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a b s t r a c t

Although there is a long line of research on bidirectional image–text matching, the problem remains a
challenge due to the well-known semantic gap between visual and textual modalities. Popular solutions
usually first detect the objects and then find the association between visual objects and the textual
words to estimate the relevance; however, these methods only focus on the visual object features
while ignoring the semantic attributions of the detected regions, which is an important clue in terms
of bridging the semantic gap. To remedy this issue, we propose a generative multiattribution tag
fusion method that further includes region attribution to alleviate the semantic gap. In particular,
our method comprises three steps: the extraction of image features, the extraction of text features,
and the matching of image and text by an attention mechanism. We first divide the image into blocks
to obtain the region image features and region attribute labels. Then, we fuse them to reduce the
semantic gap between the image features and text features. Second, BERT and bi-GRU are used to
extract text features, and third, we use the attention mechanism to match each area in the image
with each word in the text with the same meaning. The quantitative and qualitative results on the
public datasets Flickr30K and MS-COCO demonstrate the effectiveness of our method. The source code
is released on Github https://github.com/smileslabsh/Generative-Label-Fused-Network.

© 2023 Elsevier B.V. All rights reserved.
-

1. Introduction

In the last decade, with the development of the internet
nd information technology, the information on the internet has
hanged changing from text-based single-mode data to multi-
odal data information composed of text, picture, video, audio,
nd data of other modes. These different modalities are often used
o describe the same object, the same event, or the same subject.
n the face of these huge and interrelated multimedia data, users
rgently need to be able to use one of the modalities (such as text)
o simultaneously retrieve the results of other related modalities
such as images), namely, cross-modal retrieval. Among them,
mage and text are the two most commonly used modalities. Con-
equently, image–text matching attracts much attention and is
n important direction in the future development of information
etrieval. At the same time, major internet companies (especially
earch engine companies) are also trying to provide better image
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and text search services for users. Therefore, cross-modal image–
text matching has a wide range of application scenarios and
research significance.

The goal of cross-modal image–text matching is to retrieve
the text that best describes the image for a given image or to
retrieve the image describing a given piece of text. The main
difficulty in cross-modal image–text matching is that the features
of different modalities are in different feature spaces, and they
are heterogeneous at the bottom data structure and semantically
related at the top semantics. For example, text encoding features
and image encoding features that represent the same topic are
in completely different feature spaces. Even though they both
represent the same topic, their feature vectors are completely
different.

Most of the existing methods of cross-modal image–text match
ing extract features of different modalities, such as text and
images. Then, text features and image features are associated in
different feature spaces through mapping, attention, and other
methods. Finally, the similarity between text and image is esti-
mated to perform cross-modal image–text retrieval. In the pro-
cess of measuring the similarity between the image and the text,
an increasing number of models have noticed that the global

similarity between the image and the sentence largely depends
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n the local similarity between the object in the image and the
ord in the sentence. When people use a sentence to describe

mages, it is natural to describe the objects and actions in the
ictures by using the corresponding word, and when retrieving
mages, users often expect the results to include the objects
orresponding to the words in the sentence. Inspired by this
henomenon, the models used a variety of different methods to
easure these local similarities. For example, Karpathy et al. [1]
sed the statistical method to infer the relationship between
he regions in the image and the words. Lee et al. [2] used the
ttention mechanism to design the embedded network, which
an capture the correspondence between the region in the image
nd the word in the sentence. Many researchers have proven that
ividing images into regions and using region features can better
ontact text words [2–4]. It helps us to match the features of
ifferent modalities.
However, we note that the existing methods only focus on

he visual features of the image region but ignore the attribute
eatures and category features of these image regions. For image–
ext matching, the original input is only an image. If a model can
etect the object in the image, it can not only obtain the visual
eatures of the target but also obtain its properties and categories.
he attributes and categories of these objects are complementary
escriptions of visual features, and these attributes and categories
re naturally expressed in text. If we can fuse this information
nto visual features, on the one hand, we can enhance the feature
epresentation of these areas; on the other hand, these fused tag
eatures can reduce the semantic gap with the text modal.

Therefore, based on the above analysis, we propose a GLFN
generative label fused network) model. On the one hand, the
LFN can fuse the image features and attribute and category
eatures obtained from the image, and on the other hand, we use
he pretraining model [5–7] to obtain the representation vector
f different modalities. This model divides a picture into multiple
reas and can describe the image in more detail. At the same time,
ince the pretraining model uses supervision data with labels
n the training stage, we can obtain the attributes and category
nformation while using the pretraining Faster R-CNN to obtain
he features of each image area. BERT is then used to represent
he attributes and category information as vectors and splice
hem with image feature vectors. Finally, we fuse generative tag
eatures, region features and position features for image repre-
entation. The position feature is proposed in PFAN [3], which is
ur baseline model. By splitting the images into blocks, we can
nfer the relative position of the region in the image, and then, an
ttention mechanism is proposed to model the relations between
he image region and blocks and generate valuable position fea-
ures. Therefore, the motivation of the position feature is to make
ull use of the position information of the object in the image
o improve the performance of the image retrieval model. The
osition feature allows the model to measure the importance of
he object region based on the positional cues, thereby focusing
n the salient regions in the image. For the text modality, we use
ERT [8] and bi-GRU [9] to extract the text vector representation.
retrained BERT is used to obtain the generic representation of
ach word in the text, and bi-GRU is used to further adjust the
ord vector of each word. Experiments show that this scheme
as better effects than BERT or bi-GRU alone. Finally, we focus
n finding the fine-grained interaction between the objects and
ords and estimate the relevance for the image–text pair.
To effectively assess the effectiveness of our proposed ap-

roach, we perform experiments on two commonly public data-
ets, Flickr30k [10] and MS-COCO [11]. On the Flickr30K dataset,
ur results reached 75.1 on top1 Recall, a 7.3% increase from 70.0
o 75.1 on baseline (PFAN [3]), and compared to SCAN [2], we

btained an improvement of 11.4%. On the MS-COCO dataset, we

2

achieved a result of 78.4 on top 1 recall, which is an improvement
of 1.9 over PFAN.

