the low-light image. DeepUPE [40] introduces
intermediate illumination to associate the input with expected
enhancement results for learning complex photographic adjust-
ments. Zero-DCE [7] formulates light enhancement as a task
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Fig. 2. The overview of 4D LUT. 4D LUT takes an input image and pre-defined basis 4D LUTs as input and generates an enhanced image. Context encoder
for generating the pixel-level content-dependent context map. Parameter encoder for generating image-adaptive coefficients. 4D LUTs fusion module integrates
the learnable basis 4D LUTs and coefficients into a context-aware 4D LUT. Quadrilinear interpolation module for generating the enhanced image by inputting
them. Constrained by the optimization objective, the parameters of the entire network, including the context-aware 4D LUT, can be trained end-to-end.

of image-specific curve estimation and estimates pixel-wise
and high-order curves for dynamic range adjustment of an
input image. SCI [30] establishes a cascaded illumination
learning process with weight sharing to handle the low-light
enhancement task. DeepLPF [31] proposes learnable spatially
local filters of three different types (Elliptical Filter, Graduated
Filter, Polynomial Filter) and regresses the parameters of these
filters that are then automatically applied to enhance the image.
Inspired by the Photoshop curves tool, CURL [32] designs a
multi-color space neural retouching block and adjusts global
image properties using human-interpretable image enhance-
ment curves.

Especially, some 3D LUT-based works [25], [41], [47], [51]
adopt a two-step solution, which includes 1) predicting the rel-
evant coefficients based on the 3D LUT to obtain an enhancer,
and 2) adjusting the color based on the RGB value of each
original pixel one by one to form an enhanced image through
the uniform enhancer. Although these methods spend less
runtime on the enhancement process, they can only achieve a
globally overall average over all regions of the enhanced result
and lack the ability to finely control the color transformation of
pixels with different content in each image. Therefore, in this
paper, we extend the 3D LUT into a 4D space and guide
the content-dependent image enhancement by the additional
dimensions (i.e., context information) introduced.

III. METHODOLOGY

In this section, to assist the understanding of the new
proposed 4D LUT, we first briefly review the preliminary
about 3D LUT and trilinear interpolation. Then we describe
the overview and each component of 4D LUT in detail.

A. Preliminary

1) 3D LUT: 3D LUT is a common tool used in dif-
ferent camera imaging pipeline systems and software for

image enhancement, which can be adjusted manually or algo-
rithmically to achieve different kinds of enhancements. A
3D LUT can be represented as a 3D lattice and the value
of each element in the lattice can be represented as a triplet
(R(i, j,k)

out ,G(i, j,k)
out , B(i, j,k)

out ), where i, j, k ∈ {0, . . . , Nbin − 1},
Nbin is the number of bins along each of three dimensions.
Such a lattice includes a total of N 3

bin sampling points, which
form a complete 3D color transformation space. As shown
in Fig. 1(a), the element (rin, gin, bin) input to this color
space can be mapped to an index by uniformly discretizing
the RGB color space. The corresponding transformed output
RGB color (rout , gout , bout ) is the value corresponding to the
index. It is worth noting that as the value of Nbin increases,
the 3D color transformation space becomes more accurate for
color transformation and vice versa.

2) Trilinear Interpolation: As described above, the distri-
bution of the elements in the LUT is discrete in space and
it cannot be sampled directly by the input index. Therefore,
when sampling elements in the 3D LUT, the input color will
find its nearest sample point based on its index and calculate
its transformed output by trilinear interpolation [25], [51].

Specifically, to locate the nearest 8 adjacent elements
around input index, we first construct the input index
(x, y, z) to the 3D LUT based on the input RGB color
(r (x,y,z)in , g(x,y,z)in , b(x,y,z)in ), which process can be described as
follows:

x = r (x,y,z)in ·
Nbin

255
, y = g(x,y,z)in ·

Nbin

255
, z = b(x,y,z)in ·

Nbin

255
,

(1)

where Nbin is the number of bins along each of three dimen-
sions in 3D LUT. We use (i, j, k) to denote the location of the
defined sampling point, which can be calculated as follows:

i = ⌊x⌋ , j = ⌊y⌋ , k = ⌊z⌋ , (2)
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where ⌊·⌋ represents the floor function. We use (ox , oy, oz)

denote the offset of the input index (x, y, z) to defined
sampling point (i, j, k), which can be calculated as follows:

ox = x − i, oy = y − j, oz = z − k. (3)

Then, taking the red color r (x,y,z)out in transformed output RGB
color (r (x,y,z)out , g(x,y,z)out , b(x,y,z)out ) as an example, the interpola-
tion process can be expressed as:

r (x,y,z)out = (1 − ox )(1 − oy)(1 − oz)r
(i, j,k)
out

+ ox oyozr (i+1, j+1,k+1)
out

+ ox (1 − oy)(1 − oz)r
(i+1, j,k)
out

+ (1 − ox )oyozr (i, j+1,k+1)
out

+ (1 − ox )oy(1 − oz)r
(i, j+1,k)
out

+ ox (1 − oy)ozr (i+1, j,k+1)
out

+ (1 − ox )(1 − oy)ozr (i, j,k+1)
out

+ ox oy(1 − oz)r
(i+1, j+1,k)
out (4)

where the input r ({i,i+1},{ j, j+1},{k,k+1})
out is the transformed

output red color corresponding to the defined sampling point
({i, i + 1}, { j, j + 1}, {k, k + 1}). Similarly, it can also obtain
the other colors (i.e., g(x,y,z)out and b(x,y,z)out ) in the same way. It is
worth noting that the interpolation operation is differentiable
and can update of LUTs during end-to-end training.

