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a b s t r a c t

Surgical tool detection is a recently active research area. It is the foundation to a series of advanced
surgical support functions, such as image guided surgical navigation, forming safety zone between
surgical tools and sensitive tissues. Previous methods rely on two types of information: tool locating
signals and vision features. Collecting tool locating signals requires additional hardware equipments.
Vision based methods train their detection models using strong annotations (e.g. bounding boxes),
which are quite rare and expensive to acquire in the field of surgical image understanding. In this
paper, we propose a Pseudo Supervised surgical Tool detection (PSTD) framework, which performs
explicit detection refinement by three levels of associated measures (pseudo bounding box generation,
real box regression, weighted boxes fusion) in a weakly supervised manner. On the basis of PSTD, we
develop a Bi-directional Adaption Weighting (BAW) mechanism in our tool classifier for contextual
information mining by creating competition or cooperation relationships between channels. By only
using image-level tool category labels, the proposed method yields state-of-the-art results with 87.0%
mAP on a mainstream surgical image dataset: Cheloc80.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, Minimally Invasive Surgery (MIS) is a preferred
echnique for many surgery procedures, and is able to avoid
any major drawbacks of open surgery, for example lengthening
atient hospitalization and recovery time. MIS has experienced
ts recent development with the introduction of surgery assisted
obot. With the help of robotic tools, surgeon hand movement
nd force can be converted into gentle scale in real time, so that
ophisticated surgery procedures can be fulfilled with ease.
However, MIS suffers with the reduced view fields on the

urgical site, which could affect visual understanding of surgeons
nd restrict the movement freedom of surgical tools. To facilitate
ccurate manipulation of tools on surgical sites, it is important to
rack the spatial relationship between anatomy areas and tools.
omputer vision assisted intervention is a solution to a series
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of advanced surgical support functions, such as image guided
surgical navigation [1], segmentation of organs in camera field of
view [2], development of algorithms to form safety zone between
surgical tool and sensitive tissues [3], and surgical tool detec-
tion [4,5], segmentation [6] and pose estimation [7]. Large-scale
object classification and detection have seen the effectiveness
of deep neural networks. In the medical image field, computer
vision based object detection has also shown huge potentials by
the introduction deep neural network, e.g. [4,8]. However in the
field of Robot-Assisted Surgery (RAS) images, these advances are
not yet fully explored.

In this paper, we propose a method using deep convolutional
neural networks (CNNs) for understanding RAS images and fast
detection of surgical tools. Literatures have investigated the task
of surgical tool detection in distinct surgical fields, such as: reti-
nal microsurgery [9,10], abdominal MIS [11,12]. Early solutions
are based on markers on surgical tools [13] or active fiducials
e.g. laser pointers. While in practice, such methods require hard-
ware modifications, hence are more difficult to be widely used
clinically. In addition, they still inherently suffer from unstable
markers and from occlusions. Subsequent methods depend on
classical machine learning models such as Random Forests [14]
or probabilistic trackers [15]. Recently, EndoNet [5] is designed
to carry out surgical phase recognition and tool presence de-
tection in a multi-task manner, where one of its output layers
is responsible to localize present tools. While, ToolNet [16] is
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network trained in a single-task manner that solely performs
he tool presence detection. Another recent tool detection work
s [4], which applies a region proposal network and a multimodal
wo stream convolutional network to jointly recognize object and
etection on a fusion of image and temporal motion cues.
Despite their enormous success in various computer vision

asks, the models training requires a vast number of strong anno-
ations, such as instance level labels (bounding boxes or centroid
oints) and pixel level labels (segmentation mask). Several nat-
ral scene datasets are created, but models pre-trained on these
arge-scale datasets cannot perform well for surgical tool detec-
ion, due to the data consistence gap between source domain and
arget domain.

More importantly, surgery image datasets for public use are
uite rare. A few public available datasets include JIGSAWS [17],
2cai16-workflow and m2cai16-tool datasets [5], but none of

hese datasets offer tool annotations. Instead, they only provide
hole image level labels that indicate which kind of tools are
resent or which surgical operation phase the current frame
elongs to. This fact highlights the necessity and significance
f Weakly Supervised surgical Tool Detection (WSTD) approach,
hich relies on image-level category labels that are easy and
heap to acquire.
Paradigm shift from WSTD to PSTD
Recent WSTD approaches [18–20] often utilize class activation

aps [21] to refine their detection performance. These class ac-
ivation map based methods impose thresholding on convolution
eature maps for further regions of interest proposal. But the
arameter in thresholding is tricky and hard to determine.
Other WSTD methods perform classification and localization

ointly. But in many cases, the optimization objectives of the two
ub-tasks are inconsistent. HaS [22] and ADL [20] have observed
hat localization is not compatible with classification if a single
NN model is used. Classification models aim to recognize the
hole object, while localization models often pay attention on the
ost discriminative parts of the object. In comparison, we choose

o factorize surgical tools detection into two independent sub-
asks: the class-agnostic bounding box regression and the tool
lassification.
In this paper, we propose a surgical tool detection scheme in a

ather practical way, where instead of relying on class activation
aps, we make a paradigm shift from WSTD to Pseudo Super-
ised surgical Tool Detection (PSTD). In the PSTD framework, we
irstly design a pseudo bounding box generation scheme, which
rovides us with initial tool detection information in a weakly
upervised manner with low computational cost. For this box
eneration scheme, we build a set of green-background reference
mages for each tool category. The reference images of a tool
ategory contain abundant visual appearances of the category
ith good resolution to discriminative details and common parts
hared by distinct viewpoints. So that the quality of generated
seudo bounding boxes can be guaranteed in the first level.
fter that, a bounding box regressor is trained to refine pseudo
ounding boxes. To further improve detection accuracy, we ap-
ly Weighted Mean Boxes Fusion (WMBF) strategy to fuse the
edundant output boxes from the regressor.