Our contribution can be summarized as follows:

• We propose a generative tag feature fusion method for
image–text matching. The generative object tag can reduce
the semantic gap between image and text because it is
a mixture that bridges image object features and textual
features.
• We fuse generative tag features, region features and posi-

tion features for image representation. Furthermore, posi-
tion attention combining generative tag features and region
features is utilized to enhance the representation.
• We propose a method combining BERT and bi-GRU to rep-

resent text features. The overfitting problem caused by us-
ing two models at the same time is relieved by properly
using one fully connected layer. Then, we utilize visual–
textual attention to calculate the final similarity score. The
experimental results demonstrate the effectiveness of our
model.

2. Related work

At present, cross-modal image–text matching [12–18] has
been researched extensively and in depth. The mainstream meth-
od of cross-modal image–text matching is the common subspace
method; the premise of common subspace learning is to assume
that data of different modalities have the same semantic distribu-
tion, so the data of different modalities with the same high-level
semantics have a potential correlation in the semantic space. The
main methods include the traditional method based on statistical
correlation analysis, the DNN, cross-media graph regularization,
measurement learning, and sorting.

2.1. Statistical correlation analysis methods

The first subspace learning method originated in statistics.
The canonical-correlation analysis (CCA) proposed by Hotelling
et al. [19] and Hardoon et al. [20] was the most famous method
in subspace learning. This method was used to learn a common
subspace for two sets of data, which can maximize the paired
correlation between two sets of heterogeneous data. Rasiwasia
et al. [21] first applied the CCA method to cross-modal retrieval.
However, the CCA approach was unsupervised and did not use
semantic tags, so many researchers have tried to extend the CCA
approach. Pereira et al. [22] combined CCA and semantic tag
categories which verifies the validity of semantic tags, and Gong
et al. [23] and Ranjan et al. [24] considered cross-modal data with
multiple labels. Sharma et al. [25] extended unsupervised CCA to
generalized multiperspective discriminant analysis, making the
projection of similar samples in the potential subspace as close
as possible and the projection of nonsimilar samples as separate
as possible. In addition to CCA, Sharma et al. [26] used partial
least squares (PLS) to map features of different modalities to
the common subspace, and Li et al. [27] used a cross-modal
factor analysis method to measure and evaluate the similarity
between two modalities. Mahadevan et al. [28] proposed the
maximum covariance expansion (MCU) and used the manifold
learning idea to reduce the dimension of high-dimensional data
of different modalities. Wu et al. [29] proposed a Cross-Modal
Online Low-Rank Similarity function learning (CMOLRS) method
and used a low-rank bilinear similarity measurement to capture
the multilevel semantic correlations among cross-modal data.

2.2. Method based on the DNN

With the great progress of deep learning in recent years, deep
neural networks have made great breakthroughs in different
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ultimedia fields. Deep learning has a strong nonlinear learning
bility. The basic idea of the cross-modal image–text matching
ethod based on deep learning is to use deep learning’s feature
xtraction ability to extract an effective representation of differ-
nt modals and establish a semantic correlation between different
odalities. For example, Ngiam et al. [30] proposed a cross-
odal learning method based on a deep network. The model
ccounted for multimodal fusion learning, cross-modal learning,
nd shared representation learning and verified the effective-
ess of the method through video and speech recognition. Some
cholars have tried to combine deep learning with traditional
tatistical methods. Andrew et al. [31] and Yan et al. [32] carried
ut a nonlinear extension of CCA and proposed deep canoni-
al correlation analysis (DCCA). They learned complex nonlin-
ar projections through a multilayer deep network to maximize
he correlation of common representations after projection. Feng
t al. [33] proposed a deep learning model based on a cross-
odal correspondence autoencoder. By minimizing the sum of

he reconstruction errors of the single-modal autoencoder and
he correlation errors of different modal representation layers, the
odel integrates single-modal representation learning and cor-

elation learning between modalities into one framework. Some
esearchers have tried to use multiple automatic coders, such
s ICMAE proposed by Zhang et al. [34] and DCCAE proposed
y Wang et al. [35], which are based on label information. Wei
t al. [36] proposed a method of deep semantic matching. Some
esearchers have used data-enhancement methods to improve
odel power. Gu et al. [37] tried to use the GAN [38] to en-
ance data and used GAN-generated data features to fuse with
ultimodal features. Some researchers have also tried to align

mage areas with words in sentences. For example, Karpathy
t al. [1] used the R-CNN [39] to detect the regions in the im-
ge and then calculated the similarity score between the image
egions and word pairs to infer the similarity of the image–
ext. Some researchers then improved this statistical approach by
sing attention mechanisms. Nam et al. [40] used a dual attention
etwork to capture fine-grained interactions between different
odals, and Ji et al. [41] introduced a Saliency-Guided Attention
etwork (SAN) that is characterized by building an asymmetrical
ink between vision and language to efficiently learn a fine-
rained crossmodal correlation. Wei et al. [42] extracted semantic
eatures for image regions by a pretrained bottom-up attention
odel. Zhao et al. [43,44] proposed an effective method to match

he emojis and the user comments by using attention mechanism.
The similarity between Ref. [42] and our work is that we

oth use the attention mechanism. The differences are as fol-
ows: (1) Ref. [42] focuses more on the attention mechanism of
tacking, whereas our model additionally utilizes the region tag
nformation and position embedding for image representation.
or sentence representation, Ref. [42] utilizes the CNN to extract
entence features, while our model leverages the bi-GRU module.

.3. Methods based on graphs

Graph regularization [45]was a method widely used in semisu-
ervised learning; this method used graphs to describe the data.
he nodes of the graph represented every single piece of data and
he properties of the nodes as attributes of the data. The edges
f the graph were used to represent the relationships between
he data, and the attributes of the remaining untagged nodes
ere predicted from the tagged data of a portion of the graph.
hai et al. [46] proposed Joint Graph Regularization Isomerization
etric Learning (JGRHML), which combines graph regularization
ith cross-modal retrieval. Subsequently, this method was fur-
her extended to the Joint Representation Learning (JRL) [47]
ethod, which supported more media types for multimodal re-

rieval. Several works [48,49] extended the graph to a hypergraph
3

and used fine-grained information to get a more accurate result.
Using graph regularization was useful for multimodal retrieval,
but it often led to excessive time and space complexity during
graph building.