B. Context-Aware 4D LUT

Existing works [25], [41], [47], [51] improve the 3D LUT to
enhance the image, and lack a necessary content information in
the images. Therefore, we propose the learnable context-aware
4D LUT to achieve content-dependent image enhancement and
enable finer control of color transformations for pixels with
different content in each image.

As shown in Fig. 2, our method takes the input image
and several pre-defined basis 4D LUTs as input, and finally
generates an enhanced image. It includes four closely-related
components, context encoder, parameter encoder, 4D LUTs
fusion module, and quadrilinear interpolation module. Specif-
ically, it involves the following stages: 1) We first use a
context encoder to generate a context map that represents
the pixel-level category from the input image through end-
to-end learning. 2) Parallelly, we use a parameter encoder
for generating image-adaptive coefficients applied to fuse the
learnable pre-defined basis 4D LUTs. 3) Then, based on
the output of the parameter encoder, we use the 4D LUTs
fusion module to integrate the learnable basis 4D LUTs into a
final context-aware 4D LUT with more enhanced capabilities.
4) Finally, the original input image and the context-aware
4D LUT are input to the quadrilinear interpolation module to
obtain the enhanced image. In the following, we will describe
them individually. More detailed descriptions also can be
found in Alg. 1.

Algorithm 1 4D LUT Algorithm.

1) Context Encoder: Context encoder can adaptively gen-
erate content-dependent context maps under the constraints
of the objective function in a learnable manner. We use
Econtext (·) to denote the context encoder, which consists of
a series of stacked residual blocks. In detail, it includes four
residual blocks with 3 × 3 kernel size and one residual block
with 1 × 1 size. Among them, the 3 × 3 residual blocks are
applied to extract the high-level image features of the same
resolution from the input image, and the 1 × 1 residual block
compresses the image features and is used to output the context
map. Suppose that an input image Iinput ∈ R3×H×W are given.
The generated context map C ∈ R1×H×W can be formulated
as:

C = Econtext (Iinput ). (5)

Intuitively, the context encoder can be viewed as a function
that maps the content information for each position in the input
image to a compact scalar representation. During training,
the context encoder is updated by the back-propagated gra-
dient of the module connected behind. During inference, the
more appropriate context map for enhancement is generated
adaptively according to the high-level semantic differences of
different regions.

2) Parameter Encoder: To facilitate the fusion of multiple
pre-defined basis 4D LUTs and increase the 4D LUT enhance-
ment capability, the parameter encoder extracts a group of
image-adaptive coefficients for 4D LUT fusion during end-
to-end training. We use E param(·) to denote the parameter
encoder, which consists of a series of stacked residual blocks
and a parameters output layer consisting of a convolutional
layer. In detail, suppose that an input image Iinput ∈ R3×H×W

are given. The generated parameters W ∈ RNw×1×1 and
B ∈ RNb×1×1 can be formulated as:

W,B = E param(Iinput ), (6)

where W = {w1, w2, . . . , wNw } and B = {b1, b2, . . . , bNb }

represent the outputted coefficients (i.e., weights and biases)
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to fuse the learnable basis 4D LUTs, respectively. Nw and
Nb are the number of weights and biases in the coefficients,
respectively. If the number of basis 4D LUTs is assumed to
be Nlut , then the values of Nw and Nb are 9Nlut and Nlut ,
respectively.

During training, the parameter encoder is updated by the
back-propagated gradient of the module connected behind.
During inference, the parameter encoder can be viewed
as a parameter predictor that integrates the learnable basis
4D LUTs in a soft-weighting strategy to achieve adaptive
context-aware 4D LUT generation for better image enhance-
ment.

3) 4D LUTs Fusion: During the end-to-end training pro-
cess, the elements of per-defined basis 4D LUTs are gradually
updated to adapt to the change of color space. To obtain
a context-aware 4D LUT with stronger color transformation
capabilities, the 4D LUTs fusion module fuses multiple learn-
able basis 4D LUTs by using the coefficients obtained from
the parameter encoder.