Introduction of Bi-directional Channel Adaption
In addition to PSTD, we propose a Bi-directional (competi-

ion or cooperation) Adaption Weighting (BAW) mechanism into
ur surgical tool classifier. Since the distance and viewpoint of
amera bring huge variation to the appearance of surgical tools.
ecent object detection works [23,24] have suggested that the
ontributions of different convolution channels are not fixed,
ut modulated by current input and stimulus. Local Response
ormalization (LRN) benefits from introducing only competition

elationship among neurons. SEnet [23] uses global information

2

to adaptively emphasize informative channels that have proper
convolution activation maps.

In comparison, BAW is able to create two types of relation-
ship (competition and cooperation) among different channels
during the training process. By combining normalization with a
bi-directional gating operation, the contribution of each channel
can be enhanced or suppressed. When the gating weight of one
channel is activated positively, BAW promotes this channel to
compete with other channels as in LRN. When the gating weight
is activated negatively, BAW encourages this channel to cooperate
with the others. Furthermore in SEnet, two fully-connected (FC)
layers are leveraged to compute a set of weights for different
channels. The FC layers have the parameter complexity of O(Ch2)
(Ch is the number of channels). While, BAW does not employ FC
operations and has a smaller parameter complexity O(Ch).

The contributions of this paper are summarized as.
(1) We propose a surgical tool detection scheme that only uti-

lizes image level tool category labels instead of requiring strong
tool annotations which are rare and expensive to acquire in the
community of robot-assisted surgery.

(2) We create a pseudo supervised surgical tool detection
framework, which consists of four associated modules: pseudo
bounding box generation, box regressor, weighted mean boxes
fusion and a tool classifier with bi-directional channel adaption
capacity.

(3) To deal with tool appearance variation issue, we develop a
Bi-directional (competition and cooperation) Adaption Weighting
(BAW) mechanism, to adaptively emphasize informative channels
and suppress less useful ones.

(4) During pseudo bounding box generation, we design a 1 +

N mode (1 input image and N reference images of the same
category) to purify the pseudo bounding boxes. Within the 1+N
mode, input image areas that are similar to or simultaneously
shared by reference images will be selected as region proposal.

2. Related work

In early years, most surgery tool detection approaches tend to
simplify the detection task into an image color segmentation or
thresholding. Color markers, color coding tools and laser projec-
tors were commonly used at that time. For example, [13] is based
on a barcode marker. Fan et al. [25] develop a 3D-marker based
spatial position estimation system for surgical tool navigation. Du
et al. [11] develop a 2D tracker, which is built on a SIFT-based
generalized hough transform, and use it to initialize a 3D tracker
for each frame. But these approaches share a common drawback
that they all need additional hardware or manufacturing, which
set great limits on their applications.

Recently, pure vision-based approaches are proposed. Sznit-
man et al. [15] train a part-based multi-class classifier and then
use sliding window to localize tools. Although they propose an
early-stop algorithm, the time cost still needs to be reduced.
Another visual method is shape matching. Bouget et al. [26]
present a two-stage method for joint tool detection and pose es-
timation. Their results indicate that performing semantic labeling
as intermediate task can improve detection performance. Colleoni
et al. [27] introduce three-dimensional convolutional layers into
a encoder–decoder architecture to jointly extract spatio-temporal
information, which proves to be useful when dealing with train-
ing images with unseen backgrounds. Bouget et al. [28] turn the
tool presence detection problem into a multi-label classification
problem. In order to localize tools, they have to traverse the
whole image pixel by pixel.

DPM [29] proposes a Deformable Parts Model, which effec-
tively captures both the occlusion and articulation information
which proves to be successful, but the detecting speed is slow
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omehow. EndoNet [5] performs surgical phase recognition and
ool presence detection in a multi-task manner and claims that
he multi-task manner does not compromise its performance in
etecting the tools. Sarikaya et al. [4] utilize a Region Proposal
etwork to fuse the information of two CNN processing streams
f two modalities and feed the output to a Fast RCNN to train
surgical tool detector. It outperforms Faster-RCNN with much
ore time cost. One tool detection work [30] models a surgical in-
trument as an articulated object, and develops a gradient-based
ose estimation infers the location of the instrument parts.
Quite recently, deep neural networks present their superior