In other words, the main purpose of the subspace method is to
learn a discriminative shared subspace, and the main method is
to maximize correlation. The deep learning method benefits from
a large number of training samples and the excellent representa-
tion ability of the deep model, and it achieves a better retrieval
effect. These methods [50] mainly focus on low-level feature
learning and high-level network correlation. A common short-
coming is that they do not consider the local structure of the data.
Our method divides the regions on the image and pays attention
to both the features of each region and the features of each
word in the text. The data’s local structure is deconstructed and
modeled in more detail. Using the attention mechanism to match
each region and word can more effectively model the correlation
of different modalities. For image recognition, GCT [51] proposed
a lightweight channel-wise attention mechanism, which can gen-
erally improve the robustness of DNNs in image classification,
detection, and instance segmentation. For video understanding,
AOT [52] proposed the long-short term transformer to match
visual patches and propagate object information across video
sequences. In addition, our method also uses tags, but there is a
significant difference from the previous method [22–24,53]. The
labels they use are manually marked ahead of time, and these
methods can only be applied to premarked data. Our method
uses tags that are generated from the image. The generated tags
include not only the area’s category but also the area’s color
attribute, and an image contains multiple tags.

3. Our GLFN model

In this section, our model will be elaborated on in detail, and
our workflow is displayed in Fig. 1. First, we need to map the
text and image into a vector space. We adopt pretrained BERT [8]
to encode text into a vector. For an image, we acquire an image
region feature vector and tag it through bottom-up attention [7],
and then, we combine the region vector and tag to describe the
image. Finally, the image vector and the text vector are aligned
by visual–textual attention [2]. We first introduce BERT in sub-
section A. Then, we describe the image and text representations
in detail in subsections B and C, respectively. Finally, we present
the image–text relevance calculation in subsection D.

3.1. BERT for text representation

BERT, which stands for Bidirectional Encoder Representations
from Transformers, is based on transformers, an open-source
machine learning model designed by Google.

Transformers were proposed by [54] and are known as a
sequence-to-sequence architecture. Sequence-to-sequence (or
Seq2Seq) is a neural network that transforms a given sequence
of elements, such as the sequence of words in a sentence, into
another sequence. It has been widely used in natural language
processing applications such as translation. In transformers, every
output element is connected to every input element, and the
weights between them are dynamically calculated based on their
connection. Therefore, the transformers handle any given input
with all other words in the sentence rather than processing
them one at a time. By looking at all surrounding words, the
transformers can better understand the context of the input text.

We adopt pretrained BERT as a language model, and we cal-
culate the word vector using pretrained BERT. The word vector
representation calculated by pretrained BERT can better describe
the word meaning and more accurately calculate the correlation
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Fig. 1. This workflow shows our model in detail. The final representation of the image features consists of three parts. The red part represents the location-based
position attention mechanisms, the yellow part represents the region features of the image extracted by ResNet, and the blue part represents the region tag features.
For the text features, BERT is first used to obtain text features. Then, the dimension of the features is reduced through a linear layer. Finally, the features are input
into the GRU to obtain the final text features, and the text features and image features are matched one by one using the visual–textual attention mechanism.
between any two words. In our model, both the image section and
sentence section use word vector representations calculated by
BERT to map them to the same representation spaces to construct
a cross-modal shared representation of pictures and texts.

3.2. Image representation

There is a variety of information in an image. In the traditional
ethod, people tend to represent a picture with one vector. How-
ver, one image contains many objects and potential relations. For
xample, in the picture in Fig. 1, there are dogs, fences, and grass.
f the picture is described by a caption, the above words are most
ikely used. If we can detect these objects, the original image can
e better represented by combining the features of the object in
he image with the features of the original image.

To obtain object features from images, we use a Faster R-CNN
odel [6]. To obtain a broader category of objects, we feed images

nto Faster R-CNN pretrained on Visual Genomes [55] by [7]. For
ach image I , we obtain a set of features I = {i1, . . . , ir} and a set
f tags T = {t1, . . . , tr}, where r is the number of image objects.
he image object feature ii is a DI-dimensional vector, and the tag

ti is a word or phrase. Then, we input the tag ti into BERT, which
was pretrained by [8], to obtain tag feature vt

i , which is a DT -
dimensional vector. Subsequently, we concatenate the ii vector
and ti vector as the object feature oi as follows:

O = {o1, . . . , oi, . . . , or}, where oi = [ii, vt
i ] (1)

In one image, the position of the object in an image is a very
important clue that allows people to understand the image’s
emphasis. To understand the meaning of an image, we use an
effective attention mechanism based on the position of objects
in an image proposed by [3].

To mark the object position in the image, we divide the image
into k × k blocks, and each block is initially represented by an
index m ∈

[
1, k2

]
. Then, we calculate the pixel of overlap in each

block and object box as follows:
ob o b 2
sim = |si ∩ sm|,m = 1, 2, . . . , k (2)

4

where soi is the number of pixels for the ith object box, and
sbm is the number of pixels for the jth block. sobim represents the
intersecting pixel number between the ith object box and the jth
block. For every object box, we select the top L ranked blocks
according to the most overlapping pixel as follows:

sobim =
⏐⏐soi ∩ sbm

⏐⏐ ,m = 1, 2, . . . , L (3)

We use the proportion of these overlapping areas in the top L to
represent the block weight as follows:

W b
i =

{
wb

i1, . . . , w
b
im, . . . , wb

iL

}
, i ∈ [1, r] ,m ∈ [1, L] (4)

where:

wb
im =

sobim∑L
m=1 s

ob
im

, i ∈ [1, r] ,m ∈ [1, L] (5)

To obtain a more accurate description of the position, we embed
the block index into a dense representation. The split blocks B
are regarded as the position vocabulary, and each block bi ∈ B
is represented by the one-hot vector, which indicates the index
in the position vocabulary. We next apply an embedding layer to
project the one-hot representation into a Db dimensional vector.
For the L blocks, we use L embedding vectors to represent these
blocks as follows:

vb
im = {v

b
i1, . . . , v

b
im, . . . , vb

iL}, i ∈ [1, r],m ∈ [1, L] (6)

where vb
im is a Db-dimensional vector. Attention machining can

adaptively assign weight to each block as follows:

o′i = f (oi) (7)

att ′im = tanh
(
o′i × vb

m
T
)

, i ∈ [1, r] ,m ∈ [1, L] (8)

att im =
exp(att ′im)∑
m exp

(
att ′im

) (9)

where f is a linear layer that compresses the object vector into
the D -dimensional vector, and att ′ is the weight matrix that
b im



G. Zhao, C. Zhang, H. Shang et al. Knowledge-Based Systems 263 (2023) 110280

d
i
a

p

p

p

˜

˜

˜

j

3

n
s
i
u
t
v

t
c
s
t
f
c
i

3

a
m

s

s

ecides how much weight should be given to the block for the
th object vector. Then, we employ a softmax layer to process the
tt ′im.
Next, we calculate the position attention vector as follows:

′

im = att im ⊙ wb
im (10)

im =
p′im∑
m p′im

(11)

i = pim × vb
im (12)

where ⊙ is the Hadamard (elementwise) product, and pi is the
position attention vector.

