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a b s t r a c t

Anchor-free based object detection has recently seen important progress benefiting from the advances
in convolution neural networks. However, the detection performance for human faces is not so
satisfactory. First of all, many existing anchor-free methods only focus on a certain scale of the feature
map, such a mechanism often fails to perceive the important multi-scale context, resulting in a low
recall rate of faces with large scale variations. To solve this problem, we propose to boost the face
detection by adaptive learning to perceive the focal scale. To be specific, we design an online scale
adaptation strategy to heuristically guide each layer detector to detect faces of different scales in
multi-branch structures, which reduces outliers and improves recall rates. In additional, we also argue
that the detection head with single convolution layer widely used in anchor-free methods is not robust
enough to image context. Therefore, we augment the network by a context-aware detection module.
The module dynamically generates different detectors for different input images based on their context
to adapt to their image features, reducing the dependence on feature extraction ability of backbone
network, and avoiding feature deviations in different scenes. Extensive experiments demonstrate that
our method achieves significant performance gains compared to previous anchor-free methods and is
comparable to the most advanced anchor-based face detection methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Face detection is a fundamental task in computer vision. It
erves as primary technique for various downstream vision appli-
ations such as face recognition [1–3], face alignment [4–6] and
ace retrieval [7,8]. Thanks to the well-annotated datasets [9–12]
nd the rapid development of deep learning, a series of excellent
lgorithms [13–23] have been proposed in the past decades,
hich could be categorized into two branches, i.e., anchor-based
nd anchor-free methods. Comparing to the anchor-based detec-
ion methods, anchor-free methods could achieve a faster infer-
nce but worse performance. Extensive efforts have been ded-
cated to mitigate the performance gap between the anchor-
ased and anchor-free methods. However, the results are still
nsatisfactory due to some challenging factors such as scale vari-
tion and complexity of image context. Scale variation is a long-
tanding challenge for anchor-free face detection. To address this
ssue, some anchor-based methods [13–19] utilize multiple fea-
ure maps from different layers and detect faces at each feature
ayer in parallel. And then they densely place anchor boxes with
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large size to upper feature maps and anchor boxes with small
size to lower feature maps. The success of these methods mainly
stems from the support of extensive anchors. Thus, these solu-
tions could not be directly transferred to anchor-free methods
since there is no anchor available. Keypoint-based anchor-free
object detection is another popular detection paradigm [24–26],
which abandons the anchor and treat object as a combination
of some points. However, many existing keypoint-based models
detect objects of various scales from a single scale feature map,
and are not robust to handle the problem of large scale variation.
For example, the prediction bounding box of large object is too
small due to the lack of receptive field, and the keypoint location
of small object is not accurate. Therefore, these methods also can-
not be directly used for face detection with large scale variation.
Recently, Li et al. [27] propose a pyramid feature aggregation
mechanism to enhance the model robustness for the face scales,
which could achieve a faster inference but worse performance
than most advanced face detection approaches.

The effectiveness of multi-scale has been validated by anchor-
based methods in addressing the scale variations [13–19], but
the situation becomes much more challenging when encoun-
tering the anchor-free cases. Unlike the anchor-based methods
that could utilize the IoU of anchor box and ground-truth to
build the corresponding between the detectors and the faces

with different scales, no anchor box is available for anchor-free
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Fig. 1. The figure demonstrates the weight of training sample at different
detection head under scale aware loss. The training sample will be assigned
different loss weights to detectors of different levels by scale perceiving.

methods. To tackle this and successfully adopt the multi-scale
mechanism into anchor-free community, we transform the origi-
nal encoder–decoder structure in [24–26,28] into a multi-branch
network suitable for face detection and propose a scale-aware
loss to help the network perceive the scale difference, such that
an explicit connection between face scale and detector could be
built. The loss aims to make each detector focuses on samples
near the reference scale and reduces the weights of samples far
away. As shown in Fig. 1, the training sample will be assigned
different loss weights to detectors of different levels by scale
perceiving. For example, the scale of the input sample is closest
to the reference scale of the second layer detection head, so we
let the second layer detection head primarily detect the input
sample by assigning it larger weight. Furthermore, to alleviate the
sample imbalance of different scales, we design an data-scale-
resampling method. This operation changes the distribution of
samples with each scale in training dataset, making the number
of all scales samples be balanced, and each detector could get
enough samples for training. The scale-aware loss and data-scale-
resampling method form our online scale adaption strategy, these
two modules could help us build a scale-robust network.

In our practice, we also observed that the aspect ratios of faces
are relatively diverse. Although aspect ratios of most faces are
close to 1 : 1, according to the statistics of WIDER FACE [12]
dataset, there are still a considerable number of face bounding
boxes with an aspect ratio greater than 2 or less than 0.5. For
these samples with singular aspect ratios, the common-used con-
volution with square receptive field could not well capture their
key features. Consequently, the network often fails to detect the
face regions. To address this, we design a shape-sensitive module
(SSM). Our SSM combines standard convolutions and asymmetric
convolutions, providing receptive fields with different shapes and
enhancing the perceptual ability for faces with different shapes.

The contributions of this paper are summarized as follows:

• We propose an online scale adaption strategy that heuris-
tically guides the detector on each layer to adapt faces
with different scales in multi-branch structure. This strategy
enhances the robustness of the network about the scale
variation.

• In view of the context complexity of different images, we
also propose a context-aware dynamical detection head. It
dynamically generates different detectors according to the
image content, reducing the dependence on the feature ex-
traction ability of backbone network and preventing feature
deviations between different scenes.

• We also propose a shape-sensitive module to improve the
recall ratio of faces with singular aspect ratios. We evalu-
ate the proposed method on popular face detection bench-
marks FDDB [11], AFW [9], PASCAL face [10] and WIDER
2

FACE [12] datasets. Extensive experimental results demon-
strate the superiority of our proposed method with other
state-of-the-art methods.

2. Related work

Face detection is a classic task in computer vision, and has
been extensively studied over the past few decades. Early face de-
tectors are based on sliding windows and hand-crafted features,
while the modern methods are based on convolution neural net-
works. The CNN based face detection approaches can be roughly
divided into two categories: anchor-based detector [13–17,19,29]
and anchor-free detector [21,22]. These two stage methods [30,
31] use ROI Pooling operation [30] to extract a scale-invariant fea-
ture map for multi-scale detection, while some one-stage meth-
ods [21,22,24–26,32] also extract a single-scale feature map but
lacks scale invariant. Recently detectors [13–17,19,29,33] adopt
multi-scale feature maps for object detection. Considering that
deep learning approaches have achieved the state-of-the-art re-
sults on all open datasets and far better than the traditional
detection methods, here we mainly introduce the related deep
learning methods.

2.1. Detect face based on anchors

Anchor-based detectors are the most popular and best per-
formance methods for face detection. These methods use multi-
scale anchor boxes at each cell of image to replace different
sliding windows of traditional methods and rely on classifying
anchor boxes to detect face. Anchor is first proposed by Faster R-
CNN [31], and then SSD [33] extends anchor boxes to multi-scale
feature maps. Since then, anchor-based methods [31,33,34] have
achieved remarkable performance in the area of general object
detection and anchor is rapidly used in the area of face detection.
After several years of research, anchor-based methods [13–17,
19,29,35] have achieved great success in face detection task and
won all champions in WIDER FACE Challenge [12] in a long
time. Specifically, SSH [13] is designed to reduce inference time,
which has small memory and scale invariance. It is a single-
stage detector that classifies and locates the global information
extracted by the convolutional layer. S3FD [14] can be regarded
as an improvement based on SSD [33]. It improves the detection
network by adding a prediction layer and sets more reasonable
anchors by referring to the effective receptive field. A scale-
compensated anchor matching strategy is adopted to increase the
number of positive sample anchors to improve the face recall
rate. In recent works, researchers focus on how to improve the
recall rate and precision of face detection. SRN [17] selectively
applies two-step classification and regression on different layers
to reduce false positives and improve location accuracy simulta-
neously. Pyramidbox [16] fully exploits the context information
to provide extra supervision for small faces.