Specifically, we use 9n∈{1,...,Nlut } to denote one of the
multiple basis 4D LUTs, where Nlut is the number of basis
4D LUTs. As described in Sec. III-A.1, the value of each
element in 9n can be represented as a triplet (i.e., red, green,
and blue color spaces), in which we use ψr

n , ψg
n , and ψb

n to
denote the corresponding red, green, and blue color spaces
in 9n , respectively. Besides, we use 9̂ = (ψ̂r , ψ̂g, ψ̂b) to
represent the fused context-aware 4D LUT. Taking the fusion
process of red space ψ̂r as an example, it can be generated
by:

ψ̂r
=

∑Nlut
n=1(wnψ

r
n + w(Nlut +n)ψ

g
n

+ w(2Nlut +n)ψ
b
n + bn), (7)

where w and b are the weights and biases output from the
parameter encoder. Similarly, we can also obtain the other
colors space (i.e., ψ̂g and ψ̂b) in the same way.

In general, the addition of weights allows the different color
spaces to interact and fuse with each other, resulting in a
more appropriate color temperature (similar to white balance).
The addition of biases can adaptively enhance the overall
brightness of the image. Such a design on fusion approach
makes the fused context-aware 4D LUT with more superior
enhancement capability.

4) Quadrilinear Interpolation: Based on the original RGB
image, the generated context map, and context-aware 4D LUT,
we can obtain the enhanced image via interpolation operation.
However, different from the 3D LUT and trilinear interpolation
described in Sec. III-A, the index of our proposed 4D LUT is
on the 4-dimensional space (i.e., RGB+Context).

To effectively interpolate the values based on the index of
4-dimensional RGBC space, we propose to use a quadrilinear
interpolation closely related to the 4D LUT. Suppose that an
input image Iinput ∈ R3×H×W are given, the context map
C ∈ R1×H×W and context-aware 4D LUT are generated, the
enhanced image Ioutput ∈ R3×H×W can be formulated as:

Ioutput = Q I
9̂
(Concat (Iinput ,C)), (8)

where Q I
9̂
(·) denotes the quadrilinear interpolation based on

the context-aware 4D LUT 9̂. Concat (·) is the concatenation
operation.

Specifically, similar to in Sec. III-A.2 above, the input index
to the 4D LUT based on the input RGBC value can be rep-
resented as (x, y, z, u), we first locate the nearest 16 adjacent
elements around the input index as the sampling point (i.e., the
distance from input index satisfies 1 ∈ [−1, 1] in each
dimension). We use (i, j, k, l) to denote the coordinates of
a defined sampling point in 4D LUT, which can be calculated
as follows:

i = ⌊x⌋ , j = ⌊y⌋ , k = ⌊z⌋ , l = ⌊u⌋ , (9)

where ⌊·⌋ represents the floor function. The defined nearest
16 adjaent sampling point in 4D LUT are ({i, i + 1}, { j, j +

1}, {k, k + 1}, {l, l + 1}). We use (ox , oy, oz, ou) denote the
offset of the input index (x, y, z, u) to defined sampling point
(i, j, k, l), which can be calculated as follows:

ox = x − i, oy = y − j, oz = z − k, ou = u − l. (10)

Then, the red color r (x,y,z,u)out in transformed output RGB color
(r (x,y,z,u)out , g(x,y,z,u)out , b(x,y,z,u)out ) can be expressed as:

r (x,y,z,u)out = (1 − ox )(1 − oy)(1 − oz)(1 − ou)r
(i, j,k,l)
out

+ ox (1 − oy)(1 − oz)(1 − ou)r
(i+1, j,k,l)
out

+ (1 − ox )oy(1 − oz)(1 − ou)r
(i, j+1,k,l)
out

+ (1 − ox )(1 − oy)oz(1 − ou)r
(i, j,k+1,l)
out

+ (1 − ox )(1 − oy)(1 − oz)our (i, j,k,l+1)
out

+ ox oy(1 − oz)(1 − ou)r
(i+1, j+1,k,l)
out

+ (1 − ox )oyoz(1 − ou)r
(i, j+1,k+1,l)
out

+ (1 − ox )(1 − oy)ozour (i, j,k+1,l+1)
out

+ ox (1 − oy)oz(1 − ou)r
(i+1, j,k+1,l)
out

+ ox (1 − oy)(1 − oz)our (i+1, j,k,l+1)
out

+ (1 − ox )oy(1 − oz)our (i, j+1,k,l+1)
out

+ ox oyoz(1 − ou)r
(i+1, j+1,k+1,l)
out

+ (1 − ox )oyozour (i, j+1,k+1,l+1)
out

+ ox oy(1 − oz)our (i+1, j+1,k,l+1)
out

+ ox (1 − oy)ozour (i+1, j,k+1,l+1)
out

+ ox oyozour (i+1, j+1,k+1,l+1)
out , (11)

where the input r ({i,i+1},{ j, j+1},{k,k+1},{l,l+1})
out is the trans-

formed output red color corresponding to the defined nearest
16 adjacent sampling point ({i, i + 1}, { j, j + 1}, {k, k +

1}, {l, l + 1}) in 4D LUT. Similarly, we can also obtain the
other colors (i.e., g(x,y,z)out and b(x,y,z)out ) in the same way. The
quadrilinear interpolation operation is differentiable and can
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propagate the gradient to update the weight of the network
and the element values of context-aware 4D LUT.

C. Training

To update the elements of 4D LUT and the parameters of the
network, in this section, we employ several objective functions
to supervise the whole training process.