otentials in various tasks, such as crowd counting [31], object
egmentation [32], face detection [33]. Several cutting-edge gen-
ral object detectors are also proposed for surgical tool detection.
COS [34] is a fully convolutional one-stage object detector for
bject detection. FCOS is anchor box free by eliminating the pre-
efined set of anchor boxes. RefineDet [35] proposes a novel
ingle-shot based detector, which is believed to simultaneously
aintain high accuracy of two-stage approaches and high effi-
iency of one-stage approaches. ATSS [36] points out that the
ssential difference between anchor-based and anchor-free de-
ection is actually how to define positive and negative training
amples.
As these approaches belongs to strong supervision, they need

ixel-level bounding box annotation for model training. But for
urgery tool detection task, the data in this domain is rare and
ard to collect, let along pixel-level bounding box annotations. In
rder to detect objects with only image-level annotation, some
pproaches that base on multiple instance learning (MIL) frame-
ork have been proposed. Bilen et al. [37] build a weakly su-
ervised deep detection network to perform object localization
nd classification at the same time. Tang et al. [38] improve
he weakly supervised object detection performance using online
nstance classifier refinement (OICR), but it is easily trapped into
ocal optima. Gao et al. [39] introduce a count-based region
election algorithm into OCIR to boost performance. However, it
lso requires additional labor to make count annotation. Cheng
t al. [40] adopt object instance mining framework to address
he problem of missing object instances and make the approach
ore robust for local optima to some extent. Slightly similar to
ur work, [41] belongs to pseudo supervised learning methods
nd also has pseudo label generation module. But [41] lacks the
echanisms (e.g. 1 + N mode used during pseudo bounding
ox generation, the competition capacity of our BAW) to filter
ut interferes from pseudo bounding boxes, which are not that
ccurate by nature.

. The proposed method

Fig. 1 presents the overall framework of our approach. Pseudo
ounding box generation, real bounding box regression and tool
ategory classifier are discussed in Sections 3.1, 3.2 and 3.3 re-
pectively.

.1. Pseudo bounding box generation

Pseudo bounding box generation is the key factor that dis-
inguishes PSTD from WSTD. Detection methods are naturally a
olution for bounding box generation, because they can directly
redict bounding boxes and classification results at the same
ime. While weakly-supervised or co-supervised methods that
rovide noisy bounding boxes can also generate good results
n detection tasks. In comparison to detection methods, weakly
upervised methods, e.g. DDT [42] have both good performance
nd low computational cost. Here we choose DDT to generate

seudo bounding box (see Table 1). Suppose R is a training image

3

Table 1
List of notations used in this section.
Notation Definition

R a training image sub-set containing images of the same category
N the number of training images belonging to the same category
Gi the feature map of ith image generated by a pre-trained model.
P the eigenvector of G given by principal component analysis
Hi the heatmap by channel-level weighed sum on each Gi
Sc green-background reference image set of category c
xcj jth training image of category c
bcj pseudo bounding boxes of image xcj
Ch the number of channels
NA the number of anchors

sub-set which contains n images sharing the same label. For each
image I ∈ R, its feature map Gi can be generated using a pre-
trained model F . Gather all the feature maps of the n images in a
set G, then we can obtain the eigenvector P by applying principal
component analysis on G. Using P as weight vector, a channel-
level weighed sum on each Gi can provide us the heat map Hi
for each image I . Upsample Hi to original size, then we get the
pseudo bounding box by employing zero thresholding and max
connected component analysis.

However, directly using DDT in our surgery tool detection
task will end in vain because the most common object in all
surgical images is human tissue. It means the generated bounding
boxes will mainly localize the backgrounds rather than surgery
tools. In order to let DDT focus on tools, we make a 10 green-
background reference image set Sc = {sc1, sc2, . . . , sc10} for each
tool category i. Fig. 2 illustrates reference images of category
Grasper. Please note that these class-corresponding reference sets
are only available during pseudo bounding box generation for
training images of each category.

For each training image xcj belonging to category c , we com-
bine it with its corresponding reference set Sc to form a package
Pj =

{
xcj, sc1, sc2, . . . , sc10

}
. In this way, every training image xcj

is accompanied by 10 green-background reference images. All the
11 images contain a tool of the same category. Then we apply
principal component analysis by DDT on Pj on the 11 images.
And a set of heat maps will be generated for each image in Pj,
enoted as HPj =

{
hxcj, hsc1, hsc2, . . . , hsc10

}
, where hxcj is the

eat map of image xij. By thresholding heat map hxij, we can
et the pseudo bounding boxes of xij, named as bij. Combine all
seudo bounding boxes of every frame, we obtain the pseudo
ounding box set B =

{
B|Bc = bij, j = 1, . . . ,m, i = 1, . . . , n

}
.

Thus, every training image gets its tool bounding boxes, which
focus more on the regions where surgical tools are present. We
call the way that pseudo bounding box generation works as 1+N
mode of pseudo bounding box generation. With the assistance
of green background reference images for each tool category, the
pseudo bounding boxes generated under 1 + N mode are more
reliable than expectation.