2.2. Anchor-free face detection

Other methods attempt to directly predict the bounding boxes
without pre-defined anchor boxes, called anchor-free detectors.
Previous works [21,22] directly regress a 4-D vector at every pixel
of feature map to locate faces by a fully convolutional network.
AFN [36] leverages the local and global contextual information
fusion to improve recall-rate of anchor free method. SAFD [37]
uses the dilated convolution layers and attention mechanism to
select the informative features that can accommodate to different
scales. Feng et al. [38] propose a novel network with anchor-
free detection and improve the performance in dense object
detection by an altered feature enhancement module. However,
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s suffering from imbalance problem of positive and negative
amples and lack of multi-scale information, these methods can-
ot achieve very promising results on the large-scale WIDER FACE
hallenge [12].
Recently, there are some methods [24–26] that adopt keypoint

stimation to locate objects. These methods decompose object as
combination of some points, and employ a huge neural network,
uch as Hourglass [39], to generate a high-resolution feature map
o locate keypoints of objects. Instead of using embedding of each
orner to achieve keypoint matching like CornerNet, Ma et al. [40]
redict a matching degree score for each predicted bounding box
ormed by corners. Yang et al. [41] adopt two simple modules,
hip detector and center detector based on the extracted features
y the feature extraction module and the central information of
hips to generate and improve the detection results. Unfortu-
ately, these methods still lack multi-level detection and cannot
andle with the imbalance problem among objects with differ-
nt sizes. Furthermore, one anchor free method [27] proposes
pyramid feature aggregation module, which aggregates multi-

ayer features to enhance the modeling ability of the model to
aces with different scales. The detection speed can be increased
y two to three times. However, there is a small gap between the
ccuracy and the most advanced face detection methods.

.3. Multi-scale enhanced object detection

Current CNN-based detectors extract feature maps from back-
one network and then apply detection head on these feature
aps to parse final detection results. Some detectors extract a
ingle scale feature map for detection, such as [21,22,24–26,30–
2]. These two stage methods [30,31] use ROI Pooling opera-
ion [30] to extract a scale-invariant feature map for multi-scale
etection. They provide excellent performance on most common
bjects, while the recall rate of small objects is not high. One of
he most important reasons might be that small objects are more
ifficult to match anchors and there are no enough positive sam-
les of small objects for training. Some one-stage methods [21,
2,24–26,32] also extract a single-scale feature map. However, as
here is no ROI pooling operation in one stage methods, these
eatures are lack of scale invariant, thus they perform not well
n small objects and very large objects.
Other recently detectors [13–17,19,29,33,42–44] adopt multi-

cale feature maps for object detection. They handle objects with
ifferent scales at different level feature maps and achieve great
erformance improvement. However, the performance of multi-
cale detectors is highly related to the design of anchors. If
ne object does not match pre-defined anchor boxes, the recall
ate will be not high. FaceBoxes [19] proposes a rule for anchor
esign that makes anchors with different scales have the same
ensity on the input image, thus the recall rate of tiny faces
as been greatly improved. S3FD [14] proposes a scale compen-
ation anchor matching strategy to ensure that faces with each
cale could match enough anchors. RetinaFace [29] places over
00,000 anchor boxes on multi-scale feature maps to improve
ace detection performance. Wu et al. [45] propose a novel object
etection framework that integrates multiple channel feature
xtraction, feature learning, fast image pyramid matching and
oosting strategies. In our paper, we propose a scale adaptive loss,
hich adjusts the loss weight of samples in different detectors
ccording to the scale and heuristically guides each detector
o learn an optimal detection range, rather than directly assign

amples to detectors of different levels.

3

3. Preliminary

In this paper, we extend keypoint-based anchor free detection
methods [24,26,27,46]. At first, we briefly review the anchor free
detector. Similar to [27], we decompose face detection into two
tasks: center localization and scale prediction. First, an input
image goes forward through the stacked convolutional layers
to form feature maps. Based on the feature map, anchor free
detector separately generates two heatmaps: Center map and
Scale map, as shown in Fig. 3. The center map shows where the
face may exist, and the scale map is used to predict the scale of
face at every position.

For center localization task, we formulate it as a binary classi-
fication task (center or non-center) at pixel level. The box center
is treated as the positive target while others are treated as neg-
ative samples, and we employ 2D Gaussian mask that reduce
the penalty for negative samples near the center point to deal
with the imbalance of positive and negative samples. For scale
prediction task, we predict a 4-D vector that is the distances
from its location to the four sides of the bounding box at each
position. The training loss is composed of the loss of center point
estimation and the loss scale regression:

Ldet = Lcenter + λ · Lscale (1)

where Lcenter and Lscale are the loss of center estimation and scale
regression respectively. λ is a hyper-parameter to balance loss
etween center point estimation task and scale prediction task.
ore details about the anchor-free detector and the training
rocedure can refer to [27].

. Proposed method

Our overall architecture is exhibited in Fig. 2, given an input
ace, we first adopt our data-scale-resampling strategy and select
n image with certain scale based on a pre-defined scale pool.
hen, the image is fed into the network to produce the multi-
cale features. In the following, the features with different scales
re first up-sampled and pass through our shape-sensitive mod-
le (SSM) and the context-aware detection module dynamically
enerates the detectors according to the input feature content,
redicts the center point position and the corresponding scale
nformation of the face to obtain the detection bounding box. Fi-
ally, the proposed scale-aware loss is employed to train the net-
ork. In this section, we will introduce our online scale adaption
trategy, shape-sensitive module and context-aware dynamical
etection module, respectively.

.1. Online scale adaption strategy

To apply the multi-branch parallel detection manner in the
nchor-free based framework, how to make different detectors
dapt to different scales is a key problem to be addressed. The
raditional anchor-based methods assign training samples to dif-
erent levels by the IoU between ground-truth and anchor boxes,
hus the detector of each layer only needs to focus on the objects
hat match anchor boxes of this layer. However, because there
s no anchor as a reference in anchor-free methods, we cannot
irectly bind training samples with different scales to different
etectors in training process.
To successfully integrate the multi-scale mechanism into key-

oint anchor free paradigm, we propose an online scale adaption
trategy which comprises the scale aware loss and data-scale-
esampling, these two modules work together to mitigate the
roblem of scale variation. The scale aware loss is designed to
euristically guide detectors at each layer to learn a reasonable
etection range, while the data-scale-resampling strategy is re-
ponsible to change the distribution of training samples with
ifferent scales and make the samples of each detectors more
alanced.
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Fig. 2. Network architecture used in our experiment, Up is a bilinear upsampling, SSM is shape-sensitive module and CADM is context-aware detection module.
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Fig. 3. An illustration of anchor-free detector, center map and scale map are
enerated on feature map.

.1.1. Scale-aware loss
Our scale-aware loss targets on guiding each detector to pay

ore attention to the samples whose scales are near the refer-
nce scale, this is achieved by assigning a scale-adaption weight
or the loss of respective detector.