Subsequently, we concatenate the object vector oi, position
attention vector pi and tag vector ti such that the object vector
will carry position attention and tag information as follows:

ṽo
i = [oi, pi, ti], i ∈ [1, r] (13)

Finally, we use a linear layer to fuse the three features to obtain
a D-dimension object vector vo

i as follows:

vo
i = f (ṽo

i ) (14)

3.3. Sentence representation

A sentence can be seen as a word sequence with a fixed length.
In the traditional method, every word is represented by a one-
hot vector because a word is a basic element in the sentence.
These same words in different sentences are represented by the
same vector. However, a word should have different meanings in
a different sentence. For example:

• Apple sold fewer iPhones this quarter.
• Apple pie is delicious.

The word Apple is a company in sentence one, but it is a fruit in
sentence two. Using the same vector to represent the word results
in an incorrect contextual meaning; therefore, every word in a
sentence should be represented as an individual vector, and the
vector should be decided by the context of a sentence. Therefore,
we use BERT to extract every word in a sentence because BERT
uses all words in a sentence to calculate every word individually
using an attention mechanism.

We input the whole sentence into BERT, which can export
every word vector in a sentence. For a sentence with a length
of n, we can represent it as follows:

S = {wb
1, . . . , w

b
j , . . . , w

b
n}, i ∈ [1, n] (15)

where wb
j represents a Db

w-dimensional word vector from BERT.
The vector wb

j is from BERT, which is pretrained on other datasets.
Because there are some disparities between datasets, we still
need to adjust the vector in a new dataset.

We use the RNN to adjust the vector since it can consider the
context of a sentence. Before inputting the vector into the RNN,
we first use a full connection to reduce the vector dimension to
decrease the number of parameters, considering that too many
parameters could lead the RNN to overfit the training dataset.
Therefore, we input wb

j into a fully connected layer to adjust the
vector dimension from Db

w to D̃b
w as follows:

wj = f
(
wb

j

)
, j ∈ [1, n] (16)

where wj is a D̃b
w-dimensional vector that is used to represent

the word. We select a bidirectional GRU to process the vector;
the bidirectional GRU can process a sequence from front to back
and process the sequence from back to front. The forward GRU
can be defined by the following set of functions:

z = σ
(
W w + U h

)
(17)
j z j z j−1 w

5

rj = σ
(
Wrwj + Urhj−1

)
(18)

hj = tanh
(
Wwj + rj ⊙ Uhj−1

)
(19)

−→
h j = zj ⊙ hj−1 +

(
1− zj

)
⊙ h̃j (20)

j ∈ [1, n] (21)

where zj is the update gate, W and U are weight matrices, σ is
the sigmoid function, wj is the input word vector for time step
t , hj−1 is the previous t − 1 unit information, rj is the reset gate,
hj represents the current memory content, ⊙ is the Hadamard
(elementwise) product and hj is the final memory at the current
time step.

The backward GRU can be defined by similar functions, which
are expressed as follows:

zj = σ
(
Wzwj + Uzhj+1

)
(22)

rj = σ
(
Wrwj + Urhj+1

)
(23)

hj = tanh
(
Wwj + rj ⊙ Uhj+1

)
(24)

←−
h j = zj ⊙ hj−1 +

(
1− zj

)
⊙ h̃j (25)

∈ [1, n] (26)

The final word vector vw
j is the average of the hidden state h⃗j in

the forward GRU and the hidden state hj in the backward GRU:

v
j
i =

(
−→
h j +

←−
h j)

2
, j ∈ [1, n] (27)

.4. Image-sentence relevance calculation

To calculate the relevance between images and sentences, we
eed to map images and sentences into a common embedding
pace. We have already mapped the image and the sentence
nto a set of object vectors and a set of word vectors. Then, we
se stack cross attention [2] to calculate the similarity between
he image and sentence by aligning the object vector and word
ector.
stack cross attention divides the calculation of similarity into

wo parts: text–image stack cross attention and image–text stack
ross attention. Text–image stack cross attention calculates the
imilarity from querying image by text, denoted by t2i. In con-
rast, image–text stack cross attention calculates the similarity
rom querying text by image, denoted by i2t . Among them, the
alculation processes of text–image stack cross attention and
mage–text stack cross attention are similar.

.4.1. Text–image stack cross attention
The input to stack cross attention is a set of object vectors vo

i
nd a set of word vectors vw

j . We first calculate the similarity
atrix between all object vectors and all word vectors as follows:

′

ij = vo
i × vwT

j , i ∈ [1, k], j ∈ [1, n] (28)

Then, we obtain a weighted vector, where the weight is the
imilarity of the word corresponding to all object vectors:
t2i
= s′ × vo (29)
j ij i
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Next, we calculate the cosine similarity between the weighted
vector representing wt2i

j and the word vector vw
j in the sentence

as follows:

sw−oj =
wt2i

j · v
w
jwt2i

j

 vw
j

 (30)

Finally, the Text–Image similarity sthe2i is the average of sw−oj :

t2i =

∑n
j=1 s

w−o
j

n
(31)

.4.2. Image–text stack cross attention
The calculation of the image–text stack cross attention and

ext–image stack cross attention is similar, and only the order
f the images and text are reversed. Finally, the Image–Text
imilarity si2t is the average of sw−oi :

si2t =
∑k

i=1 s
w−o
i

k
(32)

.4.3. Final stack cross attention similarity
We obtain the final similarity as a linear combination of text–

mage stack cross attention and image–text stack cross attention
s follows:

i2t+t2i = αSi2t + (1− α) St2i , α ∈ [0, 1] (33)

i2t+t2i is the final similarity matrix, which stores the similarity
cores between all texts and images and arranges them in order
f similarity scores from high to low.