3.2. Real bounding box regression

On the basis of pseudo bounding boxes generation, we train
a bounding box regressor to further refine the pseudo bounding
boxes generated. We extract frames from 80 videos in Cholec80
at a speed of 25 fps through ffmpeg. We use training image set
X as input and the pseudo bounding box set B as annotation
to train the box regressor. As our regressor use the bounding
boxes generated by DDT as training data annotations, and DDT
generates boxes with noise in nature. Consequently, our regressor
will also predict redundant output, where a number of bounding
boxes with various sizes and different centroid positions are
generated around a single tool. In order to reduce the effect of
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Fig. 1. System overview of the proposed method. Top row: traditional weakly supervised object detection; bottom row: our proposed Pseudo Supervised surgical
ool Detection (PSTD) scheme. The input to pseudo bounding box generation follows a 1 + N mode (1 input image and N reference images belonging to the same
ategory with the input image).
Fig. 2. Illustration of 10 green-background reference images for the tool cate-
ory Grasper. The reference images of a tool category contain abundant visual
ppearances of the category with good resolution to discriminative details and
ommon parts shared by distinct poses. So that the quality of generated pseudo
ounding boxes can be guaranteed in the first level.

oise, we apply Weighted Mean Boxes Fusion (WMBF) strategy
o fuse the redundant output boxes from the regressor.

A bounding box can be represented as bj =
{
xj1, yj1, xj2, yj2

}
,

here j indicates the index of this box, (x1, y1) and (x2, y2) are
he coordinates of the top-left and bottom-right corner of the box
espectively. Assume the bounding box set of tool category i in
n image is Bi =

{
bi1, . . . , bij, . . . , bim

}
, where m is the number

f boxes labeled category i in the image. The score set for all
ounding boxes of Bi is Si =

{
si1, . . . , sij, . . . , sim

}
, where sij is

he score for bounding box bij. Then we can calculate the weight
ij for box bij using the following formula:

ij =
sij∑m
j=1 sij

(1)

where m is the number of boxes labeled category i in the image.
Here we simply use the confident score as the score for each
bounding box. Finally, the output bounding box bclassi for this tool
of category i is expressed as:

bclassi =

⎧⎨⎩
m∑
j=1

wijxj1,
m∑
j=1

wijyj1,
m∑
j=1

wijxj2,
m∑
j=1

wijyj2

⎫⎬⎭ (2)

In this way, WMBF module generates fused boxes. So that, the
coordinates of an output box will be adjusted jointly by both the
coordinate and the confident scores of the input boxes.

3.3. Tool classifier

According to image-level labels of Cholec80, we extract the

frames that share the same tool into a group. In many cases, tools

4

take up a small space in a frame. Consequently, commonly used
pre-processing method: resize and random crop cannot work
well. Initial experiments show that only about 10% of random
cropped image patches contain a complete surgical tool. So we
manually crop 224 × 224 square image patches which contain
a specific complete tool for training the classifier. We finally
obtain a 8-classes dataset which consists of 3219 patches for
each of the 7 classes and 7000 patches for background, totally
29,533 patches. We will release these manually cropped surgical
tool images (or seen as manual annotated bounding boxes for
Cholec80) as a contribution of this work for tool detection upon
publication. Examples of processed data are shown in Fig. 3.

We use the 29,533 patches to train a 8-classes (7 tool classes
and 1 background class) tool classifier. Our classifier is based on
Resnet50 with Bi-directional Adaption Weighting (BAW) mod-
ule, using cross entropy as its loss function. We initialize the
Resnet50 layers and BAW layers with parameters pretrained from
ImageNet-1k and random respectively, then finetune it on the
8-classes dataset.

3.3.1. Bi-directional adaption weighting
To deal with huge appearance variation of tools due to scale,

distance, viewpoint etc., within our tool classifier, we propose a
Bi-directional (competition or cooperation) Adaption Weighting
(BAW) mechanism for adaptive channel-wise contextual infor-
mation mining. Compared with SEnet, BAW is able to create
competition or cooperation relationships among channels with
smaller parameter complexity. Fig. 4 illustrates the structure of
BAW module, which consists of three operations.

To make BAW learnable, we design a global context embed-
ding operator, which embeds the global context and controls
the weight for each channel before the normalization and a bi-
directional gating adaptation operator, which adjusts the input
feature channel-wisely. Let Z ∈ RH×W×C be an activation feature
in a convolutional network, where H and W are the spatial height
and width, and C is the number of channels. In general, BAW
performs the following three operations.

Global Context Embedding
Because each learned filter operates with a local receptive

field and consequently can only exploit contextual information
within its receptive field. In order to have a large receptive

field for exploiting channel dependencies, we firstly design a
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Fig. 3. Illustration of our surgical tool classifier training data.
Fig. 4. Illustration of Bi-directional Adaption Weighting (BAW) block.
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lobal context embedding module to aggregate global context
nformation in each channel across their spatial dimensions. To
o that, similar to SEnet [23], we use global average pooling to
enerate a channel-wise descriptor. But we add a trainable pa-
ameter: embedding weight α, which is responsible for adapting
he embedding outputs. Thus the cth channel vc is generated by
hrinking input feature zc through its spatial dimensions H × W ,
ith the embedding weight by:

c = F (zc) =
αc

H × W

H∑
i=1

W∑
j=1

zc(i, j) (3)

Channel Normalization
The second operation is channel normalization, which normal-

izes the original features with respect to the number of channels,
with light-weight computing resource consumption. Similar to
LRN, we use a L2 normalization to operate across channels. Let
V = [v1; ...; vC ] be the input to channel normalization operation.
he formula for the cth channel normalization is:

v̂c =
Cvc

∥V∥2
=

Cvc√∑C
c=1 v2

c + ϵ

(4)

where ϵ is a small constant. The scalar C is used to normalize
the scale of v̂ , avoiding a too small scale of v̂ when C is large.
c c m

5

Compared with SEnet that deploys two FC layers and has the pa-
rameter complexity of O(C2), BAW does not employ FC operations
and has a smaller parameter complexity O(C).