As shown in Fig. 2, our network employs a multi-branch
rchitecture and outputs multi-scale prediction by different de-
ectors. We first estimate a weight for each detector based on
he face scale, which is used to adaptively accumulate the losses
f all detectors, such that the overall loss could be obtained. In
articular, we formulate the total loss of a face e in all branch
etectors as:

(e) =

k∑
i=0

pi ·
(
Licenter (e) + λ · Liscale(e)

)
(2)

here superscript i represents different detectors, k represents
he number of all detector heads, Lcenter , and Lscale are the loss
f center estimation and scale regression respectively, which is
ntroduced in Section 3, λ is a hyper-parameter to balance loss
 s

4

between center point estimation task and scale prediction task,
pi is the weight of the loss in the ith branch detector.

As shown in Eq. (2), the key of our scale-aware loss lies on
how to determine the weights pi. Intuitively, we attempt to guide
each detector to focus more on samples near the reference scale
and reduce the weight of the sample that is far away, so the
form of the Gaussian function is more in line with our require-
ments. Specifically, pi is a parameter related to the scale s of
training sample and the reference scale refi. According to previous
research [14], the effective receptive field of each layer in CNN
model is about 4 times of its total stride. Thus, each feature map
is more suitable for detecting these faces whose sizes are similar
to 4 times of its stride. So we set a reference detection scale refi
for each detector with 4× stridei. When the scale s of the training
sample is further away from the reference scale refi, the weight
pi of the sample in this branch is smaller.

The weight pi is calculated by:

dsi = max(
s

refi
,
refi
s

)

pi = exp
(

−ds2i
τ

) (3)

where refi is the reference detection scale that we set according
to the stride in the ith detector. τ is a hyper-parameter, which
controls the decay speed of weight. For a training sample, we take
the diagonal length of bounding box as its scale s:

=
√

w ∗ h. (4)

where w and h are the corresponding width and height of the
ounding box.

.1.2. Data-scale resampling
The distribution of training samples with different scales is

mbalanced. The number of samples with some scales is very
arge while the other is very small, which causes the network bias
o the scales with enough images and get barren performance on
he insufficient scales. To remedy this issue, we design a data-
cale-resampling strategy to change the distribution of faces with
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ifferent scales in training dataset, which makes faces with every
cale more balance and make sure that detectors at each level can
et enough samples for training.
The main idea is to randomly select a face from input image

nd then rescale the selected face to a randomly selected scale.
n this way, we can get a relatively even samples with all scales.
upposing B is the set of bounding boxes and faces, and R =

refi}ki=0 is the set of reference scales. Select a face bounding box
andomly from B and calculate the scale s of the selected face
ounding box. Then select a reference scale randomly from R and
n the fourth step, select a target scale around the reference scale.
alculate the scaling factor r∗. Finally, resize the input image by
he factor r∗ and crop a region around the selected face in the
caled image as a training image. The detailed steps are described
n the following algorithm 1.

Algorithm 1: Data-scale-resampling.
1 # B: the set of bounding boxes and faces
2 # R: the set of reference scales
3

4 B, R = input(B, R) # input the B and R
5 # randomly select a bounding box and its face
6 face, box = random.choice(B)
7 # calculate the scale of the selected face
8 s_face = sqrt(w * h)
9 # randomly select a reference scale

10 ref = random.choice(R)
11 # select an object scale around the reference scale
12 s_target = random.uniform(ref / 2, ref * 2)
13 r = s_target / s_face # scaling factor
14 # resize and crop a region around the selected face as a

training sample
15 scaled_face = crop(r, face)

Tang et al. [16] also develop a data sampling strategy to rem-
dy the scale imbalance problem. However, the implementation
s considerately different with our data-scale resampling. The
uthors pre-define a anchor scale pool, for a training image, first
ick a closest anchor scale to the image, then reshape a random
ace in this image to a random smaller anchor scale. While in
ur Data-Scale Resampling, instead of giving a fixed scale pool
eforehand, we introduce a reference set, from which we pick a
cale to serve as a reference for the image scale and select a target
cale around the reference scale.

.2. Shape sensitive module

The shape of human face is different in scale and aspect ratio.
s reported in [13,16], increasing the receptive field by placing
onvolution kernels with different sizes in parallel upon extracted
eature maps can improve face detection accuracy. Indeed, the
ombination of convolution kernels with different sizes not only
nlarges the receptive field, but also diversifies the receptive field
f detection layers. The diversity of receptive fields increases the
bility of model to capture faces with different sizes. However,
he receptive fields of most networks are square, which will affect
he detection of faces with different aspect ratios.

To enable the network to effectively perceive the faces with
iverse size and aspect ratio, we design a Shape Sensitive Mod-
le(SSM) to enhance the expression ability of feature maps for
aces with different shapes. Our SSM is a multi-branch convolu-
ional block. It can be divided into two parts: the cross-perceiving
art uses asymmetric convolutional layers to provide rectangular
eceptive fields to deal with these faces with different aspect
5

ratios, and the square-perceiving part uses standard convolution
and residual connection to provide square receptive fields with
different scales to enhance the modeling ability of multi-scale
faces.

In particular, the cross-perceiving part comprises four convo-
lutions with receptive fields 3 × 1, 1 × 3, 5 × 1 and 1 × 5,
while the square-perceiving part contains two shared convolu-
tions which provide two receptive fields, 3 × 3 and 5 × 5 . Fig. 5
illustrates the mechanism of SSM. The color rectangle of each
layer is the receptive field of one correspondent convolutional
layer. Suppose the receptive field of feature is the top small
square in Fig. 5, and the different rectangles in the middle layer
are the receptive fields corresponding to each branch of the
SSM module. The bottom layer is the final enhanced receptive
field. The specific process is as follows: firstly input a feature
map, divide the feature map into several groups in the channel
dimension. Next input them into the cross-perceiving part and
the square-perceiving part respectively for different convolutions.
And then concat the two part to obtain the enhanced feature
maps.

To be specific, the cross-perceiving part can be formulated as
follows:

x̂cp = Conv3×1(x) + Conv1×3(x) + Conv5×1(x) + Conv1×5(x) (5)

where x is the input original feature and x̂cp is the enhanced
feature. This enhanced feature have receptive fields with multiple
shapes, such as 3 × 1, 1 × 3, 5 × 1 and 1 × 5.

The square-perceiving part can be formulated as:

x̂sp = Conv3×3(x) + Conv3×3(Conv3×3(x)) (6)

where the Conv3×3 is shared. These two cascaded convolution
layers provide 5 × 5 receptive fields. Thus, the square-perceiving
part has two receptive fields, 3 × 3 and 5 × 5 .

Finally, we also provide a shortcut connection as an access to
the flow of original information, which is equivalent to a 1 × 1
receptive field.

4.3. Context aware detection module

The CNN-based face detectors often extract several feature
maps with different resolutions, and then use a detection head on
these feature maps to parse out detection results (confidence and
bounding boxes). The detection head usually consists of several
convolutional layers. The drawback of the general convolution
detection head is that its parameters will be fixed after finishing
training and it lacks self-adaptability to image content. In order to
obtain correct detection results, the fixed detection head requires
that input features come from the same domain. It means that
general detection head has a high requirement on the feature
extraction capability of backbone network. However, for two
images with large difference in context (such as one from normal
illumination scene and the other from overexposure scene), the
feature extracted by backbone always has a bias, which will
affect detection results. A naive way is to train a detector for
each scene(such as dark, overexposure or normal) separately.
Unfortunately, explicit scene classification requires scene anno-
tation on a large amount of data, which is very expensive and
time consuming. Moreover, due to cognitive limitations of the
annotators, various scenes cannot be well classified.