1) 4D Smooth Regularization: The parameters of 4D LUT
correspond to the values in the output color space. The
color transformation for closer input colors with unsmoothed
4D LUT may produce extreme color changes, reducing the
robustness of the model and producing artifacts. Therefore,
we use 4D smooth regularization to ensure that the con-
verting from the input space (i.e., RGBC) to the obtained
color space (i.e., RGB) is stable enough. We introduce L2-
norm regularization on the elements of the 4D LUT and the
outputted coefficient of the parameter encoder to improve the
smoothness of the context-aware 4D LUT.

Specifically, inspired by existing work [51], we extend the
3D smooth regularization into a 4D smooth regularization term
on the learning of 4D LUT to ensure the local smoothing of the
elements in 4D LUT. The smooth regularization of 4D LUT
Llut

s can be calculated as follow:

Llut
s =

∑
p∈{r,g,b}

Nbin−1∑
i, j,k,l=0

(
∥∥p(i+1, j,k,l)

out − p(i, j,k,l)
out

∥∥2

+
∥∥p(i, j+1,k,l)

out − p(i, j,k,l)
out

∥∥2
+

∥∥p(i, j,k+1,l)
out

− p(i, j,k,l)
out

∥∥2
+

∥∥p(i, j,k,l+1)
out − p(i, j,k,l)

out
∥∥2
), (12)

where Nbin is the number of bins along each
of the output dimensions in 4D LUT. The input
p({i,i+1},{ j, j+1},{k,k+1},{l,l+1})

out is the transformed output
red, green, and blue color corresponding to the defined
sampling point ({i, i + 1}, { j, j + 1}, {k, k + 1}, {l, l + 1}) in
4D LUT.

The smooth regularization of outputted coefficient Lcoe
s can

be calculated as follow:

Lcoe
s =

Nw∑
n=1

∥∥wn
∥∥2

+

Nb∑
m=1

∥∥bn
∥∥2
, (13)

where Nw and Nb are the numbers of weights and biases in
the coefficients, respectively. wn and bm represent the out-
putted image-adaptive weights and biases from the parameter
encoder.

The overall smooth regularization term Ls can be repre-
sented as:

Ls = Llut
s + Lcoe

s . (14)

This design makes the elements in 4D LUT locally smoother
and ensures the stability of color transformation.

2) 4D Monotonicity Regularization: The values output from
the enhanced image should have the ability to cover the entire
RGBC space and preserve the robustness and relative color
brightness/saturation in the enhancement process. Therefore,
to enable the color space output from 4D LUT satisfy the
above requirements and converge rapidly, we followed existing

work [51] to expand the 3D monotonicity regularization into
4D monotonicity regularization term Lm as follows:

Lm =

∑
p∈{r,g,b}

Nbin−1∑
i, j,k,l=0

[g(p(i, j,k,l)
out − p(i+1, j,k,l)

out )

+ g(p(i, j,k,l)
out − p(i, j+1,k,l)

out )+ g(p(i, j,k,l)
out

− p(i, j,k+1,l)
out )+ g(p(i, j,k,l)

out − p(i, j,k,l+1)
out )], (15)

where g(·) denotes the ReLU activation function
(i.e., g(x) = max(0, x)). Nbin is the number of bins
along each of the output dimensions in 4D LUT. The input
p({i,i+1},{ j, j+1},{k,k+1},{l,l+1})

out is the transformed output red,
green, and blue color corresponding to the defined sampling
point ({i, i + 1}, { j, j + 1}, {k, k + 1}, {l, l + 1}) in 4D LUT.
This design not only allows the color transformation to cover
the entire RGBC space, but also allows the 4D LUT to
converge faster during training.

3) Pairwise Reconstruction: The aim of image enhance-
ment is to keep the enhanced image as close as possible to
the ground truth image, thus we also incorporate a pixel-level
reconstruction loss function. Specifically, for fair comparisons,
we follow previous works [5], [28], [51] to define the recon-
struction loss Lr between the ground truth IGT and enhanced
image Ioutput to train the whole model, it is defined as:

Lr =
1

Nbs

Nbs∑
1

(IGT − Ioutput )
2, (16)

where Nbs represents the batch size during training.
4) Loss Function: As described above, during training, our

approach includes a total of three loss components, the 4D
smooth regularization loss, the 4D monotonicity regularization
loss, and the pairwise reconstruction loss. It is essential for the
network to balance these three items. Therefore, we multiply
Ls and Lm (as described in Eqn. 14 and 15) with a weight αs
and αm , respectively, to enable the validity of context-aware
4D LUT while not harming the performance of enhancement.
The total loss function is formulated as follows:

L total = Lr + αs Ls + αm Lm . (17)

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: We evaluate the proposed 4D LUT and
compare its performance with other state-of-the-art (SOTA)
approaches on three widely-used challenging benchmarks,
derived from two public datasets: MIT-Adobe-5K-UPE [40],
MIT-Adobe-5K-DPE [4], and PPR10K [25].