Bi-directional Adaption
To fully use the channel-wise dependencies captured by the

first two operations, here we employ a bi-directional adaption
mechanism. The previous channel normalization operation is
parameter-free. Here we have a trainable parameter: gating
weight β for learning to control the activation of gate channel-
wisely. LRN benefits from creating only competitions among
neurons. However, by introducing the bi-directional adaptation
mechanism, the BAW can facilitate both competition and coop-
eration during the training process. Let the gating weight β =

β1, . . . , βC ], we design the following gating function: ẑc = zc[1+

anh(βc v̂c)].
The scale of each input channel v̂c will be strengthened or

eakened by its corresponding gate, i.e., 1 + tanh(βc v̂c). When
he gating weight of one channel βc is activated positively, BAW
romotes this channel to compete with the others as in LRN.
hen the gating weight is activated negatively, BAW encourages

his channel to cooperate with the others. In this way, BAW is
ble to model both competition and cooperation among differ-
nt channels by combining normalization methods and gating
echanisms.
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Fig. 5. Comparison of ordinary class activation maps (a) and feature maps (b) learned by Bi-directional Adaption Weighting (BAW).
Fig. 5 shows the channel heat maps comparison without and
with the Bi-directional Adaption Weighting (BAW) module. The
‘‘a’’ rows visualize the class activation maps learned by ResNet-
50 [43]. The ‘‘b’’ rows illustrate feature maps obtained from
ResNet-50 as backbone followed by the proposed BAW module.
All the networks are trained on our surgical tool classifier training
data. From the heatmaps, one can observe pure ResNet fails to
capture the discriminative regions. In comparison, higher scores
are fired close to the regions where surgical tools are present,
while most non-target regions have been suppressed. This heav-
ily relies on our BAW module which benefits from adaptively
capturing rich context information.

3.4. Classifier head and regressor head

The classifier head predicts the probability of object presence
at each spatial position for C object classes. The design of this
classifier is simple, see Fig. 6. Taking an input feature map with
K channels from previous conv layers, the classifier head applies
four 3 × 3 conv layers, each with K filters and each followed
by ReLU activation, followed by a 3 × 3 conv layer with C
filters. Finally sigmoid activations are attached to output the C
inary predictions per spatial location. We use K = 256 as the
efault setting. In contrast to classic region proposal network,
his classifier head uses only 3 × 3 convs, and does not share
parameters with the box regression network.

The design of the regressor head is identical to the classier
except that it terminates in 4 × NA (number of anchors) linear
outputs per spatial location, see Fig. 6. For each spatial location,
these 4 outputs predict the relative offset between the predicted
corner coordinates and the ground truth. Unlike most recent
work, we use a class-agnostic bounding box regressor which
uses fewer parameters and we found to be equally effective.
The classifier and the regressor head, though sharing a common
structure, use separate parameters.

4. Experiment

4.1. Dataset & evaluation metric

We use Cholec80 as our training and testing datasets. It con-

tains 80 videos of cholecystectomy surgeries performed with 7

6

kinds of surgery tools. We use mean Average Precision (mAP)
and Mean of intersection of union (mIoU) to evaluate our model.
When calculating mAP, we consider an object positive, only if it
satisfies the following two requirements: (1) the intersection over
union (IoU) between its ground truth and predicted bounding
box is bigger than 0.5; (2) the predicted class is the same as the
ground truth class. mIoU is firstly used as an evaluation metric
for semantic segmentation, but has been commonly used for
evaluating detection performance [44]. To measure the compu-
tational complexity of models, we use three metrics: (1) number
of total parameters, (2) number of MACs (Multiply-accumulate
operations), (3) the average forward inference speed.

4.2. Implementation details

We build our model on PyTorch framework with the assistance
of Nvidia GeForce GTX 1080 GPU.

4.2.1. Training bounding box regressor
We generate 10 green-background reference images for each

kind of tool using Photoshop CC 2017. By pseudo bounding box
generation, we get 13206 images with their pseudo bounding
boxes as the training data for the regressor. The hyperparameters
for the regressor are as follows: batch size 1, weight decay 0.0005,
momentum 0.9. We set the start learning rate at 1e−4 and divide
it by 10 every 10 epochs. The maximum epoch num is 30.

4.2.2. Training classifier
We have 29,533 images (224*224 sized), where 3219 images

for each tool category and 7000 for background. We divide the
dataset into training set and validation set at a proportion of 8:2.
The hyperparameters for the classifier are as follows: batch size
4, weight decay 0.0005, momentum 0.9. We set the start learning
rate at 0.001 and divide it by 10 every 10 epochs.