Hong et al. [47] develop a general multimodal deep learning
framework to solve the problem of deep network performance
degradation caused by classification tasks based on complex sce-
narios. And similarly, we propose a context aware detection mod-
ule to solve this problem. It dynamically generates a detector
according to the content of input image, as shown in Fig. 6,
so that the generated detectors can be adapted to the features.
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Fig. 5. The schematic diagram of receptive field enhancement.

This dynamic detector no longer relies too much on the feature
extraction ability of backbone network and prevents the feature
bias between different scenes.

Give a series of parallel convolution kernels, which can be con-
idered as multiple parallel templates, and calculate the weight
f each convolution kernel by Gate network according to the
nput feature. These templates are weighted to produce a new
etection module, that is, the context-aware detection module is
btained. Firstly, we will introduce how to generate the weighted
emplate T dynamically. Suppose f0, f1, f2..., fk−1 is a series of
arallel convolution kernels. Then Pi is the input feature map and
Pi is dynamic weighted template generated according to Pi.
We parameterize the dynamic weighted template as a linear

ombination of k templates, and it is defined as:

Pi (Pi) = wi
0 · f0 + wi

1 · f1 + · · · + wi
k−1 · fk−1 (7)

here each wk is an instance-dependent scalar weight computed
sing a simple Gate network. k represents the number of parallel
onvolution kernels and fk represents the kth parallel convolution
kernel. For different features, the weights calculated by Gate are
different. Thus, a dynamic converter is generated by changing
the weight of each template. We hope that the Gate network
s computationally efficient, and can establish the relationship
etween input features and templates, so we design a simple
etwork composed of global average pooling, fully connected
ayer and sigmoid activation as the Gate function. Suppose the
nput feature is Pi, firstly, the global average pooling(GAP) of Pi is
arried out, and then the pooling result is passed through a fully
onnected layer(FC). Finally, sigmoid activation is performed to
btain wi

k. The process of weight generation can be formulated
s:

wi
0, w

i
1, w

i
2..., w

i
k−1] = Sigmoid(FC(GAP(Pi))) (8)

he detection process of our proposed context aware detection
odule can be formulated as:

ets = φ(T (P )) (9)
Pi i

6

here Dets is final detection results, φ represents a convolution
peration.
Since different convolutional kernels collect contexts from

ifferent views, Eq. (7)–(8) actually seeks to form an adaptive
ontext generation, where the adaptive weights are generated
ased on the input feature, with the softmax operation, we could
ndue the network with the ability of dynamic context selection,
uch that our network could be capable of picking the most
aluable context to benefit the followed detection task.

. Experiments

In this section, we evaluate our method on four common face
etection datasets, FDDB [11], WIDER FACE [12], AFW [9] and
ASCAL Face [10]. Following standard practice, all models are
rained on the WIDER FACE dataset while other datasets are only
sed to evaluate the final performance. To show the effectiveness
f the proposed method, comprehensive ablation studies and
iscussions are given.

.1. Datasets

.1.1. FDDB
The images of FDDB are collected from unconstrained natural

cenes. It has 2845 images with 5171 annotated faces. These
mages have a wide range of difficulties, such as low images
esolutions, make-ups, occlusions.

.1.2. WIDER FACE
It is the most challenging public face detection dataset, images

f which has dramatic variability in scale, pose and occlusion. This
ataset contains 32,203 images with 393,703 labeled faces, and
hose images are split into training (40%), validation (10%) and
esting (50%) set. For testing and validation sets, the images are
ivided into three levels (Easy, Medium, Hard subset) according
o the difficulties of detection. Ablation studies are performed on
he validation set.

.1.3. AFW dataset
The images of AFW dataset are collected from Flickr. It has 205

igh-resolution images with 473 annotated faces.

.1.4. PASCAL face dataset
The images of this dataset are selected from PASCAL VOC

ataset. It has 851 images with 1335 annotated faces.

.2. Experimental setup

.2.1. Data augmentation
To make the model more robust to input face sizes and prevent

ver-fitting, random crop data augmentation strategy is adopted.
ore specifically, we random crop a square patch for each train-

ng image with a random size between [0.3,1] of the original
mage’s short edge. Then we rescale this patch to 640 × 640.
esides random crop, random horizontal flip and photometric
olor distortion [14] are also employed.
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t

Fig. 6. The structure of context-aware dynamical detector. GAP is global average pooling, FC is fully connected layer, S is sigmoid function, Conv is convolution layer.
Fig. 7. PR curves and AP on WIDER FACE dataset. From top to bottom are the results on the three data subsets of easy, medium and hard.
5.2.2. Training & testing details
We use ResNet-50 [48] pre-trained on ImageNet [49] as the

ackbone for experiments. All model are trained by Adam op-
imizer with the batch size of 24. The learning rate η is set to
1.5 × 10−4 for the first 100 epoch, and divided by 10 at 100
and 120 epoch. For the datasets covered in this article, WIDER
FACE and the other three datasets will perform different test
strategies. For WIDER FACE dataset, we will follow the standard
strategy [16,17] that multi-scale testing and box voting are used
to produce 750 best scoring results.

5.2.3. Baseline
We implement a fully convolution anchor-free face detector

as baseline. Specifically, we construct a Feature Pyramid Net-
work(FPN) [18] and attend a general anchor-free detection head
on P3 level, which has 1/8 resolution of input image. This baseline
can be called single scale anchor-free face detector, in which it
predicts face center point and regresses face size directly from
image feature map (P3). Unless otherwise stated, all experiments
are carried out on WIDER FACE dataset.

5.3. Model architecture design

We design four kinds of network structures, as shown in
Fig. 4. Model-A is our baseline and represents a series of recent
keypoint-based detection methods. This series of methods detect
all scale objects on a fixed size feature map. Model-B is a standard
multiple scale detector based on FPN. Model-C adds a new scale
detector to model-B. Model-D increases the size of feature map
by adding up-sampling structure on each feature map of Model-
C. For these three multi-branch structures, Model-B, Model-C and
Model-D, we use hard interval division and online scale adaptive
strategies to adjust the detection range of detectors on different
layers. How to produce reference scale has been described in
Section 4.1.1. In hard interval division strategy, we empirically
7

set the threshold of scale between two adjacent detectors as
refi +

refi+1−refi
2 .

5.4. Ablation study

5.4.1. The effect of online scale adaption
As there is no anchor as reference in anchor-free methods, it

is vital for multi-branch structure training that how to determine
the detection range of detectors at different level. To demonstrate
the effectiveness of online scale adaption strategy, we conduct a
series of controlled experiments and results are shown in Table 1.
The baseline is a single branch structure that detects faces of all
scales on a fixed feature map.