a) MIT-Adobe-5K-UPE: a benchmark is divided from
the MIT-Adobe FiveK dataset [2], following the dataset
pre-processing procedure of DeepUPE [40]. MIT-Adobe
FiveK dataset is a commonly-used landscape photo retouching
dataset with 5,000 images captured using various DSLR
cameras. Each image contains the corresponding retouched
version produced by five experienced experts (A/B/C/D/E).
For fair comparisons, we follow previous works [4], [31], [32]
to use the photo retouched by expert C as image enhancement
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ground truth (GT). We select 4,500 image pairs as the training
set and 500 image pairs as the test set in order, and all images
are resized to 510 pixels on the long edge.

b) MIT-Adobe-5K-DPE: another benchmark consists of
the same image context as the MIT-Adobe FiveK dataset [2]
however following the dataset pre-processing procedure of
DPE [4]. We follow previous works [31], [32], [40] to use
the photo retouched by expert C as ground truth (GT). The
difference is that we sequentially select 2,250 image pairs as
the training set and 500 image pairs as the test set.

c) PPR10K: a new large-scale portrait retouching dataset
to be released in 2021, containing a total of 11,161 high-
quality RAW portraits. Each image contains the corresponding
retouched version produced by three experienced experts
(a/b/c). For fair comparisons, we follow the official split [25]
to divide the dataset into 8,875 training pairs and 2,286 test
pairs. We compare the results on all expert modifications, and
the image size is 360p.

2) Evaluation Metrics: For fair comparisons, we follow
previous enhancement works [5], [28], [51] to use peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [42] as a commonly-used metric for evaluating in
terms of the color and structure similarity between the
enhanced results and the corresponding expert-retouched
images. Besides, we also added the widely used metric
LPIPS [52] to evaluate perceptual quality, and BRISQUE and
NIQE to evaluate objective quality.

3) Implementation Details: Our experiment is conducted on
an NVIDIA 2080Ti GPU through PyTorch. For fair compar-
isons, we follow previous works [25], [41], [47], [51] and use
the Adam optimizer [18] with β1 = 0.9 and β2 = 0.999 and
the batch size of 1. The initial learning rate is set as 1 × 10−4

and then reduce the learning rate by a factor of 0.2 when the
losses of the testing set last for 20 epochs without decreasing.
We jointly train the entire model for 400 epochs. Except for
adding random crop image patches with a scale in the range
[0.6, 1.0], horizontal flip, and no other data augmentation
methods are used.

Besides, we follow previous works [25], [51] to set the the
number of bins Nbin in LUT and the number of basis 4D LUT
Nlut as 33 and 3, respectively. We set the number of weights
Nw and biases Nb as 27 and 3, respectively. We empirically set
αs and αm as 0.0001 and 10 through discussion experiments.

B. Comparison With State-of-the-Art Methods

We compare our 4D LUT with other classical start-of-the-
art methods. These methods can be summarized into three
categories: reinforcement learning-based methods (i.e., White-
Box [13], Dis-Rec [34], and UIE [20]), image-to-image
translation methods (i.e., DPED [14], 8Resblock [27], [53],
CRN [3], U-Net [37], DPE [4], GSGN [19], MIRNet [50],
and CSRNet [9], [28]), and physical modeling-based meth-
ods (i.e., HDRNet [5], DeepUPE [40], DeepLPF [31],
TED+CURL [32], 3D LUT [51], 3D LUT+HRP [25]). For fair
comparisons, we obtain the performance from their original
paper or reproduce results with recommended configurations
by the authors’ officially released models.

TABLE II
QUANTITATIVE COMPARISON (PSNR↑ AND SSIM↑) ON THE

MIT-ADOBE-5K-UPE [40] DATASET. RED INDICATES THE BEST AND

BLUE INDICATES THE SECOND BEST PERFORMANCE (BEST VIEW IN

COLOR)

TABLE III
QUANTITATIVE COMPARISON (PSNR↑ AND SSIM↑) ON THE

MIT-ADOBE-5K-DPE [4] DATASET. RED INDICATES THE BEST AND BLUE

INDICATES THE SECOND BEST PERFORMANCE (BEST VIEW IN COLOR)

1) Quantitative Comparison: The results of each algorithm
evaluated on datasets MIT-Adobe-5K-UPE [40] and MIT-
Adobe-5K-DPE [4] are shown in Tab. II and Tab. III,
respectively. Benefit from the strong capabilities of a pure
CNN structure based on an image-to-image translation meth-
ods (i.e., DPED [14], 8Resblock [27], [53], CRN [3],
U-Net [37], DPE [4], GSGN [19], MIRNet [50], and CSR-
Net [9], [28]) perform image enhancement by designing
huge and complex network models, whose performance is
often positively correlated with the model size. The latest
algorithm CSRNet [9], [28] designs a lightweight enhance-
ment model using the 1 × 1 convolutional kernels, but still
lacks enhancement capability. Besides, algorithms based on
reinforcement learning (i.e., White-Box [13], Dis-Rec [34],
and UIE [20]) improve the enhancement capability by decou-
pling multiple steps and also achieve pleasant results, but the
computational cost is too large. The physical model-based
methods (i.e., HDRNet [5], DeepUPE [40], DeepLPF [31],
TED+CURL [32], 3D LUT [51], 3D LUT+HRP [25]) is
based on theoretical physical models and assumptions that are
transparent in the enhancement process. Representatively, the
latest algorithm 3D LUT [51] generally performs better than
the other methods. However, this method focus on learning
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TABLE IV
QUANTITATIVE COMPARISON (PSNR↑ AND SSIM↑) ON THE PPR10K [25] DATASET. RED INDICATES THE BEST AND BLUE INDICATES THE SECOND