.5. Loss function

We employ a common ranking objective function, which is
riplet Loss, as our loss function. Triplet loss was first used in face
ecognition [56], and it could be used to learn good embeddings.
n Text–Image Matching, the goal of the triplet loss is to ensure
hat a pair of similar images and text have their embedding
eatures close together in the embedding space and that a pair of
ifferent images and text have their embedding features far away.
n our model, we employ the hardest negatives in the mini-batch
ollowing [57]:

= maxi[β − sii + sij]+ +maxj[β − sjj + sji]+ (34)

where β is a margin parameter, [x]+ = max(x, 0), and sii is the
similarity score between the matched ith image and ith sentence.
sij is the similarity score between the mismatched ith image and
jth sentence, and sji is the opposite. When i and j are the same,
sii or sjj is a positive sample, and when i and j are different, sji or
sij is a negative sample.

4. Experiment

In this section, to demonstrate the effectiveness of our pro-
posed method, we carry out extensive experiments on two public
datasets. Compared with existing methods, the results prove the
effectiveness of our method. We also conduct an ablation study
and provide some discussions to incrementally verify our method.

4.1. Dataset

Flickr30K. Flickr30k [10] is a publicly available collection of
sentence-based image descriptions. The dataset contains 31783
images and 158915 English sentences, and there are five sen-
tences for each picture. In addition, the dataset contains 244k
coreference chains and 276k manually annotated bounding boxes.
It is widely used for evaluating cross-model retrieval. Similar
to [1–3,57], we split the Flickr30k dataset into 1000 images for
validation, 1000 images for testing and the remaining images for

training.

6

MS-COCO. MS-COCO [11] is a large-scale object detection, seg-
mentation, and caption dataset that contains 113682 images.
There are also five sentences for each picture. MS-COCO defines
91 classes, but only 80 classes are used for data. The panorama
annotation defines 200 classes, but only 133 classes are used.
Similar to [1–3,57], we split the MS-COCO dataset into 5000
images for validation, 5000 images for testing and the remaining
images for training.

4.2. Experimental details

In our experiments, the popular Adam algorithm, which used
a learning rate of 0.0002 and a gradient clipping value of 2, was
used in all experiments as a gradient update algorithm. The model
was iteratively trained for 30 epochs to guarantee convergence,
and the BERT output is fixed as a 768-dimensional vector. In
the image representation part, the number of objects r is 36
in every image. Each object feature dimension di is 2048, and
the dimensions of the corresponding tag feature Dt are 768. The
number of blocks k× k is set to 16 × 16, and L is set to 15. The
block index is embedded in a Db-dimension space, and Db is 200.
The dimension of the final object vector D is 1024. In the sentence
representation part, the vector length Db

w of the word is 768, and
the length D̃b

w is 300. The hidden dimension of the bi-GRU is 1024,
and the dropout of the bi-GRU is set to 0.5. The parameter α of
the linear combination that calculates the similarity of i2t+ t2i is
0.5. The GPU used in our experiment platform is Nvidia 2080Ti,
and the CPU is Intel (R) Xeon (R) E5-2620 v4.

During the training process, we used the text as the query
term and the image as the content item to train and obtain an
t2i similarity matrix St2i. Similarly, we used the image as the
query term and the text as the content item to train and obtain
an i2t similarity matrix Si2t . The similarity of i2t + t2i is a linear
combination of the two similarity matrices of i2t and t2i that was
used to obtain the final similarity matrix Si2t+t2i.

4.3. Compared methods

To evaluate the performance of our method, we selected many
strong baselines for comparison. A brief introduction to these
compared methods is as follows:

DVSA [1] refers to deep visual-semantic alignments. This align-
ment model is based on a combination of convolutional neural
networks over image regions, bidirectional recurrent neural net-
works over sentences, and a structured objective that aligns the
two modalities through multimodal embedding.

HM-LSTM [58] refers to Hierarchical Multimodal LSTM, which
proposes a hierarchical structured recurrent neural network with-
out the need for any supervised labels that can automatically
learn the fine-grained correspondences between phrases and
image regions toward dense embedding.

SM-LSTM [59] refers to Selective Multimodal LSTM. It pro-
poses a selective multimodal long short-term memory network
for instance-aware image and sentence matching. The sm-LSTM
includes a multimodal context-modulated attention scheme at
each timestep that can selectively attend to a pair of instances
of image and sentence by predicting pairwise instance-aware
saliency maps for the image and sentence.

2WayNet [60] introduces a bidirectional neural network archi-
tecture. Their approach employs two tied neural network chan-
nels that project the two views into a common, maximally cor-
related space using the Euclidean loss. They show a direct link
between the correlation-based loss and Euclidean loss, enabling
the use of Euclidean loss for correlation maximization.

DAN [40] refers to the Dual Attention Networks, which jointly
leverages visual and textual attention mechanisms to capture the
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Table 1
Comparison of cross-modal retrieval on Flickr30K dataset with the competing methods.
Methods Image-to-Text Retrieval Text-to-Image Retrieval mR

R@1 R@5 R@10 R@1 R@5 R@10

DVSA [1] 22.2 48.2 61.4 15.2 37.7 50.5 39.2
HM-LSTM [58] 38.1 – 76.5 27.7 – 68.8 –
SM-LSTM [59] 42.5 71.9 81.5 30.2 60.4 72.3 59.8
2WayNet [60] 49.8 67.5 – 36.0 55.6 – –
DAN [40] 55.0 81.8 89.0 39.4 69.2 79.1 68.9
VSE++[57] 52.9 – 87.2 39.6 – 79.5 –
DPC [61] 55.6 81.9 89.5 39.1 69.2 80.9 69.4
SCO [62] 55.5 82.0 89.3 41.1 70.5 80.1 69.8
SAEM [63] 69.1 91.0 95.1 52.4 81.1 88.1 79.5
CAAN [64] 70.1 91.6 97.2 52.8 79.0 87.9 79.8
IMRAM [65] 74.1 93.0 96.6 53.9 79.4 87.2 80.7
MMCA [42] 74.2 92.8 96.4 54.8 81.4 87.8 81.2

SCAN [2]
t2i 61.8 87.5 93.7 45.8 74.4 83.0 74.4
i2t 67.7 88.9 94.0 44.0 74.2 82.6 75.2
i2t+t2i 67.4 90.3 95.8 48.6 77.7 85.2 77.5