Based on the results in Table 1, we can see that the inter-
val division strategy performs worse on Model-B, Model-C and
Model-D, and even is worse than baseline. This hard assignment
method makes it difficult for the model to deal with critical
samples near the threshold. It leads to a low recall rate for these
faces whose sizes are close to threshold. Thus, it cannot obtain
the performance gain from multi branch structure. The results
in Table 1 show that our online scale adaption strategy greatly
outperforms interval division strategy in these all three multi-
branch models. The comparison between the fourth and the fifth
lines in Table 1 indicates that our online scale adaption strategy
effectively improves the performance, especially for big faces. The
AP is increased by 5.01, 2.32, 2.12 on easy, medium and hard
subset, respectively. The increase mainly comes from higher recall
rate of faces with various scales. Those faces whose sizes are
close to threshold may be detected in everyone between two
adjacent detectors because this scale samples are considered in all
level detectors and only the importance is different. This multi-
level detection ensures high recall rate. And it can be observed
in Table 1 that more branches can achieve a better performance.
The comparison between the first and third lines in Table 1 shows

the AP is increased by 1.87, 0.38 and 0.74. Also can be seen,
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Fig. 8. Performance results on the validation set of WIDER FACE. From left to right are the results on the three data subsets of easy, medium and hard. And for
ach of these figures, the part with the same color on the left are the anchor-based methods, and the one on the right are the anchor-free methods. ⋆ means that
his method is originally designed for general object detection, and we reimplement it for face detection.
Fig. 9. The effect of λ on WIDER FACE dataset. The performance is evaluated under the model-D structure of ResNet-50 backbone.
Table 1
Effect of various model structure designs and different detection scales allocation strategy on WIDER FACE dataset.
Model Backbone Interval division Online scale adaptive Multi-scale test Easy Medium Hard

Model-A(baseline) MobilenetV1 0.25x 86.57 85.00 70.41
Model-B MobilenetV1 0.25x ✓ 83.72 83.13 69.42
Model-B MobilenetV1 0.25x ✓ 88.44 85.38 71.15
Model-C MobilenetV1 0.25x ✓ 84.10 83.78 69.56
Model-C MobilenetV1 0.25x ✓ 89.11 86.1 71.68
Model-D MobilenetV1 0.25x ✓ 90.08 86.57 71.83
Model-D MobilenetV1 0.25x ✓ ✓ 92.91 90.76 82.14
Model-D ResNet-50 ✓ ✓ 95.92 94.81 89.86
Table 2
Effectiveness of our proposed shape sensitive module on WIDER
FACE dataset. The performance is evaluated under the model-D
structure of ResNet-50 backbone.
Model Easy Medium Hard

Model-D 95.92 94.81 89.86
Model-D + SSH 96.12 95.18 89.87
Model-D + SSM 96.31 95.23 90.18

the performance of four branches (Model-C) is better than three
branch (Model-B). The multiple branch detection structure is an
effective method to deal with the scale variation of objects.

Moreover, to reduce the discretization error caused by down
ampling, we add a up-sampling structure on each feature map to
enerate finer feature map, as shown in Fig. 4(d). The comparison
etween Model-C and Model-D shows that the AP is increased
y 0.97, 0.47 and 0.15 on easy, medium and hard subset, respec-
ively. The results indicate that the upsampling operation has a
etter improvement for large targets. The reason might be that
arge faces are usually detected on high-level feature maps, and
he downsampling rate of high-level feature map is relatively
igh. Higher downsampling rate will lead to higher discretization
8

error. When we use the upsampling module to extract more fine
features, these discretization errors will be reduced.

5.4.2. The effectiveness of shape sensitive module
The SSM uses asymmetric convolution to capture faces with

extreme shapes. In previous work, SSH [13] uses filters of differ-
ent sizes to capture the context of faces. However, the bounding
boxes of faces are not always in the shape of a square. The square
receptive fields may affect the detection of faces with different
aspect shapes. We add a set of parallel asymmetric convolutions
to capture faces with different shapes. Comparing the results
between first and third lines in Table 2, we notice that SSM
significantly improves the AP by 0.39, 0.42 and 0.32 on easy,
medium and hard subset. Compared with SSH, our method also
has better performance because SSH only increases receptive field
while our SSM provides diverse rectangular receptive fields that
increase the performance of faces with different aspect ratios.

5.4.3. The number of convolution kernels in context-aware dynami-
cal detector

We use a set of parallel convolution kernels to dynamically
generate different detectors according to the image content. The
number of convolution kernels will affect the detection results.

We compare the detection performance under different number
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Fig. 10. Impressive qualitative result. Our model finds over 900 faces out of the reported 1000 faces.
Fig. 11. The ROC curve and AUC on FDDB dataset by using the ‘‘discrete score’’ evaluation criteria.
of kernels, as results shown in Table 3. When the number of
convolution kernels becomes one, the context-aware detection
module will degenerate to general detection head. As the number
of kernels grows, the performance first improves and then tends
to be stable. Under such a high baseline, the performance are also
improved by 0.15, 0.21,0.14 on easy, medium and hard subset
when the number of kernels increase from 1 to 4.
9

5.4.4. The effect of hyper-parameter λ in Eq. (2)
We give the experimental results under model-D structure of

ResNet-50 backbone, λ values are 1, 2, 5, 10 and 20 respectively.
Fig. 9 is the result on easy, medium and hard subsets of WIDER
FACE dataset. From Fig. 9, the model with λ=5 achieves the best
performance, however λ does not have a remarkable effect on
the final performance as shown in Fig. 9, revealing our method is
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Fig. 12. Precision–recall curves on the AFW dataset.

obust to this hyper-parameter. It is worth noting that due to the
ecent shortage of Our GPU resources, we set batch size as 8 in
his experiment, which is much smaller than 24 set in our other
xperiments, so the experimental results are a little bit worse
han those in our paper.

.5. Evaluation on benchmark

We evaluate our model on the common face detection bench-
arks, including WIDER FACE and FDDB. We find that our model
chieves comparable results against other state-of-the-art meth-
ds on these two datasets, i.e. 96.46, 95.44 and 90.32 on easy,
edium and hard subset of WIDER FACE, 99.0 on FDDB dataset.
e also show a qualitative result of World Largest Selfie in

ig. 10. Our model can successfully detect over 900 faces out of
000 faces reported.

.5.1. WIDER FACE
We compare our method with the state-of-the-art face detec-

ion methods [13,14,16,17,27,36,37,50] and the state-of-the-art
bject detection methods [46,51–53] on WIDER FACE val subsets.
or a more comprehensive comparison, we evaluate the perfor-
ance of some typical the state-of-the-art anchor-free meth-
ds [46,51–53] on face detection datasets. The results are shown
n Figs. 7 and 8. We can see that our method achieves 96.46, 95.44
nd 90.32 on the three subsets, and outperforms other anchor-
ree methods by a large margin. Comparing with state-of-the-art
nchor-based face detection methods, our method also achieves
ompetitive performance.

.5.2. FDDB
We evaluate our proposed method on the FDDB dataset and

ompare it with other state-of-the-art methods [14,16,19,22,27,
4–61]. The discrete ROC curves are shown in Fig. 11. We can
ee that our method achieves the best performance over other
tate-of-the-art methods in terms of ROC curve.

.5.3. AFW dataset and PASCAL face dataset
We evaluate our method on the AFW datast and PASCAL

ace dataset and compare the proposed method with some well-
nown works and three commercial face detectors (Face.com,
ace++ and Picasa). Due to these two datasets are a little old, we
nly use to verify the generalization of our model. The precision–
ecall curves on AFW and PASCAL face are shown in Figs. 12 and
3, respectively. The average precision (AP) of our method on

FW dataset is 99.73 and on PASCAL face dataset is 99.35. The f

10
Fig. 13. Precision–recall curves on the PASCAL face dataset.

Table 3
The effect of convolution kernel number on WIDER FACE dataset.
The performance is evaluated under the model-D structure of
ResNet-50 backbone.
Number Easy Medium Hard

1 (Model-D +SSM) 96.31 95.23 90.18
2 96.39 95.33 90.23
4 96.46 95.44 90.32
6 95.45 95.42 90.31
8 96.46 95.40 90.29

Table 4
Detection time with respect to different input sizes.
Method 640 × 480 1280 × 720 1920 × 1080

SRN [17] 88.45 ms 158.11 ms 309.95 ms
PyramidBox [16] 61.72 ms 166.21 ms 410.22 ms
DBCFace [27] 29.11 ms 63.73 ms 141.46 ms
Ours 40 ms 80.81 ms 139.76 ms

results show that our method is superior to the others and AP
tends to saturate on both datasets, indicating that our method
has good generalization.