4.3. Comparison with state-of-the-art

We compare our proposed approach with 8 state-of-the-art
methods including FCOS [34], RefineDet [35], RetinaNet [45],
ToolNet [16], Faster-RCNN [46], Deformable Parts Model (DPM)
[47], EndoNet [5] and ATSS [36]. There are both fully supervised
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Fig. 6. Configuration of the classifier head and regressor head. All convolutional layers use padding=1, stride=1. Convolution layer parameters are denoted as
‘conv-(dilation rate)-stride kernel×kernel×filters’’.
Table 2
Average precision (AP) for all tools computed on the evaluation dataset of Cholec80. Red and Blue
colors label the best and second best results in the mAP column. The PSTD-Net uses the complete
configuration: Regressor+ClassiferWithBAW+WMBF.
Method Bipolar Clipper Grasper Hook Irrigator Scissors Spec. bag mAP

DPM [47] 70.6 68.4 82.3 73.4 67.5 73.4 69.0 70.7
Faster-RCNN [46] 83.1 80.5 79.6 79.2 81.0 78.2 81.2 80.4
ToolNet [16] 85.9 79.8 84.7 85.5 73.0 60.9 86.3 79.4
FCOS [34] 86.9 80.1 84.8 95.6 74.4 58.6 86.8 81.0
RefineDet [35] 83.5 82.9 87.1 85.7 84.3 84.6 87.9 85.0
RetinaNet [45] 80.1 79.0 79.6 81.3 82.6 79.6 83.0 80.7
ATSS [36] 84.2 80.6 80.9 87.3 81.6 83.5 85.7 83.4
EndoNet [5] 77.0 77.8 78.0 81.5 79.7 82.9 81.4 79.8
PSTD-Net 92.1 80.2 89.1 87.1 85.6 84.2 86.1 87.0
h
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t
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methods and weakly supervised methods among the comparison
methods. Table 2 presents performances of all the methods on 7
tool classes with indication of supervision pattern of a method.

It can be seen that PSTD-Net obtains a significant edge over
ethods like DPM, ToolNet and EndoNet. FCOS, RefineDet and
TSS are 3 most competitive methods. RefineDet is a one-stage
etwork and achieves better accuracy than two-stage methods
ike Faster-RCNN. FCOS is a fully convolutional one-stage object
etector in a per-pixel prediction fashion. Unlike RetinaNet that
elies on pre-defined anchor boxes, FCOS is anchor box free, as
ell as proposal free. With much simpler and flexible detection

ramework, FCOS achieves 5% higher mAP than RetinaNet. ATSS
dopts an adaptive training sample selection to automatically
elect positive and negative samples according to statistical char-
cteristics of objects. It significantly improves the performance
f anchor-based and anchor-free detectors and bridges the gap
etween them. RetinaNet proposes to address this class imbal-
nce by reshaping the standard cross entropy loss such that it
own-weights the loss assigned to well-classified examples.
In comparison, PSTD-Net achieves 87.0% mAP for detection of

even tools, with 2%, 3.6% and 5% improvement over RefineDet,
TSS and FCOS. EndoNet finds that tool presence detection can be
one successfully without any explicit localization pre-processing
teps (e.g. segmentation and ROI selection). In comparison, we
till find that explicit region proposal refinement is beneficial for
erformance. In PSTD-Net, the region proposal refinement is done
y three levels: pseudo bounding box generation, bounding box
egression and bounding boxes fusion. This partly explains the
mprovement of PSTD-Net over RefineDet and EndoNet. EndoNet
ives mAP at 79.8% as a weakly supervised method. The other
actor comes from Bi-directional Adaption Weighting, which no
onger treats the contribution of each channel equally.
 c

7

Finally, the success of PSTD-Net and EndoNet indicates that
weakly supervised mechanism is competent to localize tools with
only relying on tools’ image category labels. This is quite en-
couraging for practical use, since annotating a huge number of
surgery images with image level labels is far more convenient and
cheaper than providing bounding boxes.

Table 3 reports the performance comparison result measured
by mIoU. The 9 comparison methods show quite similar perfor-
mance ranking when measured by mAP and measured by mIoU.
RefineDet, ATSS and FCOS are still the 3 most competitive meth-
ods. It can be seen that PSTD-Net achieves obtains 0.855 mIoU on
the evaluation set, surpassing the second best model RefineDet
by +0.02 mIoU (0.855 vs. 0.835). PSTD-Net is also +0.033 mIoU
igher than ATSS, and +0.056 mIoU higher than FCOS.
Fig. 7 presents the results of our tool detection method on

holec80 testing set. Red boxes indicate prediction boxes, green
oxed indicate the ground-truth boxes. Each predicted box is
ssociated with a category label and a confidence score in the
ange of [0, 1]. One can observe that our detection results present
wide range of scales and aspect ratios, and most results are close
o the ground-truth in terms of positions and sizes. This explicitly
emonstrates the effectiveness of the weakly supervised scheme
n surgical tool detection. The following section gives further
xperiment analysis to PSTD-Net.