PFAN [3]
t2i 66.0 89.6 94.3 49.6 77.0 84.2 76.8
i2t 67.6 90.0 93.8 45.7 74.7 83.6 75.9
i2t+t2i 70.0 91.8 95.0 50.4 78.7 86.1 78.7

PFAN++[4]
t2i 67.2 91.2 96.1 50.8 77.8 85.3 78.1
i2t 67.3 88.6 93.7 45.7 75.4 83.9 75.7
i2t+t2i 70.1 91.8 96.1 52.7 79.9 87.0 79.6

Ours
t2i 74.1 94.1 96.6 55.2 82.3 89.1 81.9
i2t 72.1 92.4 95.9 45.9 77.1 85.6 78.2
i2t+t2i 75.1 93.8 97.2 54.5 82.8 89.9 82.2

Improve ↑ 5.1 ↑ 2.0 ↑ 1.6 ↑ 4.8 ↑ 4.1 ↑ 3.8 ↑ 3.5
(Compare PFAN i2t+t2i) ↑ 7.3% ↑ 2.2% ↑ 2.1% ↑ 9.5% ↑ 5.2% ↑ 4.4% ↑ 4.4%
fine-grained interplay between vision and language. The reason-
ing model allows visual and textual attention to steer each other
during collaborative inference.

VSE++ [57], Visual-Semantic Embeddings, introduces a simple
hange to common loss functions used for multimodal embed-
ings. That, combined with fine-tuning and the use of augmented
ata, yields significant gains in retrieval performance.
DPC [61] refers to the dual-path convolutional network, which

onstructs an end-to-end dual-path convolutional network to
earn the image and text representations. They proposed instance
oss, which explicitly considers the intramodal data distribution.

SCO [62] improves the image representation by learning se-
antic concepts and then organizing them into a correct seman-

ic order. Given an image, it uses a multiregional multilabel CNN
o predict its semantic concepts. Then, the model uses a context-
ated sentence generation scheme for semantic order learning.
inally, it learns the sentence representation with a conventional
STM and then jointly performs image and sentence matching
nd sentence generation for model learning.
SAEM [63] refers to Self-Attention Embeddings. It exploits

ragment relations in images or texts by a self-attention mech-
nism and aggregates fragment information into visual and tex-
ual embeddings. SAEM extracts salient image regions based on
ottom-up attention and uses WordPiece tokens as sentence
ragments. The self-attention layers are built to model subtle
nd fine-grained fragment relations in images and text, respec-
ively, which consist of a multihead self-attention sublayer and a
ositionwise feed-forward network sublayer.
CAAN [64] proposes a unified Context-Aware Attention Net-

ork that selectively focuses on critical local fragments (re-
ions and words) by aggregating the global context. Specifi-
ally, it simultaneously utilizes global intermodal alignments and
ntramodal correlations to discover latent semantic relations.

IMRAM [65] proposes an Iterative Matching with Recurrent
ttention Memory (IMRAM) method, in which correspondences
etween images and texts are captured with multiple steps
f alignments. Specifically, it introduces an iterative matching
7

scheme to explore such fine-grained correspondence progres-
sively.

MMCA [42] proposes a novel Multi-Modality Cross Attention
Network for image and sentence matching by jointly modeling
the intramodality and intermodality relationships of image re-
gions and sentence words in a unified deep model. It designs a
novel cross-attention mechanism that is able to exploit not only
the intramodality relationship within each modality but also the
intermodality relationship between image regions and sentence
words so that they complement and enhance each other for
image and sentence matching.

SCAN [2] refers to the Stacked Cross Attention Network, which
discovers the full latent alignments using both image regions
and words in a sentence as context and then infers image–text
similarity. It is also the benchmark for most recent models.

PFAN [3] refers to the position focused attention network. This
model is our baseline, and it uses the object position clue to
enhance the visual–text joint-embedding learning. We first split
the images into blocks, by which we infer the relative position
of the region in the image. Then, an attention mechanism is
proposed to model the relations between the image region and
blocks and generate the valuable position feature, which will
be further utilized to enhance the region expression and model
a more reliable relationship between the visual image and the
textual sentence.

PFAN++ [4] integrates the prior object position to enhance
visual-text joint-embedding learning. It introduces global features
based on PFAN and achieves better results.

4.4. Performance comparison

4.4.1. Results on Flickr30K
Table 1 shows the results of different methods on Flickr30k. It

can be seen from the results that our method achieves satisfactory
performance on both the from-image-to-text retrieval tasks and
the from-text-to-image retrieval tasks. The t2i on the left of the
table indicates that only the text-to-image attention method was
employed to train the network, and the i2t indicates that only the
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Table 2
Comparison of cross-modal retrieval on MSCOCO dataset with the competing methods.
Methods Image-to-Text Retrieval Text-to-Image Retrieval mR

R@1 R@5 R@10 R@1 R@5 R@10

DVSA [1] 38.4 69.9 80.5 27.4 60.2 74.8 58.5
HM-LSTM [58] 43.9 – 87.8 36.1 – 86.7 –
SM-LSTM [59] 53.2 83.1 91.5 40.7 75.8 87.4 72.0
2WayNet [60] 55.8 75.2 – 39.7 66.3 – –
DAN [40] 55.0 81.8 89.0 39.4 69.2 79.1 69.0
VSE++[57] 64.6 – 95.7 52 – 92 –
DPC [61] 65.6 89.8 95.5 47.1 79.9 90.0 78.0
SCO [62] 69.9 92.9 97.5 56.7 87.5 94.8 83.2
SAEM [63] 71.2 94.1 97.7 57.8 88.6 94.9 84.1
CAAN [64] 75.5 95.4 98.5 61.3 89.7 95.2 85.9
IMRAM [65] 76.7 95.6 98.5 61.7 89.1 95.0 86.1
MMCA [42] 74.8 95.6 97.7 61.6 89.8 95.2 85.9

SCAN [2]
t2i 67.5 92.9 97.6 53.0 85.4 92.9 81.6
i2t 69.2 93.2 97.5 54.4 86.0 93.6 82.3
i2t+t2i 72.7 94.8 98.4 58.8 88.4 94.8 84.7