5.6. Inference time

We analyze the running speed of our method on a single
NVIDIA GTX 2080Ti. The running speed is the real detection time
(including forward time and post-process time). We use batch-
size 1 and a few common resolutions for testing. We average the
time on WIDER FACE validation set to obtain reliable results. For
comparison, we test two famous state-of-the-art anchor based
methods PyramidBox [16] and SRN [17] and one anchor-free
method DBCFace [27] under the same configurations. The final
results are presented in Table 4. As can be seen, our method
can achieve higher speed than two anchor-based methods. The
anchor-free method DBCFace has faster speed than ours, but we
can achieve better accuracy. Overall, our model achieves a good
trade-off between performance and efficiency.

5.7. Computational complexity

We use fvcore1 to compute the parameters of our model
and FLOPs. Fvcore is a light-weight core library that provides
the most common and essential functionality shared in various

1 The open source of fvcore locates at: https://github.com/facebookresearch/
vcore

https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore
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Table 5
The computational complexity of our model and DBCFace.
Model Input GFLOPs Params(M)

DBCFace [27] (1, 3, 256, 256) 16.76 37.6
DBCFace [27] (1, 3, 512, 512) 67.05 37.6
DBCFace [27] (8, 3, 256, 256) 134.1 37.6
Ours (1, 3, 256, 256) 18.19 39.5
Ours (1, 3, 512, 512) 72.49 39.5
Ours (8, 3, 256, 256) 145.54 39.5

computer vision frameworks, including compute the parameters
of the model and FLOPs. Table 5 shows the computational com-
plexity of our model and DBCFace [27] with different size and
batch-size inputs. Our model is with a little higher computational
complexity than DBCFace, but our model gets much better per-
formance when using the same backbone for feature extraction,
which means our method balances performance and efficiency.

6. Conclusion

In this paper, aiming at the difficulties of face detection in
cale variation, shape difference and image context complexity,
e propose an improved anchor-free framework. In particular, an
nline scale adaption strategy is introduced to guide each detec-
or to learn a best detection range of face scale. In addition, we
ropose a context-aware detection module to explicitly transform
riginal features into the same feature space. Furthermore, shape-
ensitive module is designed to deal with faces with singular
spect ratio. On four common challenging benchmarks, WIDER
ACE,FDDB, AFW and PASCAL face datasets, extensive experi-
ents demonstrate that our method achieves the state-of-the-art
etection performance. Our method shows that anchor-based is
o longer the only choice for high performance face detection,
nd anchor-free method can achieve the same or even higher per-
ormance on the task of face detection with large scale variation.
ur proposed model could adapt to various face scales, the net-
ork could detect tiny face in large scale while capture big face

n small scale. This technology could provide inspiration about
he design of scale-robust face detection models. In intelligent
onitoring, automatic driving and other tasks, it is necessary to
etect all people and not miss any target, our method could be
pplied to these scenarios.
In the future, we will explore the transfer learning, domain

daptation and neural network architecture search techniques to
mprove the generalization and address the challenging problems
n face detection like large scale variation, occlusion and very tiny
ace detection.

RediT authorship contribution statement

Cunying Ye: Helps conduct many experiments and writes a
art of this paper. Xin Li: Contributes the main idea of this work,

and is the main hand in paper writing. Shenqi Lai: Gives many
uggestions on paper writing and organization. Yaxiong Wang:
dvices the paper writing and helps review the paper. Xueming
ian: Charge of supervising all steps, including the main idea, and
aper writing and the experiments organization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
11
Acknowledgment

This work is supported in part by the Science and Technology
Program of Xi’an, China under Grant 21RGZN0017.

References

[1] J. Sun, W. Yang, J.-H. Xue, Q. Liao, An equalized margin loss for face
recognition, IEEE Trans. Multimed. 22 (11) (2020) 2833–2843, http://dx.
doi.org/10.1109/TMM.2020.2966863.

[2] F. Wang, J. Cheng, W. Liu, H. Liu, Additive Margin softmax for face
verification, IEEE Signal Process. Lett. 25 (7) (2018) 926–930, http://dx.
doi.org/10.1109/LSP.2018.2822810.

[3] S. Zhao, W. Liu, S. Liu, J. Ge, X. Liang, A hybrid-supervision learning
algorithm for real-time un-completed face recognition, Comput. Electr.
Eng. 101 (2022) 108090, http://dx.doi.org/10.1016/j.compeleceng.
2022.108090, URL https://www.sciencedirect.com/science/article/pii/
S0045790622003457.

[4] J. Lv, X. Shao, J. Xing, C. Cheng, X. Zhou, A deep regression architecture with
two-stage re-initialization for high performance facial landmark detection,
in: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2017, pp. 3691–3700, http://dx.doi.org/10.1109/CVPR.2017.393.

[5] P. Gao, K. Lu, J. Xue, L. Shao, J. Lyu, A coarse-to-fine facial landmark de-
tection method based on self-attention mechanism, IEEE Trans. Multimed.
23 (2021) 926–938, http://dx.doi.org/10.1109/TMM.2020.2991507.

[6] J. Wan, Z. Lai, J. Liu, J. Zhou, C. Gao, Robust face alignment by multi-order
high-precision hourglass network, IEEE Trans. Image Process. 30 (2021)
121–133, http://dx.doi.org/10.1109/TIP.2020.3032029.

[7] C. Jing, Z. Dong, M. Pei, Y. Jia, Heterogeneous hashing network for face
retrieval across image and video domains, IEEE Trans. Multimed. 21 (3)
(2019) 782–794, http://dx.doi.org/10.1109/TMM.2018.2866222.

[8] Y.R. Choi, R.M. Kil, Face video retrieval based on the deep CNN with RBF
loss, IEEE Trans. Image Process. 30 (2021) 1015–1029, http://dx.doi.org/10.
1109/TIP.2020.3040847.

[9] X. Zhu, D. Ramanan, Face detection, pose estimation, and landmark
localization in the wild, in: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2012, pp. 2879–2886.

[10] J. Yan, X. Zhang, Z. Lei, S.Z. Li, Face detection by structural models, Image
Vis. Comput. 32 (10) (2014) 790–799.

[11] V. Jain, E. Learned-Miller, FDDB: A Benchmark for Face Detection in
Unconstrained Settings, Technical Report, (UM-CS-2010-009) University of
Massachusetts, Amherst, 2010.

[12] S. Yang, P. Luo, C.-C. Loy, X. Tang, Wider face: A face detection benchmark,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5525–5533.

[13] M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single stage
headless face detector, in: 2017 IEEE International Conference on Computer
Vision, ICCV, 2017, pp. 4885–4894, http://dx.doi.org/10.1109/ICCV.2017.
522, URL https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.522.

[14] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S3fd: Single shot scale-
invariant face detector, in: The IEEE International Conference on Computer
Vision, ICCV, 2017, pp. 192–201.