BEST PERFORMANCE (BEST VIEW IN COLOR)

Fig. 3. Visual comparison with state-of-the-arts on MIT-Adobe-5K-UPE [40] dataset. The quantitative comparison (PSNR↑ and SSIM↑) is shown at the
bottom of each case.

a uniform enhancer and achieving a globally overall average
over all regions of the enhanced result that decrease the accu-
racy of enhancement and can lead to sub-optimal performance.

Our proposed 4D LUT extends the lookup table architecture
into a 4-dimensional space and achieves content-dependent
image enhancement. As shown in Tab. II and Tab. III,
it achieves a result of 24.96dB and 24.61dB PSNR and sig-
nificantly outperforms the other algorithms for all datasets by
a large margin. Specifically, on the MIT-Adobe-5K-UPE [40]
and MIT-Adobe-5K-DPE [4] datasets, 4D LUT outperforms
3D LUT [51] by 0.36dB and 0.28dB, respectively. Besides,
our 4D LUT also has significant superiority in perceptual
quality (i.e., LPIPS [52]) and objective quality (i.e., BRISQUE
and NIQE). This large margin demonstrates the power of
4D LUT in image enhancement.

To further verify the generalization capabilities of 4D LUT,
we evaluate 4D LUT on another larger-scale portrait photo
retouching dataset PPR10K [25]. As shown in Tab. IV, due

to the well-designed 4D LUT and the content-dependent
learning capability, 4D LUT achieves better results in all three
experts-retouch results, which outperforms other SOTA meth-
ods between 0.22dB to 0.30dB. The performances demonstrate
that 4D LUT has strong generalization capabilities under
different scenarios.

2) Qualitative Comparison: To further compare the visual
qualities of different algorithms, we show visual results
enhanced by proposed 4D LUT and other SOTA methods on
different datasets in Fig. 3 and Fig. 4. For fair comparisons,
we either directly take the original enhanced results of the
author-released or use author-released models to get results.

It can be observed that 4D LUT has a great improvement in
visual quality and evaluation metrics (i.e., PSNR, SSIM, and
LPIPS). For example, in the first row in Fig. 4, compared
to other methods using a unified enhancer for landscapes
and portraits, 4D LUT can simultaneously obtain both blue
landscapes and comfortably colored portraits. In the third row
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Fig. 4. Visual comparison with state-of-the-arts on PPR10K-a [25] dataset. The quantitative comparison (PSNR↑ and SSIM↑) is shown at the bottom of
each case.

in Fig. 4, our 4D LUT can enable a stronger enhancement
capability by introducing an additional contextual dimension,
which can produce brighter green plants and portraits. As the
analysis mentioned above, the results verify that 4D LUT has
stronger enhancement capability and can achieve better results,
especially for content-rich photos.

3) Complexity Analysis: Model sizes and inference time
are usually important in real applications. We follow previous
works [9], [28] to report them enhancing an image with
360p by using an RTX 2080Ti GPU. As shown in Tab. IV,
compared with other SOTA methods, 4D LUT achieves higher
performance while keeping comparable #Param. It should
be emphasized that due to the expanded dimensionality, the
parameters number of a 4D LUT are larger compared to the
3DLUT [25], [51] (i.e., 216K vs 108K). Besides, 4D LUT
is slower compared to 3D LUT [51] due to the generation
of the context map and quadrilinear interpolation, but it
also significantly exceeds the real-time runtime (i.e., 30fps).
It should be emphasized that the quadrilinear interpolation of
each pixel is independent of the others, and this transformation
can be easily parallelized using the GPU, thus not adding much
extra time.

C. Ablation Study

In this section, we conduct ablation experiments on model
design and loss function on the MIT-Adobe-5K-UPE [40]
dataset.

1) Model Design: To demonstrate the effectiveness of each
component in 4D LUT, we conduct ablation experiments
for each component. The experimental results are shown in
Tab. V. The “Base” indicates the result that no context encoder
(i.e., the context map is an all-zero image) and no parameter
encoder (i.e., directly summing the basis 4D LUTs to fuse).
“CE” and “PE” indicate the context encoder and parameter

TABLE V
ABLATION STUDY OF EACH COMPONENT IN 4D LUT. CE: CONTEXT

ENCODER. PE: PARAMETER ENCODER

Fig. 5. Ablation study on the context encoder (CE) and parameter encoder
(PE). (“4D LUT” can be interpreted as “Base+PE+CE”).

encoder, respectively. The results show that the PSNR has
increased by 1.34dB by joining the CE. It demonstrates that
the addition of the context encoder enables the network to
learn content-dependent image enhancement, yielding stronger
enhancement capabilities. With the addition of PE, PSNR
can be increased by 2.01dB, which verifies that the learnable
image-adaptive coefficients can be better fused into context-
aware 4D LUT, increasing the enhanced capability of the
context-aware 4D LUT. When CE and PE are involved at the
same time to boost each other, the performance is improved
by 2.32dB.