PFAN [3]
t2i 75.8 95.9 99.0 61.0 89.1 95.1 86.0
i2t 70.7 94.1 97.8 53.0 84.5 92.6 82.1
i2t+t2i 76.5 96.3 99.0 61.6 89.6 95.2 86.4

PFAN++[4]
t2i 75.4 95.5 98.2 60.9 88.9 94.7 85.6
i2t 72.0 94.6 98.5 56.4 86.1 92.6 83.4
i2t+t2i 77.1 96.5 98.3 62.5 89.9 95.4 86.7

Ours
t2i 77.5 95.6 98.4 60.7 88.4 94.7 85.9
i2t 72.0 94.7 97.9 57.0 86.9 93.9 83.7
i2t+t2i 78.4 96.0 98.5 62.6 89.6 95.4 86.8

Improve ↑ 1.9 ↓ 0.3 ↓ 0.5 ↑ 1.0 0.0 ↑ 0.2 ↑ 0.4
(Compare PFAN i2t+t2i) ↑ 2.5% ↓ 0.3% ↓ 0.5% ↑ 1.6% 0.0% ↑ 0.2% ↑ 0.4%
image-to-text attention method was employed. In both i2t and
t2i, the recall rate of our model exceeds the benchmark model,
PFAN, in terms of querying text from the image. The best R@1 in
terms of querying images from text is 55.0, which was achieved
by t2i and is a 9.1% improvement over PFAN. The fused model,
i2t+t2i, achieves better performance. The R@1 on querying text
from the image even reaches 74.8, which is an improvement of
6.9% compared with PFAN. These results prove the effectiveness
of our method.

4.4.2. Results on MSCOCO
Table 2 shows the results of the different methods on MS-

OCO. The results show that our method achieves better perfor-
ance on all important indicators. On the final fusion result of

2t+ t2i, the r@1 of our method for text retrieval is 78.4, which is
.9 higher than the 76.5 of the PFAN method. Our method has an
@1 of 62.6 for image retrieval, which is a 1.0 improvement over
he PFAN method of 61.6.
8

4.5. Subcategory results

In Figs. 2 and 3, we show the effects of our model and the
PFAN model on the MS-COCO dataset for different categories of
data. The MS-COCO dataset has 80 small categories and 12 large
categories. We calculated the top-1 recall rate (R@1) for different
categories of the two models on 12 large categories. Fig. 2 shows
the results of the two models on text retrieval, and it can be
seen that our model is superior to the PFAN model in 9 out
of 12 categories. In addition to the ‘Electronic’ and ‘Accessory’
categories, our model works better on categories that are closely
related to daily life. In the ‘Electronic’ and ‘Accessory’ categories,
the key targets in these images are mostly proper nouns. Because
these nouns were not marked by the pretraining target detection
model, the target detection model could not obtain accurate
labels for the proper nouns. Therefore, inaccurate labels lead to a
decrease in accuracy. Fig. 3 shows the display results of the two
models in terms of image retrieval. It can be seen that our model
is superior to the PFAN model in 10 of the 12 categories. In the
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Fig. 3. Subcategory image retrieval results in MSCOCO.
Table 3
The results of the intact model are compared with those of the model with different parts removed.
on Flick30k Image-to-Text Retrieval Text-to-Image Retrieval mR

R@1 R@5 R@10 R@1 R@5 R@10

Intact Model
t2i 74.1 94.1 96.6 55.2 82.3 89.1 81.9
i2t 72.1 92.4 95.6 45.9 77.1 85.6 78.1
i2t+t2i 75.1 93.8 97.2 54.5 82.8 89.9 82.2

No-Tag
t2i 71.5 93.5 96.9 55.2 81.7 89.0 81.3
i2t 67.7 91.0 95.6 44.6 76.2 84.5 76.6
i2t+t2i 73.8 92.7 96.9 53.9 82.0 88.8 81.4

Only-Gru
t2i 68.3 90.2 94.2 45.6 75.4 84.1 76.3
i2t 67.2 89.7 94.4 49.5 76.7 84.7 77.0
i2t+t2i 68.9 90.7 94.3 50.0 77.9 85.7 77.9

Only-Bert
t2i 45.2 78.6 87.7 44.7 72.4 81.8 68.4
i2t 60.5 86.6 92.5 39.4 71.0 80.7 71.8
i2t+t2i 63.5 88.4 93.3 48.4 77.1 85.3 76.0
other two categories, its scores are similar to those of PFANs. In
general, our model is superior to the PFAN model.

4.6. Ablation study

To fully verify the validity of our proposed model, we analyzed
he impact of all newly proposed parts on the model results
n the Flickr30k dataset. As shown below, (1) ’no-tag’ means
hat our model does not use detected tags, which eliminates the
nfluence of tags on the model. (2) ’Only-GRU’ means that the
eature extracted by BERT is not used in the text representation.
nly GRU models are used to extract text features. (3) ’Only-BERT’
eans that we only use the pretrained BERT model in the text

epresentation but not the GRU model. (4) is our complete model
n which the image feature representation is enhanced with a tag.
n the next part, BERT+GRU is used to extract text features.

Tag enhancement: To verify the influence of generative region
ag features added to the image features on the experimental re-
ults and based on the complete model, we remove the generated
ag feature. After we train with t2i, the R@1 of the model without
he generative tag was reduced from 73.9 to 71.5, a reduction of
.4 compared with that of the complete model. After i2t training,
he ’no-tag’ model decreased from 70.1 to 67.7 in comparison
ith the complete model, which also decreased by 2.4. Finally,
he results of the ’t2i + i2t’ model combining the similarity of
he two training results decreased from 74.8 to 73.8. This result
hows the effectiveness of the proposed generative region tag.
Text feature extraction: To verify the effectiveness of the

ERT+GRU method in text feature extraction, we conducted ab-
ation experiments using BERT only and GRU only in text feature
9

extraction. In the case of Only-GRU, the r@1 of the final t2i +
i2t fusion model is 68.9. In the case of using only pretrained
BERT, the final t2i+i2t result R@1 is 63.5. The results of these
two models are lower than that of the complete model. We
did not pretrain the GRU model on large-scale datasets. In our
GLFN model, we first use BERT for word embedding and then
reduce the feature from m-dimension to n-dimension. Finally,
we use the GRU for sentence representation. The results show
that the BERT model performs better in downstream NLP tasks,
but in our model, we only use BERT for word representation, not
for sentence representation. If we do not use the bidirectional
GRU, then the sentence representation only consists of the word
representation without contextual information. The lack of the
GRU model means the lack of contextual information, so the BERT
model is less effective.