[15] J. Wang, Y. Yuan, G. Yu, Face attention network: An effective face detector
for the occluded faces, 2017, ArXiv, arXiv:1711.07246.

[16] X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot
face detector, in: Proceedings of the European Conference on Computer
Vision, ECCV, 2018, pp. 797–813.

[17] C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement
network for high performance face detection, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, 2019, pp. 8231–8238.

[18] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature
pyramid networks for object detection, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2017, pp. 936–944, http:
//dx.doi.org/10.1109/CVPR.2017.106, URL https://doi.ieeecomputersociety.
org/10.1109/CVPR.2017.106.

[19] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, Faceboxes: A CPU real-
time face detector with high accuracy, in: 2017 IEEE International Joint
Conference on Biometrics, IJCB, IEEE, 2017, pp. 1–9.

[20] J. Liang, J. Wang, Y. Quan, T. Chen, J. Liu, H. Ling, Y. Xu, Recurrent exposure
generation for low-light face detection, IEEE Trans. Multimed. (2021) 1,
http://dx.doi.org/10.1109/TMM.2021.3068840.

[21] L. Huang, Y. Yang, Y. Deng, Y. Yu, Densebox: Unifying landmark localization
with end to end object detection, 2015, arXiv preprint arXiv:1509.04874.

[22] J. Yu, Y. Jiang, Z. Wang, Z. Cao, T. Huang, Unitbox: An advanced object de-
tection network, in: Proceedings of the 24th ACM International Conference
on Multimedia, ACMPress, 2016, pp. 516–520.

[23] Y. Xue, Y. Li, S. Liu, X. Zhang, X. Qian, Crowd scene analysis encounters
high density and scale variation, IEEE Trans. Image Process. 30 (2021)
2745–2757, http://dx.doi.org/10.1109/TIP.2021.3049963.

http://dx.doi.org/10.1109/TMM.2020.2966863
http://dx.doi.org/10.1109/TMM.2020.2966863
http://dx.doi.org/10.1109/TMM.2020.2966863
http://dx.doi.org/10.1109/LSP.2018.2822810
http://dx.doi.org/10.1109/LSP.2018.2822810
http://dx.doi.org/10.1109/LSP.2018.2822810
http://dx.doi.org/10.1016/j.compeleceng.2022.108090
http://dx.doi.org/10.1016/j.compeleceng.2022.108090
http://dx.doi.org/10.1016/j.compeleceng.2022.108090
https://www.sciencedirect.com/science/article/pii/S0045790622003457
https://www.sciencedirect.com/science/article/pii/S0045790622003457
https://www.sciencedirect.com/science/article/pii/S0045790622003457
http://dx.doi.org/10.1109/CVPR.2017.393
http://dx.doi.org/10.1109/TMM.2020.2991507
http://dx.doi.org/10.1109/TIP.2020.3032029
http://dx.doi.org/10.1109/TMM.2018.2866222
http://dx.doi.org/10.1109/TIP.2020.3040847
http://dx.doi.org/10.1109/TIP.2020.3040847
http://dx.doi.org/10.1109/TIP.2020.3040847
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb12
http://dx.doi.org/10.1109/ICCV.2017.522
http://dx.doi.org/10.1109/ICCV.2017.522
http://dx.doi.org/10.1109/ICCV.2017.522
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.522
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb14
http://arxiv.org/abs/1711.07246
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb17
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.106
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.106
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.106
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb19
http://dx.doi.org/10.1109/TMM.2021.3068840
http://arxiv.org/abs/1509.04874
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb22
http://dx.doi.org/10.1109/TIP.2021.3049963


C. Ye, X. Li, S. Lai et al. Knowledge-Based Systems 253 (2022) 109499
[24] H. Law, J. Deng, Cornernet: Detecting objects as paired keypoints, in:
Proceedings of the European Conference on Computer Vision, ECCV, 2018,
pp. 734–750.

[25] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: Keypoint triplets
for object detection, in: Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 6569–6578.

[26] X. Zhou, J. Zhuo, P. Krahenbuhl, Bottom-up object detection by grouping
extreme and center points, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 850–859.

[27] X. Li, S. Lai, X. Qian, DBCFace: Towards pure convolutional neural network
face detection, IEEE Trans. Circu. Syst. Video Technol. 32 (4) (2022)
1792–1804, http://dx.doi.org/10.1109/TCSVT.2021.3082635.

[28] W. Zheng, M. Yue, S. Zhao, S. Liu, Attention-based spatial-temporal multi-
scale network for face anti-spoofing, IEEE Trans. Biom. Behav. Identity Sci.
3 (3) (2021) 296–307, http://dx.doi.org/10.1109/TBIOM.2021.3066983.

[29] J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, Retinaface: Single-
shot multi-level face localisation in the wild, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 5203–5212.

[30] R. Girshick, Fast R-CNN, in: 2015 IEEE International Conference on Com-
puter Vision, ICCV, 2015, pp. 1440–1448, http://dx.doi.org/10.1109/ICCV.
2015.169.

[31] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object de-
tection with region proposal networks, in: Advances in Neural Information
Processing Systems, 2015, pp. 91–99.

[32] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 779–788.

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg,
Ssd: Single shot multibox detector, in: European Conference on Computer
Vision, Springer, 2016, pp. 21–37.

[34] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 7263–7271.

[35] L. Ding, Y. Wang, R. Laganière, D. Huang, X. Luo, H. Zhang, A robust
and fast multispectral pedestrian detection deep network, Knowl.-
Based Syst. 227 (2021) 106990, http://dx.doi.org/10.1016/j.knosys.
2021.106990, URL https://www.sciencedirect.com/science/article/pii/
S0950705121002537.

[36] C. Wang, Z. Luo, S. Lian, S. Li, Anchor free network for multi-scale face
detection, in: 2018 24th International Conference on Pattern Recognition,
ICPR, IEEE, 2018, pp. 1554–1559.

[37] C. Wang, Z. Luo, Z. Zhong, S. Li, SAFD: single shot anchor free face detector,
Multimedia Tools Appl. 80 (9) (2021) 13761–13785.

[38] X. Feng, L. Duan, J. Chen, An automated method with anchor-free detection
and U-shaped segmentation for nuclei instance segmentation, in: Proceed-
ings of the 2nd ACM International Conference on Multimedia in Asia, 2021,
pp. 1–6.

[39] A. Newell, K. Yang, J. Deng, Stacked hourglass networks for human pose
estimation, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer
Vision – ECCV 2016, Springer International Publishing, Cham, 2016, pp.
483–499.

[40] T. Ma, W. Tian, P. Kuang, Y. Xie, An anchor-free object detector with novel
corner matching method, Knowl.-Based Syst. 224 (2021) 107083, http:
//dx.doi.org/10.1016/j.knosys.2021.107083, URL https://www.sciencedirect.
com/science/article/pii/S0950705121003464.

[41] Y. Yang, X. Tang, Y.-M. Cheung, X. Zhang, F. Liu, J. Ma, L. Jiao, AR2Det:
An accurate and real-time rotational one-stage ship detector in remote
sensing images, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–14, http:
//dx.doi.org/10.1109/TGRS.2021.3092433.
12
[42] W. Ma, T. Zhou, J. Qin, Q. Zhou, Z. Cai, Joint-attention feature fusion
network and dual-adaptive NMS for object detection, Knowl.-Based Syst.
241 (2022) 108213, http://dx.doi.org/10.1016/j.knosys.2022.108213, URL
https://www.sciencedirect.com/science/article/pii/S0950705122000582.