We further explore the visual differences as shown in
Fig. 5, context encoder can produce content-dependent image
enhancement, while the parameter encoder produces richer
color. It demonstrates the superiority of each component
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TABLE VI
ABLATION STUDY OF LOSS FUNCTION USED IN 4D LUT. CE: CONTEXT

ENCODER MODULE. PE: PARAMETER ENCODER MODULE

TABLE VII
RESULTS OF DIFFERENT NUMBER OF BINS Nbin IN 4D LUT ON MIT-

ADOBE-5K-UPE [40] DATASET

of 4D LUT, which can get better performance for image
enhancement.

2) Loss Function: To demonstrate the effectiveness of each
loss function in 4D LUT, we conduct ablation experiments
for them. The experimental results are shown in Tab. VI.
The “Lr ” indicates the pairwise reconstruction loss. “Ls”
and “Lm” indicate the 4D smooth regularization loss and
4D monotonicity regularization loss, respectively. With the
addition of Ls , PSNR can be improved from 24.74dB to
24.79dB, which verifies that the 4D smooth regularization
loss can ensure a stable transition from the input space
(i.e., RGBC) to the obtained color space (i.e., RGB). When Lm
is involved, the color transformation can reserve the relative
color brightness/saturation and cover the entire RGBC space,
and the performance is improved to 24.96dB. It demonstrates
the superiority of each loss function of 4D LUT, which can
get better performance for image enhancement.

V. DISCUSSIONS

In this section, to further demonstrate the reasonableness
of 4D LUT, we first visualize the proposed context map and
context-aware 4D LUT. Then we discuss the effect of bins
Nbin in the 4D LUT and the number of basis 4D LUT Nlut .
Finally, we discuss the sensitivity of smooth regularization
weight αs and monotonicity regularization weight αm .

A. Visualization of Context Map

The context map is used to distinguish the high-level
semantic differences between different regions. To explore the
effectiveness of context map C in 4D LUT, we visualize it
as shown in Fig. 6. Among them, we use eight kinds of
colors to visualize the different contents in the generated
context map from small to large, and it can be seen that
the generated context map effectively divides the regions with
different high-level semantic differences adaptively. Compared
with the results of 3D LUT not involving the context map, the
results (indicated by the red box) demonstrate that our context-
aware 4D LUT is effective in achieving content-dependent
enhancement with better results.

TABLE VIII
RESULTS OF DIFFERENT NUMBER OF BASIS 4D LUT Nlut ON MIT-

ADOBE-5K-UPE [40] DATASET

B. Visualization of Context-Aware 4D LUT

To better study this content-dependent enhancement prop-
erty of context-aware 4D LUT, in Fig. 7, we visualize the
context-aware 4D LUT for two different images and show
their corresponding enhancement results. Besides, to visualize
the differences of each of the R, G, and B channels on the
context-aware 4D LUT more clearly, we fix the values of the
context map to the maximum and minimum, respectively, and
then visualize 17 slices (i.e., {1, 3, . . . , 31, 33}) of the whole
4D LUT (33 slices in total).

As shown in Fig. 7, it is observed that for images contain-
ing blue ocean and green grass, our method can adaptively
generate different 4D LUT corresponding to different shapes.
This demonstrates that 4D LUT has the ability to establish
color transformation relationships for images with different
contents. Besides, the shapes of visualized LUT corresponding
to different C-dimensions in each image also have signif-
icant differences. This proves that the 4D LUT has the
ability to perform different color transformations according
to the different contents in each image, which enables finer
control of color transformation and stronger image enhance-
ment. It can be found that 4D LUT can obtain pleasing
visual results for different images or different contents in
each image.

C. Discussion on Number of Bins Nbin in 4D LUT

To explore the influence of the number of bins Nbin in
4D LUT on the enhancement effect. As shown in Tab. VII,
we divide the 4D LUT into different number of bins (i.e., {9,
17, 33, 64}). As the value of Nbin increases from 9 to 33, the
PSNR is increased from 24.67dB to 24.96dB. It is because
the increase in Nbin makes the interpolated elements used for
color transformation more accurate, and vice versa. Besides,
to prevent the 4D LUT from overfitting the color transforma-
tions of the training data and to preserve the generalization
of the color transformations, we choose Nbin as 33 in our
experiments.