.4. Computational complexity

To measure the computational complexity of models, we use
hree metrics: (1) number of parameters, (2) number of MACs,
3) average forward inference speed. We compare with 3 most

ompetitive state-of-the-art methods: RefineDet, ATSS and FCOS.
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Table 3
Performance measured by mean of intersection of union (mIoU). The configurations of all
comparison methods are the same with Table 2.
Method Bipolar Clipper Grasper Hook Irrigator Scissors Spec. bag mIoU

DPM [47] 0. 601 0.719 0.816 0.748 0.694 0.719 0.670 0.728
Faster-RCNN [46] 0.782 0.796 0.817 0.694 0.840 0.794 0.819 0.792
ToolNet [16] 0.810 0.768 0.877 0.880 0.723 0.634 0.807 0.786
FCOS [34] 0.816 0.782 0.735 0.873 0.835 0.752 0.837 0.804
RefineDet [35] 0.842 0.824 0.836 0.839 0.845 0.834 0.825 0.835
RetinaNet [45] 0.849 0.823 0.804 0.855 0.810 0.616 0.835 0.799
ATSS [36] 0.850 0.817 0.803 0.825 0.803 0.830 0.825 0.822
EndoNet [5] 0.761 0.761 0.715 0.730 0.790 0.824 0.798 0.768
PSTD-Net 0.918 0.793 0.865 0.849 0.849 0.836 0.875 0.855
Fig. 7. Examples of our tool detection results on Cholec80 testing set. Our method detects objects of a wide range of scales and aspect ratios. Each output box is
ssociated with a category label and a confidence score in [0, 1]. A score threshold of 0.86 is used to display these images. The running time for obtaining these
esults is 169 ms per image. Red box: detection, green box: ground-truth.
p
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omplexity comparison with 3 most competitive methods.
Method Parameters MAC Speed Supervision

RefineDet [35] 16.26 M 27.11 G 24.3180 ms strong
ATSS [36] 127.95 K 1.40 G 9.3802 ms strong
FCOS [5] 15.66 M 21.19 G 18.4170 ms strong
PSTD-Net 5.83 M 3.15 G 15.2651 ms weak

Table 4 summarizes the computational complexity comparison
results. The ‘‘Supervision’’ column indicates whether a method
works under full or weak supervision manner.

RefineDet is a one-stage network with comparable efficiency,
ts main computational complexity comes from its two inter-
onnected modules. The use of feature alignment convolution
an regress more accurate object locations, but requires a larger
omputational power and slows down inference speed. FCOS
s another one-stage object detector. By eliminating the anchor
oxes, FCOS completely avoids the complicated computation re-
ated to anchor boxes such as the IOU computation and matching
etween the anchor boxes and ground-truth boxes during train-
ng. As a results, FCOS shows faster inference speed and less
raining memory footprint than RefineDet. The pure training sam-
le selection scheme of ATSS results in the smallest number of
arameters with the fastest inference speed. This is similar to
he finding in [36]. The computational complexity of ATSS lies
n the use of tiling multiple anchors per location on the image
o detect objects. The computational complexity of our method
omes from the regressor head, classifier head and backbone.
ecause although sharing a common structure, the classifier head
nd the regressor head use separate parameters. Following ATSS,
he computational complexity of our proposed PSTD-Net remains
 m

8

Fig. 8. Effect of Bi-directional Adaption Weighting (Reg+C.BAW+WMBF) com-
ared with convolutional layers (Reg+C.conv+WMBF) and traditional classifier
Reg+C+WMBF).

t the second lowest levels. Table 4 summarizes the result of the
omputational complexity comparison.

.5. Ablation study

We carry out ablation experiments to better understand the
ffect of specific components of PSTD-Net.

.5.1. Bi-directional Adaption Weighting (BAW)
To investigate the role of BAW, we design a comparison

ethod called Reg+C.Conv+WMBF, which replaces the BAW
odule with 2 convolutional layers. Another comparison method
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Fig. 9. Detection results before (left) and after (right) WMBF. Red box: detection, green box: ground-truth.
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Fig. 10. Effect of Bounding Boxes Fusion strategies, AP for 7 classes and mean
P of 3 different Box Fusion strategies.

s Reg+C+WMBF, which directly localizes tools by convolu-
ion layers + bounding box regression head without the use
f BAW module in the classifier. The proposed entire model
Reg+C.BAW+WMBF) obtains mAP at 86.99. While the mAP val-
es of the two comparison methods (Reg+C+WMBF and
eg+C.Conv+WMBF) are 84.58 and 85.74 respectively (see Fig. 8).

Reg+C.Conv+WMBF only obtains 1% mAP improvement over
eg+C+WMBF. This results from the addition of the convolu-
ional layers that promote the feature extraction and fusion in
ingle channel. However, The PSTD-Net still presents obviously
igher mAP compared with Reg+C.Conv+WMBF. This demon-
trates the significance of emphasizing informative channels that
ave proper activation to the target tools, which is exact the
 a

9

Fig. 11. Effect of Bounding Boxes Regressor, AP for 7 classes and mean AP.

otivation of the BAW module. As we know, without channel-
ise weighting, the contributions of distinct channels are equal.

n fact, due to different activation properties, channels shows
uite distinct responses to tools and background tissues.

.5.2. Bounding Boxes Fusion strategies
In order to figure out the contribution of our Weighted Mean

ox Fusion (WMBF) strategy, we carry out a comparison experi-
ent between WMBF, Direct Mean Box Fusion (DMBF) and Non
aximum Suppress (NMS) respectively. DMBF is directly using

he center of the top-left and bottom-right corner of the bound-
ng boxes as the top-left and bottom-right corner of the output
ounding box of a specific tool. NMS is a traditional strategy for
emoving the redundancy of bounding boxes. We set the IoU
hreshold in NMS as 0.1.