[43] X. Wang, S. Lai, Z. Chai, X. Zhang, X. Qian, SPGNet: Serial and parallel
group network, IEEE Trans. Multimed. 24 (2022) 2804–2814, http://dx.doi.
org/10.1109/TMM.2021.3088639.

[44] X. Wu, D. Hong, J. Chanussot, Y. Xu, R. Tao, Y. Wang, Fourier-based
rotation-invariant feature boosting: An efficient framework for geospatial
object detection, IEEE Geosci. Remote Sens. Lett. 17 (2) (2020) 302–306,
http://dx.doi.org/10.1109/LGRS.2019.2919755.

[45] X. Wu, D. Hong, J. Tian, J. Chanussot, W. Li, R. Tao, ORSIm detector: A
novel object detection framework in optical remote sensing imagery using
spatial-frequency channel features, IEEE Trans. Geosci. Remote Sens. 57 (7)
(2019) 5146–5158, http://dx.doi.org/10.1109/TGRS.2019.2897139.

[46] X. Zhou, D. Wang, P. Krähenbühl, Objects as points, 2019, arXiv preprint
arXiv:1904.0785.

[47] D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, B. Zhang, More
diverse means better: Multimodal deep learning meets remote-sensing
imagery classification, IEEE Trans. Geosci. Remote Sens. 59 (5) (2021)
4340–4354, http://dx.doi.org/10.1109/TGRS.2020.3016820.

[48] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, Ieee, 2009, pp. 248–255.

[50] C. Zhu, R. Tao, K. Luu, M. Savvides, Seeing small faces from Robust anchor’s
perspective, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 5127–5136.

[51] C. Zhu, Y. He, M. Savvides, Feature selective anchor-free module for single-
shot object detection, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, 2019, pp. 840–849.

[52] Z. Tian, C. Shen, H. Chen, T. He, Fcos: Fully convolutional one-stage object
detection, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 9627–9636.

[53] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, J. Shi, FoveaBox: Beyound anchor-
based object detection, IEEE Trans. Image Process. 29 (2020) 7389–7398,
http://dx.doi.org/10.1109/TIP.2020.3002345.

[54] J. Zhang, X. Wu, S.C. Hoi, J. Zhu, Feature agglomeration networks for single
stage face detection, Neurocomputing 380 (2020) 180–189.

[55] P. Hu, D. Ramanan, Finding tiny faces, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2017.

[56] K. Zhang, Z. Zhang, H. Wang, Z. Li, Y. Qiao, W. Liu, Detecting faces using
inside cascaded contextual cnn, in: Proceedings of the IEEE International
Conference on Computer Vision, ICCV, 2017, pp. 3171–3179.

[57] S. Yang, Y. Xiong, C.C. Loy, X. Tang, Face detection through scale-friendly
deep convolutional networks, 2017, arXiv preprint arXiv:1706.02863.

[58] D. Triantafyllidou, P. Nousi, A. Tefas, Fast deep convolutional face detection
in the wild exploiting hard sample mining, Big Data Res. 11 (2018) 65–76.

[59] E. Ohn-Bar, M.M. Trivedi, To boost or not to boost? On the limits of boosted
trees for object detection, in: 23rd International Conference on Pattern
Recognition, ICPR 2016, CancÚN, Mexico, December 4-8, 2016, IEEE, 2016,
pp. 3350–3355, http://dx.doi.org/10.1109/ICPR.2016.7900151.

[60] D. Triantafyllidou, A. Tefas, A fast deep convolutional neural network for
face detection in big visual data, in: INNS Conference on Big Data, Springer,
2016, pp. 61–70.

[61] R. Ranjan, V.M. Patel, R. Chellappa, HyperFace: A deep multi-task learning
framework for face detection, landmark localization, pose estimation, and
gender recognition, IEEE Trans. Pattern Anal. Mach. Intell. (2018) 1.

http://refhub.elsevier.com/S0950-7051(22)00751-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb26
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb26
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb26
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb26
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb26
http://dx.doi.org/10.1109/TCSVT.2021.3082635
http://dx.doi.org/10.1109/TBIOM.2021.3066983
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb29
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb34
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb34
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb34
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb34
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb34
http://dx.doi.org/10.1016/j.knosys.2021.106990
http://dx.doi.org/10.1016/j.knosys.2021.106990
http://dx.doi.org/10.1016/j.knosys.2021.106990
https://www.sciencedirect.com/science/article/pii/S0950705121002537
https://www.sciencedirect.com/science/article/pii/S0950705121002537
https://www.sciencedirect.com/science/article/pii/S0950705121002537
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb39
http://dx.doi.org/10.1016/j.knosys.2021.107083
http://dx.doi.org/10.1016/j.knosys.2021.107083
http://dx.doi.org/10.1016/j.knosys.2021.107083
https://www.sciencedirect.com/science/article/pii/S0950705121003464
https://www.sciencedirect.com/science/article/pii/S0950705121003464
https://www.sciencedirect.com/science/article/pii/S0950705121003464
http://dx.doi.org/10.1109/TGRS.2021.3092433
http://dx.doi.org/10.1109/TGRS.2021.3092433
http://dx.doi.org/10.1109/TGRS.2021.3092433
http://dx.doi.org/10.1016/j.knosys.2022.108213
https://www.sciencedirect.com/science/article/pii/S0950705122000582
http://dx.doi.org/10.1109/TMM.2021.3088639
http://dx.doi.org/10.1109/TMM.2021.3088639
http://dx.doi.org/10.1109/TMM.2021.3088639
http://dx.doi.org/10.1109/LGRS.2019.2919755
http://dx.doi.org/10.1109/TGRS.2019.2897139
http://arxiv.org/abs/1904.0785
http://dx.doi.org/10.1109/TGRS.2020.3016820
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb48
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb48
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb48
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb48
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb48
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb49
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb49
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb49
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb49
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb49
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb50
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb50
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb50
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb50
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb50
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb51
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb51
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb51
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb51
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb51
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb52
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb52
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb52
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb52
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb52
http://dx.doi.org/10.1109/TIP.2020.3002345
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb54
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb54
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb54
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb55
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb55
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb55
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb56
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb56
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb56
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb56
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb56
http://arxiv.org/abs/1706.02863
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb58
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb58
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb58
http://dx.doi.org/10.1109/ICPR.2016.7900151
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb60
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb60
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb60
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb60
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb60
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb61
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb61
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb61
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb61
http://refhub.elsevier.com/S0950-7051(22)00751-1/sb61

	Scale adaption-guided human face detection
	Introduction
	Related work
	Detect face based on anchors
	Anchor-free face detection
	Multi-scale enhanced object detection

	Preliminary
	Proposed method
	Online scale adaption strategy
	Scale-aware loss
	Data-scale resampling

	Shape sensitive module
	Context aware detection module

	Experiments
	Datasets
	FDDB
	WIDER FACE
	AFW dataset 
	PASCAL face dataset 

	Experimental setup
	Data augmentation
	Training  testing details
	Baseline

	Model architecture design
	Ablation study
	The effect of online scale adaption
	The effectiveness of shape sensitive module
	The number of convolution kernels in context-aware dynamical detector
	The effect of hyper-parameter  in Eq. eq3

	Evaluation on benchmark
	WIDER FACE
	FDDB
	AFW dataset and PASCAL face dataset 

	Inference time 
	Computational complexity 

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