4.7. Parameter analysis

To further study our model, the influence of different parame-
ters on the model is discussed, and the values of some important
parameters in the model are analyzed and discussed.

In Fig. 4, we discuss the effect of the embed size on the result.
The embed size parameter determines the final image feature
dimension and text feature dimension in the model, which is the
attention alignment input feature calculation between the image
feature and text feature. We choose 256, 512, 1024, and 1536
as preselected parameter values. The experiment was carried out
without changing the other parameters. The r@1 result is shown
in the figure. The red line is the result of text retrieval, and the
blue line is the result of image retrieval. When the embed size is



G. Zhao, C. Zhang, H. Shang et al. Knowledge-Based Systems 263 (2023) 110280

1
t

s
B
b
o
t
i
p
l
t
f
o
l
o
t
r

c
d
g

4

t
a
c
t
s
e
b
d
b
6
h
r
t
i
r

4

F
p
S
a
e
r
p
o
a
s
M
s
m
r

t
e
t
b
r
i
r
d
a
c

5

o
g
t
b
t
l

Fig. 4. Embed size parameter analysis.

Fig. 5. GRU input size parameter analysis.

Fig. 6. α Parameter analysis.

024, the optimal value is obtained in both image retrieval and
ext retrieval.

In Fig. 5, we discuss the effect of the value of the GRU input
ize on the result. In the extraction of text features, we first use
ERT to obtain the features of each word. If the features obtained
y BERT are directly input into the GRU, severe overfitting will
ccur. Therefore, a linear layer is added between BERT and GRU
o compress BERT’s output vector, and the compressed vector is
nput into the GRU. We choose 100, 200, 300, 500, and 768 as
reselected parameter values for the compressed vectors of the
inear layer. Among them, the BERT output has 768 dimensions;
hat is, the BERT output is directly used without compressing its
eatures. The experiment was carried out without changing the
ther parameters. The r@1 result is shown in the figure. The red
ine is the result of text retrieval, and the blue line is the result
f image retrieval. When the GRU input size is selected as 300,
he optimal value is obtained in both image retrieval and text
etrieval.

In Fig. 6, we discuss the parameter α and use formula (33) to
alculate the i2t + t2i fusion model, where is the proportion of
ifferent models in the fusion model. The higher the value is, the
reater the proportion of the i2t model, and the model tends to
10
text retrieval. The lower the value is, the greater the proportion
of the t2i model, which is inclined to image retrieval. We selected
0, 0.2, 0.5, 0.8, and 1.0 as candidate values and carried out exper-
iments without changing the other parameters. The r@1 result is
shown in Fig. 6. The red lines are for text retrieval, and it can be
seen that the optimal value for text retrieval is achieved when
α is 0.5. When α is 0.8, the optimal value of image retrieval is
obtained. The results in Tables 1 and 3 both use an α of 0.5.

.8. Position attention visualization

We design a position attention mechanism to adaptively de-
ermine the importance of the block position on the region,
nd the region feature and the generative tag feature are then
oncatenated and input into the image–text attention mechanism
o investigate the interplay between the regions and tags. In this
ubsection, we visualize the attention results in this paper. An
xemplary visualization result is shown in Fig. 7, where the green
ox indicates the image region, and the tag with the region is
epicted in red text in each figure. The red frames indicate the
locks of the current region; we depict the blocks of the first
maximum weights for each region, and the brighter blocks

ave higher weights. We can observe that the brighter blocks
eveal the more important part of the regions. For example, in
he second image in the first row, the brightest block is located
n the center of the region, which is one of the most semantically
elated parts.

.9. Retrieval examples

In Fig. 8, we compared our model with the PFAN model on the
lickr30K dataset and display the text retrieval results. For each
icture, we input the top 5 sentences sorted from top to bottom.
entences with green

√
checkmarks represent correct matches,

nd those with red marks × represent incorrect matches. For
xample, in the second picture, our model finds more suitable
esults than the PFAN model. For objects that do not appear in the
icture, such as ‘Apple’ and ‘Parents’, our model can easily filter
ut sentences with these incorrect words. In the third picture,
lthough our model also has incorrect sentences, the incorrect
entences retrieved by our model rank lower than those of PFAN.
eanwhile, compared with PFAN, we filter out the incorrect
entences with ‘Man’. It can be seen that our model can retrieve
ore correct sentences than PFAN, and the correct results can be

anked higher.
In Fig. 9, we compare our model with the PFAN model on

he Flickr30K dataset for image retrieval results presentation. For
ach sentence, we input a picture of the top 5 sorted from left
o right. The green boxes represent correct matches, and the red
oxes represent incorrect matches. For example, in the lower-
ight example, our model focuses on specific objects that appear
n the sentence, such as ‘Soccer’. Therefore, there is ‘Soccer’ in all
esults. PFAN, on the other hand, focuses on ‘Jumping’ and falsely
etects several images that are different from the sentence, such
s the first image of ‘Skateboarding’. It can be seen that our model
an rank the correct results higher than PFAN.

. Conclusion

In this paper, we propose a GLFN model to solve the problem
f text–image matching. On the one hand, we use the image tag
enerated from the image to enhance the expression ability of
he region image features, and the added features reduce the gap
etween the image and the text. On the other hand, we use both
he BERT and Bi-GRU models to represent the text. Using a linear
ayer solves the overfitting problem caused by the simultaneous
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Fig. 7. Attention visualized map, with red text representing region’s tag, green box representing the bounding box acquired by object detecting. The brighter blocks
are, the higher weights of blocks are.
Fig. 8. Comparing our model with the PFAN model in the Flickr30K dataset text retrieval results display.
use of two models. We have verified through experiments that
for text feature extraction, the combination of the BERT and GRU
11
models is better than a single model. Ultimately, the results of ex-
periments on the Flickr30K and MS-COCO datasets demonstrate
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Fig. 9. Comparing our model with the PFAN model in the Flickr30K data set image retrieval results display.
the effectiveness of our proposed method. In future work, we will
continue to explore how to use fewer data to train the model and
facilitate a more practical direction for cross-modal retrieval.
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