Fig. 9 illustrates tool detection results before (left column) and
fter (right column) WMBF. To better understand the comparison,
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Fig. 12. The performance of PSTD when the number of reference images
ncreases from 3 to 15.

lease see the bottom pipeline in Fig. 1 as a reference. The left col-
mn shows the boxes predicted by the regressor, where multiple
verlapping boxes may exist and inaccurate boxes may also occur.
MBF fuses the coordinates of the multiple input boxes with

he consideration to boxes’ confidence scores. The right column
isualizes the processed boxes, which are spatially closer to the
round-truth in terms of sizes and centroid positions.
As shown in Fig. 10, NMS gets the lowest mAP (71.29%) among

ll three strategies. Due to the noise from DDT, the confident
cores given by the regressor are not clear enough for direct
se by NMS, which highly depends on pure confident scores.
his is the main reason why NMS performs poorly here. As
MS only keeps the bounding box with the highest score within
edundant area, the precision of NMS will totally depend on the
nreliable score obtained during bounding box generation. Thus
he reliability of NMS is greatly affected in a noisy system.

DMBF gets a slightly higher mAP (71.57%) than NMS. This
ap attributes to the contribution of the bounding boxes that
et lower confident scores but locate quite close to the ground
ruth. In these cases, DMBF breaks through NMS‘s drawback of
ver-reliance on the reliability of boxes’ confident scores. On
he other hand, averaging is able to smooth the output noise
o some extent. However, DMBF absolutely neglects the infor-
ation of confident scores from the regressor. As Regressor is
ctually a bandpass filter, it can somehow suppress the noise in
he training samples generated by DDT. The confident score still
ontains useful messages in a large scale. It is the ignorance of
he information in bounding box confident score that results in
MBF’s insignificant advantage over NMS even though it reduces
he disturbance of noise.

Unlike NMS and DMBF, WMBF can not only smooth the noise
ut also utilize the useful information from the regressor. As a
esult, WMBF achieves 86.99% mAP with ∼16% higher than the
ther two strategies.

.5.3. Bounding Boxes Regressor
In PSTD-Net, we train a bounding box regressor to perform

eal tool detection, and to further refine the pseudo bound-
ng boxes generated by DDT. In this section, we construct a
o-regressor pipeline by removing the regressor module and
oncatenating DDT with the classifier directly. To be fair, we still
se the green-background reference set mentioned in Section 3.2
or this no-regressor pipeline. Fig. 11 shows the performance of
eg+Cbaw+WMBF (our complete pipeline) and DDT+Cbaw+

MBF (no-regressor pipeline). We can observe a huge mAP
ap (close to 60%) between the two pipelines. The main reason
or this phenomenon is that the bounding boxes generated by

DT contain a lot of noise in terms of boxes locations and

10
izes. In the complete pipeline, the bounding box regressor is
esigned to refine the bounding boxes from DDT. Without the
egressor, noises in boxes locations and sizes can directly pass
o the subsequent classifier, causing the significant mAP drop in
DT+C.BAW+WMBF.

.5.4. Number of reference images
During pseudo bounding box generation, the input follows a

+ N mode (1 input image and N reference images belonging
o the same category with the input image). The motivation of
he 1 + N mode is to purify the noisy bounding boxes among
he pseudo bounding boxes generated solely by DDT. Green back-
round reference images are used to suppress interferences from
riginal background. Within the 1 + N mode, input image areas
hat are similar to or simultaneously shared by all the N reference
images will be selected as region proposal (i.e. the generated
pseudo bounding boxes). This is more reliable than principal
component analysis done by pure DDT.

If we set the value of N properly, every training image can
et higher-quality tool bounding boxes, which focus more on the
egions where surgical tools are present. If we set N too small,
it means the constrain is loose. Thus, many shared but irrelevant
image areas will be given as pseudo bounding boxes. If we set N
too large, the constrain will be strict. Thus, bland image area will
be given as pseudo bounding boxes.

Here we conduct a new experiment to explore how N affects
the proposed method. We set N from 3 to 15, and report the
mAP performance under every value of N . Fig. 12 shows this
experiment result. It can be seen the trend of mAP presents three
close and high values when N = 9, 10, 11. This is consistent with
our previous theoretical analysis.

5. Conclusion

In this paper, we propose a pseudo supervised surgical tool
detection (PSTD) framework to solve the drawbacks in existing
surgical tool detection methods. Furthermore, our Bi-directional
Adaption Weighting (BAW) mechanism brings further improve-
ment on the basis of PSTD by deep mining into the convolution
features. Various experiments show that our methods obtain
a significant edge over previous methods, including the recent
state-of-the-art method EndoNet [5]. By three level of explicit
localization refinement measures (pseudo bounding box gener-
ation, real box regression, weighted boxes fusion) and the tool
classifier with BAW mechanism, we witness the effectiveness to
use image level tool category labels for tool detection, without
the need to relying on pixel level tool annotations which are rare
and expensive. We believe this finding is encouraging for future
relevant research.
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