D. Discussion on Number of Basis 4D LUTs Nlut

To explore the influence of the number of basis 4D LUTs
Nlut used on the enhancement effect. As shown in Tab. VIII,
we use different number of basis 4D LUTs (i.e., {1, 2, 3,
4, 5}) to fuse into a context-aware 4D LUT that described
in Sec. III-B.3. The performance is positively correlated with
the number of basis 4D LUTs. It demonstrates using mul-
tiple basis 4D LUTs improves the expressiveness of color
transformations. Besides, it can be seen easily that when the
number of base 4D LUTs is increased from 1 to 3, its PSNR
is significantly improved from 22.92dB to 24.96dB, while the
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Fig. 6. Visualization of generated context map and enhanced results. The generated context map is visualized in eight kinds of colors from small to large
according to the high-level semantic differences.

Fig. 7. Visualization of context-aware 4D LUT and enhanced results. The context-aware 4D LUT is visualized by dividing it into R, G, and B channels
when the content values are minimum and maximum.

improvement becomes smaller when the basis 4DLUTs is fur-
ther increased. Therefore, by the trade-off between the number
of model parameters and performance, we experimentally set
Nlut to 3.

E. Discussion on Smooth Regularization Weight αs

As described in Sec. III-C.1 above, we use a 4D smooth
regularization to ensure the stability of the locally color
transformation. Therefore, we perform experiments by set-
ting the smooth regularization weight αs distributed in
{0, e−5, e−4, e−3, e−2, e−1

} to select the appropriate values in
Eqn. 17. As shown in Fig. 8, it can be seen that when αs
is too large, excessive smoothing makes 4D LUT missing
a detailed description of the color transformations, while
reducing performance. On the contrary, when αs is too small,
insufficient smoothing makes the network lack the ability to
generalize the color transformations. We set αs as 0.0001 in
the final experimentally.

Fig. 8. Sensitivity of smooth regularization weight αs .

F. Discussion on Monotonicity Regularization Weight αm

To explore the influence of the monotonicity regulariza-
tion weight on the color enhancement effect in Sec. III-C.2.
We perform experiments by setting the smooth regularization
weight αm distributed in {0, 0.1, 1, 10, 100} in Eqn. 17. The
experimental results are shown in Fig. 9. Compared with
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Fig. 9. Sensitivity of monotonicity regularization weight αm .

TABLE IX
QUANTITATIVE COMPARISON (PSNR↑ AND SSIM↑) ON LOW-CONTRAST

HAZY SOTS [22] INDOOR DATASET

not adding the monotonicity regularization, the monotonicity
regularization of the 4D LUT can preserve the relative color
brightness, and make the color transformation cover the whole
RGBC space. The impact of the larger monotonicity regular-
ization weight αm is minor, and we experimentally set αm to
10 finally.

G. Discussion on low-contrast hazy images

To further explore the potential of our 4D LUTs on
low-contrast hazy images, we evaluate the proposed method
on RESIDE [22] dataset as shown in Tab. IX and Fig. 10. The
subset Indoor Training Set (ITS) of RESIDE as our training
set, which contains a total of 13,990 hazy indoor images
generated from 1,399 clear images. The subset Synthetic
Objective Testing Set (SOTS) of RESIDE as our testing set,
which consists of 500 indoor hazy images. As shown in
Tab. IX, 4D LUT also has a promising performance in low-
contrast hazy images using fewer parameters. This is due to the
ability of 4D LUT to learn low-contrast color space mapping
to high-contrast color space. However, as shown in Fig. 10,
with the increase of haze, the 4D LUT cannot distinguish well
between regions with different intensities of haze, which is due
to the fact that they have the same context map. Potentially,
a haze encoder can be developed to replace the context encoder
to learn to distinguish between regions with different haze
intensities. If doing so, regions with various haze intensities
can be differentially enhanced, thus effectively eliminating
various intensities of haze.

VI. LIMITATION

In our method, the context map is obtained from the raw
image and is used to distinguish the different contents. How-
ever, the annotation of each image in the dataset is obtained by
the retouching expert independently, so when the same con-
tents (e.g., the grass in Fig. 11) are retouched to different colors

Fig. 10. Visualization of 4D LUT on low-contrast hazy SOTS [22] dataset.

Fig. 11. Failure cases when the same content is retouched with different
colors.

in different images, incorrect color mapping is generated. This
uncertainty introduced by human factors remains a challenge
for the LUT-based enhancement algorithm.

VII. CONCLUSION

In this paper, we extend the lookup table architecture into a
4-dimensional space and propose a novel learnable context-
aware 4-dimensional lookup table (4D LUT). It includes
four closely-related components. 1) A context encoder is
used to generate the content-dependent context map. 2) A
parameter encoder for generating image-adaptive coefficients.
3) A 4D LUTs fusion module integrates the coefficients
and learnable basis 4D LUTs into a content-aware 4D LUT.
4) A quadrilinear interpolation module output the enhanced
image. This design introduces the image content and enables
finer control of color transformations for pixels in each
image, resulting in content-dependent image enhancement
via learning image contents adaptively. Experimental results
show significantly superior between the proposed 4D LUT
and existing SOTA models. In the future, we will focus on
extending our 4D LUT in more low-level vision tasks through
more explorations.
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